With Resistive Gate Electrode Patents (Class 257/364)
  • Publication number: 20090090971
    Abstract: A semiconductor device is disclosed. The device comprises a first MOSFET transistor. The transistor comprises a substrate, a first high-k dielectric layer upon the substrate, a first dielectric capping layer upon the first high-k dielectric, and a first gate electrode made of a semiconductor material of a first doping level and a first conductivity type upon the first dielectric capping layer. The first dielectric capping layer comprises Scandium.
    Type: Application
    Filed: September 18, 2008
    Publication date: April 9, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Hsun Chang, Lars-Ake Ragnarsson
  • Patent number: 7498621
    Abstract: A two-dimensional, temporally modulated electromagnetic wavefield, preferably in the ultraviolet, visible or infrared spectral range, can be locally detected and demodulated with one or more sensing elements. Each sensing element consists of a resistive, transparent electrode (E) on top of an insulated layer (O) that is produced over a semiconducting substrate whose surface is electrically kept in depletion. The electrode (E) is connected with two or more contacts (C1; C2) to a number of clock voltages that are operated synchronously with the frequency of the modulated wavefield. In the electrode and in the semiconducting substrate lateral electric fields are created that separate and transport photogenerated charge pairs in the semiconductor to respective diffusions (D1; D2) close to the contacts (C1; C2).
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: March 3, 2009
    Assignee: MESA Imaging AG
    Inventor: Peter Seitz
  • Publication number: 20080258225
    Abstract: MOS transistors having high-k spacers and methods for fabricating such transistors are provided. One exemplary method comprises forming a gate stack overlying a semiconductor substrate and forming an offset spacer about sidewalls of the gate stack. The offset spacer is formed of a high-k dielectric material that results in a low interface trap density between the offset spacer and the semiconductor substrate. First ions of a conductivity-determining impurity type are implanted into the semiconductor substrate using the gate stack and the offset spacer as an implantation mask to form spaced-apart impurity-doped extensions.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Frank (Bin) YANG, Michael HARGROVE
  • Patent number: 7425736
    Abstract: A silicon layer with high resistance is provided. The silicon layer with high resistance is positioned on a substrate. Also, the silicon layer with high resistance includes a plurality of silicon material layers, and an interface layer between every two of the silicon material layers, wherein, the silicon material layers and the interface layer have dopants therein. The amount of implanted dopants is about 1*1014˜5*1015 ions/cm2, and the silicon material layers have different grain boundaries.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: September 16, 2008
    Assignee: United Microelectronics Corp.
    Inventor: Yu-Chi Yang
  • Patent number: 7391084
    Abstract: An LDMOS transistor device in an integrated circuit comprises a semiconductor substrate (10), a gate region (1) including a gate semiconductor layer region (2; 2?; 151) on top of a gate insulation layer region (3; 141), source (4) and drain (5, 7) regions, and a channel (6; 12) arranged beneath the LDMOS gate region, the channel interconnecting the LDMOS source and drain regions and having a laterally graded doping concentration. In order to obtain a lower parasitic capacitance coupling from the gate semiconductor region, the gate semiconductor layer region is provided with a laterally graded net doping concentration (P+N+; N+N?). A method for fabrication of the inventive LDMOS transistor device is further disclosed.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: June 24, 2008
    Assignee: Infineon Technologies AG
    Inventors: Torkel Arnborg, Ulf Smith
  • Publication number: 20080023769
    Abstract: A semiconductor device includes an active region. A gate electrode is disposed on the active region. An isolation region adjoins the active region, and is recessed with respect to a top surface of the active region underlying the gate electrode. The isolation region may be recessed a depth substantially equal to a height of the gate electrode. In some embodiments, the gate electrode is configured to support current flow through the active region along a first direction, and a tensile stress layer covers the gate electrode and is configured to apply a tensile stress to the gate electrode along a second direction perpendicular to the first direction. The tensile stress layer may cover the recessed isolation region and portions of the active region between the isolation region and the gate electrode. In further embodiments, an interlayer insulating film is disposed on the tensile stress layer and is configured to apply a tensile stress to the gate electrode along the second direction.
    Type: Application
    Filed: May 23, 2007
    Publication date: January 31, 2008
    Inventors: Dong-suk Shin, Andrew Tae Kim, Yong-kuk Jeong
  • Publication number: 20070272984
    Abstract: Provided is a semiconductor device manufacturing method including a field oxide insulation film forming step including forming a field oxide insulation film (12) so that, in an active region (13), a portion (13a), which corresponds to a side surface portion of the active region (13) opposing a rotation center (O) in spin-coating on the surface of the semiconductor substrate (11) in a centrifugal force acting direction (F) along the surface of the semiconductor substrate (11) and located in a forward side of the centrifugal force acting direction (F), has a curved surface convex to the forward side of the centrifugal force acting direction (F) when the semiconductor substrate (11) is seen in a plan view.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 29, 2007
    Inventors: Akiko Tsukamoto, Hisashi Hasegawa, Jun Osanai
  • Patent number: 7179702
    Abstract: A semiconductor device comprises a semiconductor substrate, an N-channel MISFET and a P-channel MISFET provided on the semiconductor substrate, each of the N- and P-channel MISFETs being isolated by an isolation region and having a gate insulating film, a first gate electrode film provided on the gate insulating film of the N-channel MISFET and composed of a first metal silicide, a second gate electrode film provided on the gate insulating film of the P-channel MISFET and composed of a second metal silicide made of a second metal material different from a first metal material composing the first metal silicide, and a work function of the first gate electrode film being lower than that of the second gate electrode film.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kouji Matsuo
  • Patent number: 7005716
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Silicon ions are implanted into the metal layer in one active area to form an implanted metal layer which is silicided to form a metal silicide layer. Thereafter, the metal layer and the metal silicide layer are patterned to form a metal gate in one active area and a metal silicide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal silicide gates wherein the silicon concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: February 28, 2006
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6992916
    Abstract: A high resistor SRAM memory cell to reduce soft error rate includes a first inverter having an output as a first memory node, and a second inverter having an output as a second memory node. The second memory node is coupled to an input of the first inverter through a first resistor. The first memory node is coupled to an input of the second inverter through a second resistor. A pair of access transistors are respectively coupled to a pair of bit lines, a split word line and one of the memory nodes. The resistors are prepared by coating a layer of silicide material on a selective portion of the gate structure of the transistors included in the first inverter, and connecting a portion of the gate structure that is substantially void of the silicide material to the drain of the transistors included in the second inverter.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: January 31, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 6963111
    Abstract: A pMOS transistor (601) is located in an n-well (602) and has at least one gate (603). Transistor (601) is connected between power pad Vdd or I/O pad (604) and ground potential Vss (605). Gate (603) is connected to power pad (604). The n-well (602) is capacitively (620) coupled to ground (605), decoupled from the transistor source (606) and floating under normal operating conditions. Under an ESD event, the diode formed by the source (606) and the n-well (602) is forward biased (n-well negatively biased) to turn on the lateral pnp transistor to discharge the ESD current. The well voltage keeps increasing up to the value that triggers the lateral bipolar pnp transistor. The ESD protection is scalable with the width of gate (603), improving with shrinking gate width.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: November 8, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Vijay K. Reddy, Gianluca Boselli, Ekanayake A. Amerasekera
  • Patent number: 6940132
    Abstract: A semiconductor device includes a semiconductor substrate having a first major surface and a second major surface, source and drain layers formed in the first major surface, a gate insulating film formed on the first major surface, a gate layer formed on the gate insulating film, a source electrode formed on the first major surface and electrically connected to the source layer, a drain electrode formed on the first major surface, electrically connected to the drain layer, and having a second isolation portion, a gate electrode formed on the first major surface, electrically connected to the gate layer, and having a first isolation portion, a first capacitance adjusting electrode formed on the gate insulating film and having a first capacitance adjusted by the first isolation portion, and a second capacitance adjusting electrode formed on the gate insulating film and having a second capacitance adjusted by the second isolation portion.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: September 6, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kouji Kikuchi
  • Patent number: 6894365
    Abstract: A resistance element of a semiconductor device includes a first resistance pattern and a second resistance pattern formed adjacent to the first resistance pattern at a lower level, wherein the second resistance pattern is defined by the first resistance pattern in a self-aligned relationship and connected to the first resistance pattern in series.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: May 17, 2005
    Assignee: Ricoh Company, Ltd.
    Inventor: Yoshinori Ueda
  • Patent number: 6878579
    Abstract: An aspect of the present invention includes a first conductive type semiconductor region; a gate electrode formed on the first conductive type semiconductor region; a channel region formed immediately below the gate electrode in the first conductive type semiconductor region; and a second conductive type first diffusion layer constituting source/drain regions formed at opposite sides of the channel region in the first conductive type semiconductor region, the gate electrode being formed of polycrystalline silicon-germanium, in which a germanium concentration is continuously increased from a drain region side to a source region side, and an impurity concentration immediately below the gate electrode in the first conductive type semiconductor region being continuously increased from the source region side to the drain region side in accordance with the germanium concentration in the gate electrode.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: April 12, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuya Ohuchi, Hironobu Fukui
  • Patent number: 6870224
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: March 22, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6870229
    Abstract: The present invention relates to an ultra-low power (ULP) MOS diode. The diode has a first and a second terminal. It comprises an n-MOS transistor having a channel, a first N+ doped diffusion region at one extremity of the channel and a second N+ diffusion region at the other extremity of the channel, and a p-MOS transistor having a channel and a first P+ doped diffusion region at one extremity of the channel and a second P+ diffusion region at the other extremity of the channel. The first N+ diffusion region of the n-MOS transistor is coupled to the first P+ diffusion region of the p-MOS transistor, the gate of the n-MOS transistor is coupled to the second P+ diffusion region of the p-MOS transistor, and the gate of the p-MOS transistor is coupled to the second N+ diffusion region of the n-MOS transistor.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: March 22, 2005
    Assignee: Universite Catholique de Louvain
    Inventors: Vincent Dessard, Stéphane Adriaensen, Denis Flandre, David Levacq
  • Patent number: 6858908
    Abstract: A method of forming a first and second transistor. The method provides a semiconductor surface (20). The method also forms a gate dielectric (30) adjacent the semiconductor surface. Further, the method forms a first transistor gate electrode (902) comprising a metal portion (402) in a fixed relationship with respect to the gate dielectric. Still further, the method forms a second transistor gate electrode (901) comprising a silicide (701) of the metal portion in a fixed relationship with respect to the gate dielectric.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: February 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Mark R. Visokay
  • Patent number: 6838747
    Abstract: A dopant is ion-implanted into a second region (52) of a polycrystalline silicon film (50) for a resistive element (5). Nitrogen or the like is ion-implanted into a second region (62) of a polycrystalline silicon film (60) for a resistive element (6). The density of crystal defects in the second regions (52, 62) is higher than that in first regions (51, 61). The density of crystal defects in a polycrystalline silicon film (70) for a resistive element (7) is higher near a silicide film (73). A polycrystalline silicon film (80) for a resistive element (8) is in contact with a substrate (2) with a silicide film in an opening of an isolation insulating film (3). The density of crystal defects in a substrate surface (2S) near the silicide film is higher than that in the vicinity. With such a structure, a current leak in an isolation region can be reduced.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: January 4, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Hidekazu Oda
  • Patent number: 6791106
    Abstract: An aspect of the present invention includes a first conductive type semiconductor region; a gate electrode formed on the first conductive type semiconductor region; a channel region formed immediately below the gate electrode in the first conductive type semiconductor region; and a second conductive type first diffusion layer constituting source/drain regions formed at opposite sides of the channel region in the first conductive type semiconductor region, the gate electrode being formed of polycrystalline silicon-germanium, in which a germanium concentration is continuously increased from a drain region side to a source region side, and an impurity concentration immediately below the gate electrode in the first conductive type semiconductor region being continuously increased from the source region side to the drain region side in accordance with the germanium concentration in the gate electrode.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: September 14, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuya Ohuchi, Hironobu Fukui
  • Patent number: 6787850
    Abstract: The invention concerns a semi-conductor device comprising on a substrate: a first dynamic threshold voltage MOS transistor (10), with a gate (116), and a channel (111) of a first conductivity type, and a current limiter means (20) connected between the gate and the channel of said first transistor. In accordance with the invention, this first transistor is fitted with a first doped zone (160) of the first conductivity type, connected to the channel, and the current limiter means comprises a second doped zone (124) of a second conductivity type, placed against the first doped zone and electrically connected to the first zone by an ohmic connection. Application to the manufacture of CMOS circuits.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 7, 2004
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Jean-Luc Pelloie
  • Publication number: 20040140508
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a first insulating film on a semiconductor substrate; removing part of the first insulating film; forming a second insulating film having a leakage current density higher than that of the first insulating film on a region where the part of the first insulating film has been removed on the semiconductor substrate; forming an undoped semiconductor film on the first and second insulating films; implanting an impurity into part of the undoped semiconductor film, thereby defining semiconductor regions of a first conductivity type dotted as discrete islands; forming a third insulating film on the semiconductor regions of the first conductivity type and the undoped semiconductor film; and removing part of the third insulating film by wet etching. At least the second insulating film is formed under the semiconductor regions of the first conductivity type.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Naohisa Sengoku, Michikazu Matsumoto
  • Patent number: 6750519
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Silicon ions are implanted into the metal layer in one active area to form an implanted metal layer which is silicided to form a metal silicide layer. Thereafter, the metal layer and the metal silicide layer are patterned to form a metal gate in one active area and a metal silicide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal silicide gates wherein the silicon concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 15, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Publication number: 20040104438
    Abstract: An electronic structure that has in-situ formed unit resistors and a method for fabricating such structure are disclosed. The electronic structure that has in-situ formed unit resistors consists of a first plurality of conductive elements formed in an insulating material layer, a plurality of electrically resistive vias formed on top and in electrical communication with at least one of the first plurality of conductive elements, and a second plurality of conductive elements formed on top of and in electrical communication with at least one of the plurality of electrically resistive vias. The present invention novel structure may further be formed in a multi-level configuration such that multi-level resistors may be connected in-series to provide larger resistance values. The present invention novel structure may further be combined with a capacitor network to form desirable RC circuits.
    Type: Application
    Filed: November 10, 2003
    Publication date: June 3, 2004
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Lawrence Clevenger, Louis Lu-Chen Hsu, Keith Kwong Hon Wong
  • Patent number: 6670683
    Abstract: A metal oxide semiconductor transistor having a slew-rate control is disclosed. The transistor having a slew-rate control includes an elongated diffusion area and an elongated gate overlying the diffusion area. The elongated diffusion area has at least two diffusion regions, each having a threshold voltage that is different from each other. The elongated gate has a gate contact at only one side of the elongated diffusion area.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: December 30, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Anthony Correale, Jr., Terence Blackwell Hook, Douglas Willard Stout
  • Patent number: 6646324
    Abstract: A method and apparatus for a linearized output driver and terminator is described. In one embodiment the method includes forming a gate electrode on a substrate, the portion of the substrate covered by the gate electrode defining a channel. The method further includes forming a first source/drain doped region on laterally opposed sides of the gate electrode in the substrate. The method also includes forming a spacer on laterally opposed sides of the gate electrode on the substrate. The method also includes forming a linearized drain contact region at a location within the first source/drain doped region sufficiently distant from the gate electrode to define a series resistor in the first source/drain doped region disposed between the gate electrode and the linearized drain contact area based on an expected resistivity of the source/drain doped region, the series resistor coupled electrically to the channel.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 11, 2003
    Assignee: Intel Corporation
    Inventors: Sanjay Dabral, Krishna Seshan
  • Patent number: 6646309
    Abstract: Employing an electrostatic discharge (ESD) trigger to trigger the MOS transistors (i.e., the ESD fingers) within a CMOS device to provide substantially more uniform turn-on voltages for the MOS transistors, resulting in better ESD device performance without employing selective salicide blocking, is disclosed. A semiconductor device has an ESD trigger and a number of ESD fingers. The turn on voltage of the ESD trigger is less than the turn on voltage of the ESD fingers, such that the ESD fingers turn on substantially uniformly after the ESD trigger turns on during an ESD event. The semiconductor device is substantially fabricated without employing salicide blocking.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: November 11, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventor: Chung-Hui Chen
  • Patent number: 6627957
    Abstract: To provide a semiconductor device restraining high frequency impedance and restraining deterioration of a semiconductor layer, a gate wiring 26 is extended while meandering and intersects with a substantially straight line portion of a semiconductor layer 02 by a plurality of times thereby providing a plurality of gates.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: September 30, 2003
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6617632
    Abstract: A parallel connection-type nonvolatile memory semiconductor device comprises a plurality of memory cells disposed on a semiconductor substrate in matrix form, each including a gate insulating film, a floating gate electrode, an interlayer film and a control gate electrode successively formed so as to cover a channel region on a main surface of the semiconductor substrate, of a first conductivity type; a second conductivity type source and drain regions formed on the semiconductor substrate on both sides opposite to each other, of the floating gate electrode so as to interpose a channel region located under the floating gate electrode therebetween; a first semiconductor region which is adjacent to the drain region and formed by introducing a second conductivity type impurity in the direction of the channel region placed under the floating gate electrode from an end on the drain side, of the floating gate electrode, and which is substantially lower than the drain region in impurity concentration; and a punch-th
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: September 9, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Taniguchi, Kazuyoshi Shiba, Nozomu Matsuzaki, Hidenori Takada, Hitoshi Kume, Shoji Shukuri
  • Patent number: 6614061
    Abstract: The present invention provides an electrostatic discharge-protection device located between a pad and a specific voltage point. The electrostatic discharge-protection device has a P-type substrate. Then a first N-type well, a first P-type doped region, and a first N-type doped region, are formed on the P-type substrate, wherein the first P-type doped region and the first N-type doped region are coupled to the specific voltage point, respectively. A second P-type doped region and a second N-type doped region are formed on the first N-type well and are coupled to the pad, respectively. Moreover, a third N-type doped region and a fourth N-type doped region are formed on the P-type substrate. The third N-type doped region is coupled to the pad, and a second N-type well is formed between the third N-type doped region and the fourth N-type doped region.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: September 2, 2003
    Assignee: Windbond Electronics Corp.
    Inventor: Jiunn-Way Miaw
  • Patent number: 6580108
    Abstract: An insulated gate transistor comprising a first semiconductor region, a second semiconductor region includes plural portions, a third semiconductor region, a fourth semiconductor region, a first insulation layer, control electrodes, a first main electrode, and a second main electrode, wherein a metallic wiring layer is provided on the first main surface plane via an insulating layer, plural regions insulated from the first main electrode are provided through said first main electrode, and the metallic wiring layer is connected electrically to the control electrode through the insulating layer via the region insulated from the main electrode.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: June 17, 2003
    Assignees: Hitachi, Ltd., Hitachi Haramachi Electronics Co., Ltd.
    Inventors: Tomoyuki Utsumi, Shoichi Ozeki, Koichi Suda
  • Patent number: 6566717
    Abstract: An electrostatic discharge (ESD) protection circuit for protecting an internal device from an ESD is disclosed. The ESD protection circuit includes an NMOS transistor connected to a ground voltage terminal having silicide layers on a gate electrode and on source/drain regions thereof; and a PMOS transistor having a gate electrode connected to a ground voltage terminal and connecting the NMOS transistor to a pad.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: May 20, 2003
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Chuck Jung
  • Patent number: 6521943
    Abstract: Disclosed is a semiconductor device (e.g., nonvolatile semiconductor memory device) and method of forming the device. The device includes a gate electrode (e.g., floating gate electrode) having a first layer of an amorphous silicon film, or a polycrystalline silicon thin film or a film of a combination of amorphous and polycrystalline silicon, on the gate insulating film. Where the film includes polycrystalline silicon, the thickness of the film is less than 10 nm. A thicker polycrystalline silicon film can be provided on or overlying the first layer. The memory device can increase the write/erase current significantly without increasing the low electric field leakage current after application of stresses, which in turn reduces write/erase time substantially.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: February 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Mine, Jiro Yugami, Takashi Kobayashi, Masahiro Ushiyama
  • Patent number: 6507072
    Abstract: In an insulated gate field effect semiconductor device, the gate electrode formed on the gate insulating film includes the first and second semiconductor layers as a double layer. An impurity for providing one conductivity type is not contained in first semiconductor layer which is in contact with a gate insulating film and is contained at a high concentration in the second semiconductor layer which is not in contact with the gate insulating film. Accordingly, By existence of the first semiconductor layer is which the impurity is not doped, the impurity is prevented from penetrating through the gate insulating film from the gate electrode and diffusing into the channel forming region. Also, by existence of the second semiconductor layer in which high concentration impurity is doped, the gate electrode has low resistance.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 14, 2003
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yukio Yamauchi
  • Patent number: 6469351
    Abstract: A Vss-side off transistor is often used in an electrostatic breakdown prevention circuit having an NMOS transistor. In such a circuit, the state of connection of the transistor ensures that off-leak current has a significant influence on the standby current, which is particularly noticeable when the circuit is used in a semiconductor device running at low power consumption. In such case, since the threshold voltage of a MOS transistor forming the semiconductor device is made as low as possible, the sub-threshold leak current in the electrostatic breakdown prevention circuit is large. To prevent this, the NMOS transistor forming the electrostatic breakdown prevention circuit is formed with a P type gate electrode for the purpose of increasing its threshold voltage by about 1.1 V as compared with that if the gate electrode of the NMOS transistor were to have an N type gate electrode.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: October 22, 2002
    Assignee: Seiko Instruments Inc.
    Inventor: Yoichi Mimuro
  • Publication number: 20020149064
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Application
    Filed: March 10, 2001
    Publication date: October 17, 2002
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glenn L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6455883
    Abstract: A source region and a drain region are formed in a silicon substrate, a dielectric film is formed above a region of the silicon substrate between the source region and the drain region, a ferroelectric film is formed on the dielectric film, and a gate electrode is formed on the ferroelectric film. The ferroelectric film and the silicon substrate have a first conductivity type, and the source region and the drain region has a second conductivity type.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: September 24, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Kato, Yasuhiro Shimada
  • Publication number: 20010035541
    Abstract: The invention encompasses stacked semiconductor devices including gate stacks, wordlines, PROMs, conductive interconnecting lines, and methods for forming such structures. The invention also includes a method of forming a transistor gate comprising: a) forming gate dielectric layer; b) forming a polysilicon gate layer against the gate dielectric layer; and c) doping the polysilicon gate layer with a conductivity-enhancing dopant, the dopant being provided in a concentration gradient within the polysilicon layer, the concentration gradient increasing in a direction toward the gate dielectric layer. The invention also includes a wordline comprising: a) a polysilicon line; a substantially fluorine impervious barrier layer over the polysilicon line; and a b) layer of metal-silicide over the substantially fluorine impervious barrier layer.
    Type: Application
    Filed: June 11, 2001
    Publication date: November 1, 2001
    Inventors: Klaus Florian Schuegraf, Carl Powell, Randhir P. S. Thakur
  • Patent number: 6300660
    Abstract: A variable conductance device having a first source region and a first drain region in a semiconductor substrate. A first channel region connects the first source and the first drain regions. A first resistive layer overlies the first channel region and has first and second electrical contacts spaced apart from one another thereon. The conductance of the path between the first source region and the first drain region depends on the current flowing between the first and second electrical contacts. By adding a FET having its gate and source shorted together to the variable conductance device, a device having the current gain characteristics of a bipolar transistor is obtained. The first drain region is connected to the drain of the FET and the source of the FET is connected to the second electrical contact. The precise form of the current transfer function can be altered by connecting a number of variable conductance devices according to the present invention in parallel.
    Type: Grant
    Filed: December 31, 1999
    Date of Patent: October 9, 2001
    Inventor: Robert Patti
  • Patent number: 6259141
    Abstract: In an insulated gate field effect semiconductor device, the gate electrode formed on the gate insulating film includes the first and second semiconductor layers as a double layer. An impurity for providing one conductivity type is not contained in first semiconductor layer which is in contact with a gate insulating film and is contained at a high concentration in the second semiconductor layer which is not in contact with the gate insulating film. Accordingly, by existence of the first semiconductor layer is which the impurity is not doped, the impurity is prevented from penetrating through the gate insulating film from the gate electrode and diffusing into the channel forming region. Also, by existence of the second semiconductor layer in which high concentration impurity is doped, the gate electrode has low resistance.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: July 10, 2001
    Assignee: Semiconductor Energy Labortary Co., Ltd.
    Inventor: Yukio Yamauchi
  • Patent number: 6236088
    Abstract: An arrangement for providing thermal overload protection for a gated electrode power semiconductor device comprises connecting the gate electrode of the device in a series circuit between the gate electrode terminal applying a bias voltage to the gate electrode and the source region adjoining the channel region controlled by the gate electrode. The series circuit includes an electrical resistor, preferably the gate electrode itself, and a temperature sensitive element blocking current flow through the gate electrode at safe operating temperatures, but allowing current flow, for de-biasing the gate electrode by IR drop through the resistor, when excessive device temperatures are sensed. The temperature sensitive element preferably comprises a reverse biased junction or Schottky barrier formed within the gate electrode.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: May 22, 2001
    Assignee: Intersil Corporation
    Inventors: John Manning Savage Nielson, Donald E. Burke, Blake Andrew Gillett
  • Patent number: 6218689
    Abstract: The present invention provides a method and a NAND-type flash memory device. The method includes forming a select gate oxide layer in a select transistor area of a substrate and a tunnel oxide layer in a memory cell area of the substrate; forming a doped amorphous silicon layer on the select gate oxide layer and the tunnel oxide layer, the doped amorphous silicon layer having a dopant level which simultaneously avoids a select transistor word line high resistance problem and a charge gain/charge loss problem; forming an insulating layer on the doped amorphous silicon layer; forming a control gate layer on the insulating layer; and etching at least the doped amorphous silicon layer, the insulating layer, and the control gate layer to form at least one memory cell stack structure and at least one select transistor stack structure.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: April 17, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kent Kuohua Chang, Kenneth Wo-Wai Au, Hao Fang
  • Patent number: 6211531
    Abstract: A controllable conduction device in the form of a transistor comprises source and drain regions 5, 2 between which extends a conduction path P for charge carriers, a gate 4 for controlling charge carrier flow along the conduction path and a multiple layer structure 3 providing a multiple tunnel junction configuration in the conduction path, with the result that current leakage is blocked by the multiple tunnel junction configuration when the transistor is in its off state. Vertical and lateral transistor configurations are described, together with use of the transistor in complimentary pairs and for a random access memory cell. Improved gate structures are described which are also applicable to memory devices that incorporate the tunnel barrier configuration to store charge on the memory node.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 3, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Kazuo Nakazato, Kiyoo Itoh, Hiroshi Mizuta, Toshikazu Shimada, Hideo Sunami, Tatsuya Teshima, Toshiyuki Mine, Ken Yamaguchi
  • Patent number: 6091118
    Abstract: A semiconductor device and process for manufacture thereof is disclosed in which a gate electrode with reduced overlap capacitance is formed by forming a gate electrode on a surface of a semiconductor and doping edge portions of the gate electrode with a first doping which effectively reduces the conductivity of the edge portions of the gate electrode. The conductivity of the gate electrode may be reduced at the edge portions by doping the edge portions with a dopant which inhibits the doping of the gate electrode or with a dopant which has a different conductivity type than the gate electrode dopant.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: July 18, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Michael Duane
  • Patent number: 6051856
    Abstract: An improved FET for use as a voltage-controlled resistor includes a p-type control gate and a high-resistance connection to receive a control signal. The bootstrap frequency for the device is much lower than the signal frequency so that the signal frequency is decoupled from the control voltage to reduce distortion.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: April 18, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Thomas G. McKay, Joseph Barrera
  • Patent number: 6028339
    Abstract: A dual work function CMOS device and method for producing the same is disclosed. The method includes: depositing a first layer of a doped material, either n-type or p-type, over a substrate to be doped; defining the areas that are to be oppositely doped; depositing a second layer of an oppositely doped material over the entire surface; and subjecting the entire CMOS device to a high temperature, drive-in anneal. The drive-in anneal accelerates the diffusion of the dopants into the adjacent areas, thereby doping the gate polysilicon and channels with the desired dopants. A nitride barrier layer may be utilized to prevent the second dopant from diffusing through the first layer and into the substrate beneath.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: February 22, 2000
    Assignee: International Business Machines Corporation
    Inventors: Robert O. Frenette, Dale P. Hallock, Stephen A. Mongeon, Anthony C. Speranza, William R. P. Tonti
  • Patent number: 5998842
    Abstract: A MOS semiconductor device with control electrodes for improved switching accuracy and operational speeds of the device at reduced power consumption levels. The semiconductor device includes a substrate, a source electrode region and a drain electrode region formed in said substrate, a first gate insulating film formed on said substrate, a semiconductor region formed on said first gate insulating film, a second gate insulating film formed on said semiconductor region, a gate electrode region formed on said second gate insulating film, and at least one control electrode region disposed in contact with said semiconductor region.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 7, 1999
    Assignee: Ricoh Company, Ltd.
    Inventor: Yutaka Sano
  • Patent number: 5894157
    Abstract: A method for fabricating a MOS transistor having an offset resistance in a channel region controlled by a gate voltage and structure thereof is disclosed. A gate electrode is divided into three adjacent regions of respectively a second conductivity type, first conductivity type and second conductivity type connected laterally to one another on a channel region. A gate control voltage is applied to a central region of the first conductivity type, and a predetermined voltage between maximum and minimum values of the gate control voltage is applied to left and right adjacent regions of the second conductivity type. If a gate turn-on voltage is applied to the central region the gate turn-on voltage is forward biased to the adjacent left and right regions and is therefore also applied to the forwardly biased left and right regions. The effective length of the gate electrode then becomes the total length of the central region and the left and right adjacent regions.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: April 13, 1999
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Koo Han, Byung-Hyuk Min
  • Patent number: 5872372
    Abstract: A thin film transistor is disclosed comprising a piezoelectric film formed on a piezoresistive body of an ultra thin film and a gate electrode formed on the piezoelectric film. Due to the force generated from the piezoelectric film by an electric field generated according to the strength of a voltage applied to the gate electrode, a pressure is applied on the piezoresistive body to vary the resistance of the piezoresistive body. Thus, the quantity of current that flows from a source terminal through the piezoresistive channel to a drain terminal can be controlled. Since the piezoresistive body can be formed on a plane, a thin film transistor with a three-dimensional structure can be manufactured.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: February 16, 1999
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong-Jae Lee, Kyoung-Wan Park, Min-Cheol Shin
  • Patent number: 5844272
    Abstract: A high frequency MOS transistor structure with an extended drift region, which modulates the resistance in the drift region of the MOS transistor. The extended gate layer is obtained by an extra semiconductor layer forming a second MOS structure on top of a thin gate oxide layer. The electrical field will then be uniformly distributed laterally in the extended drift region. This design makes it possible to produce a MOS transistor with a short channel length and an extended drift region with low doping concentration and still having very low on-resistance together with a high breakdown voltage.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: December 1, 1998
    Assignee: Telefonaktiebolaet LM Ericsson
    Inventors: Anders Soderbarg, Per Svedberg
  • Patent number: 5814867
    Abstract: A semiconductor device includes a pair of transistors each having an active region defined on a surface of a semiconductor substrate, a gate insulation film formed on the active region, a gate electrode formed on the gate insulation film, and a diffusion layer formed in the active region of the semiconductor substrate, one of the transistors having an opening formed by removing part of the gate insulation film on the active region, through which opening the diffusion layer is directly connected to the gate electrode of the other transistor, an end portion of the gate electrode intersecting the outer periphery of the opening at at least one point on the diffusion layer.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: September 29, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Satoshi Saito