Avalanche Junction Patents (Class 257/438)
  • Patent number: 8106422
    Abstract: An avalanche photodiode semiconductor device (20) for converting an impinging photon (22) includes a base n+ doped material layer (52) formed having a window section (72) for passing the photon (22). An n? doped material layer (30) is formed on the n+ doped material layer (52) having a portion of a lower surface (74) suitably exposed. An n+ doped material layer (32) is formed on the n? doped material (30). A p+ layer (24) formed on top of the n+ doped layer (32). At least one guard ring (26) is formed in the n? doped layer (30).
    Type: Grant
    Filed: October 16, 2010
    Date of Patent: January 31, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventor: John V. Veliadis
  • Patent number: 8063463
    Abstract: A method for encoding information that is encoded in spatial variations of the intensity of light characterized by a first wavelength in light characterized by a second wavelength, the method comprising: transmitting the first wavelength light through a photo-conducting material in which electron-hole pairs are generated by absorbing photons from the first wavelength light to generate a first density distribution of electrons homologous with the spatial variations in intensity of the first wavelength light; trapping electrons from the first electron density distributions in a trapping region to generate an electric field homologous with the density distribution in a material that modulates a characteristic of light that passes therethrough responsive to an electric field therein; transmitting a pulse of light having sufficient energy to generate electron-hole pairs in the photo-conducting material through the modulating material and thereafter through the photo-conducting layer to generate a second additional
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 22, 2011
    Assignee: Microsoft International Holdings B.V.
    Inventors: Amnon Manassen, Giora Yahav
  • Patent number: 8059973
    Abstract: An optical receiver assembly that is configured to avoid the introduction of feedback in an electrical signal converted by the assembly is disclosed. In one embodiment, an optical receiver assembly is disclosed, comprising a capacitor, an optical detector provided with a power supply being mounted on a top electrode of the capacitor, and an amplifier mounted on the reference surface. The assembly further includes an isolator interposed between the reference surface and the capacitor, wherein the isolator includes a bottom layer of dielectric material that is affixed to a portion of the reference surface, and a metallic top plate that is electrically coupled both to a ground of the amplifier and to the capacitor. This configuration bootstraps the amplifier ground to the amplifier input via the photodiode top electrode of the capacitor to cancel out feedback signals present at the amplifier ground.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: November 15, 2011
    Assignee: Finisar Corporation
    Inventor: Darin James Douma
  • Publication number: 20110272561
    Abstract: A Geiger-mode avalanche photodiode may include an anode, a cathode, an output pad electrically insulated from the anode and the cathode, a semiconductor layer having resistive anode and cathode regions, and a metal structure in the semiconductor layer and capacitively coupled to a region from the resistive anode and resistive cathode regions and connected to the output pad. The output pad is for detecting spikes correlated to avalanche events.
    Type: Application
    Filed: March 22, 2011
    Publication date: November 10, 2011
    Applicant: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato SANFILIPPO, Giovanni Condorelli
  • Publication number: 20110260277
    Abstract: A photodiode capable of interacting with incident photons includes at least: a stack of three layers including an intermediate layer placed between a first semiconductor layer and a second semiconductor layer having a first conductivity type; and a region that is in contact with at least the intermediate layer and the second layer and extends transversely relative to the planes of the three layers, the region having a conductivity type that is opposite to the first conductivity type. The intermediate layer is made of a semiconductor material having a second conductivity type and is capable of having a conductivity type that is opposite to the second conductivity type so as to form a P-N junction with the region, inversion of the conductivity type of the intermediate layer being induced by dopants of the first conductivity type that are present in the first and second layers.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Inventor: JOHAN ROTHMAN
  • Publication number: 20110241150
    Abstract: An electron injected APD with an embedded n electrode structure in which edge breakdown can be suppressed without controlling the doping profile of an n-type region of the embedded n electrode structure with high precision. The APD comprising a buffer layer with a low ionization rate is inserted between an n electrode connecting layer and an avalanche multiplication layer. Specifically, the APD is an electron injected APD in which an n electrode layer, the n electrode connecting layer, the buffer layer, the avalanche multiplication layer, an electric field control layer, a band gap gradient layer, a low-concentration light absorbing layer, a p-type light absorbing layer, and a p electrode layer are sequentially stacked, and a light absorbing portion that includes at least the low-concentration light absorbing layer and the p-type light absorbing layer forms a mesa shape.
    Type: Application
    Filed: December 11, 2009
    Publication date: October 6, 2011
    Inventors: Tadao Ishibashi, Seigo Ando, Yoshifumi Muramoto, Fumito Nakajima, Haruki Yokoyama
  • Publication number: 20110241149
    Abstract: An embodiment of a geiger-mode avalanche photodiode includes: a body of semiconductor material, having a first surface and a second surface; a cathode region of a first type of conductivity, which extends within the body; and an anode region of a second type of conductivity, which extends within the cathode region and faces the first surface, the anode and cathode regions defining a junction. The anode region includes at least two subregions, which extend at a distance apart within the cathode region starting from the first surface, and delimit at least one gap housing a portion of the cathode region, the maximum width of the gap and the levels of doping of the two subregions and of the cathode region being such that, by biasing the junction at a breakdown voltage, a first depleted region occupies completely the portion of the cathode region within the gap.
    Type: Application
    Filed: March 24, 2011
    Publication date: October 6, 2011
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo MAZZILLO, Delfo Nunziato SANFILIPPO
  • Patent number: 8026471
    Abstract: An imaging sensor having sensitivity at the single-photon level is disclosed. The sensor comprises an array of pixels, each of which comprises a negative-feedback avalanche diode and a read-out circuit that includes a counter. The counter keeps track of the number of photons detected by the diode during a given time period.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: September 27, 2011
    Assignee: Princeton Lightwave, Inc.
    Inventor: Mark Allen Itzler
  • Publication number: 20110227183
    Abstract: A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p?-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p?-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 22, 2011
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Patent number: 8022351
    Abstract: A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: September 20, 2011
    Assignee: California Institute of Technology
    Inventors: Xinyu Zheng, Thomas J. Cunningham, Bedabrata Pain
  • Patent number: 8007673
    Abstract: An adhesive layer, an insulating layer and a copper foil are laminated together on both surfaces of a metallic base material by way of for example thermal press molding. In this case, openings (window holes) are formed in opposed positions on a portion of the adhesive layer. A circuit pattern is formed by etching on the copper foil in this state, followed by an external shape machining step of executing separation treatment reaching the metallic base material in predetermined positions including the openings. After that, a part of the insulating layer is cut off along the edge of the opening to obtain a circuit board with the end of the metallic base material exposed.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: August 30, 2011
    Assignee: Yazaki Corporation
    Inventors: Hiroyuki Fujita, Yasutaka Ochiai, Minoru Kubota
  • Patent number: 8008741
    Abstract: A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p?-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p?-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 30, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Patent number: 8004014
    Abstract: A layout structure of a semiconductor integrated circuit is provided with which narrowing and breaking of metal interconnects near a cell boundary can be prevented without increasing the data amount and processing time for OPC. A cell A and a cell B are adjacent to each other along a cell boundary. The interconnect regions of metal interconnects from which to the cell boundary no other interconnect region exists are placed to be substantially axisymmetric with respect to the cell boundary, while sides of diffusion regions facing the cell boundary are asymmetric with respect to the cell boundary.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Panasonic Corporation
    Inventors: Tomoaki Ikegami, Hidetoshi Nishimura, Kazuyuki Nakanishi
  • Publication number: 20110198615
    Abstract: Avalanche amplification structures including electrodes, an avalanche region, a quantifier, an integrator, a governor, and a substrate arranged to detect a weak signal composed of as few as several electrons are presented. Quantifier regulates the avalanche process. Integrator accumulates a signal charge. Governor drains the integrator and controls the quantifier. Avalanche amplifying structures include: normal quantifier, reverse bias designs; normal quantifier, normal bias designs; lateral quantifier, normal bias designs; changeable quantifier, normal bias, adjusting electrode designs; normal quantifier, normal bias, adjusting electrode designs; and lateral quantifier, normal bias, annular integrator designs. Avalanche amplification structures are likewise arranged to provide arrays of multi-channel devices. The described invention is expected to be used within photodetectors, electron amplifiers, chemical and biological sensors, and chemical and biological chips with lab-on-a-chip applications.
    Type: Application
    Filed: March 1, 2011
    Publication date: August 18, 2011
    Inventors: Dmitry A. Shushakov, Vitaly E. Shubin
  • Publication number: 20110198499
    Abstract: Silicon photodetectors using near-infrared dipole antennas. The photodetectors include a silicon region formed on a semiconductor substrate, dipole antenna forming two arms that are spaced apart with the silicon region therebetween and inducing an electromagnetic wave signal of incident light, and electrodes disposed in a vertical direction of the dipole antenna and spaced apart with the silicon region therebetween, where a critical bias voltage is applied to the electrodes to induce an avalanche gain operation in the silicon region.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Inventors: Yoon-dong Park, David Andrew Barclay Miller, Young-gu Jin, In-sung Joe
  • Patent number: 7994601
    Abstract: The present invention provides a semiconductor light receiving device that prevents local heat generation, has high-speed, high-sensitivity characteristics even at the time of an intensive light input, and exhibits high resistance to light inputs. The semiconductor light receiving device includes light absorption layers (3, 4) formed on an InP semiconductor substrate (1) wherein a buffer layer (21) containing a quaternary compositional material is formed between the InP semiconductor substrate (1) and the light absorption layers (3, 4).
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 9, 2011
    Assignee: NEC Corporation
    Inventor: Takeshi Nakata
  • Publication number: 20110180894
    Abstract: The present invention provides a photodiode comprising a p-i-n or pn junction at least partly formed by first and second regions (2) made of semiconductor materials having opposite conductivity type, wherein the p-i-n or pn junction comprises a light absorption region (11) for generation of charge carriers from absorbed light. One section of the p-i-n or pn junction is comprises by one or more nanowires (7) that are spaced apart and arranged to collect charge carriers generated in the light absorption region (11). At least one low doped region (10) made of a low doped or intrinsic semiconductor material provided between the nanowires (7) and one of said first region (1) and said second region (2) enables custom made light absorption region and/or avalanche multiplication region of the active region (9).
    Type: Application
    Filed: September 4, 2009
    Publication date: July 28, 2011
    Applicant: QuNano AB
    Inventors: Lars Samuelson, Federico Capasso, Jonas Ohlsson
  • Publication number: 20110121423
    Abstract: A mask for use in making a planar PN junction in a semiconductor device includes a central mask opening and a plurality of spaced apart concentric mask openings surrounding the central mask opening. The concentric mask openings each have a width less than a maximum dimension of the central mask opening. The central mask opening can be circular and the concentric mask openings can have a ring-shape. The mask can be used to form openings in a wafer layer for introducing an impurity to dope that wafer layer.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Sensors Unlimited, Inc.
    Inventors: Keith Forsyth, Noah Clay
  • Patent number: 7936034
    Abstract: A MESA-type photonic detection device, including at least one first junction, which itself includes a first receiving layer and sides formed or etched in the receiving layer. These sides at least partially include a layer with a doping opposite the doping of the first receiving layer.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: May 3, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Johan Rothman
  • Publication number: 20110095388
    Abstract: The invention relates to an avalanche photodiode (1) for detecting radiation, including a semiconductor substrate (11), an upper diode layer (15), an oppositely doped, laterally delimited lower diode layer (16), an avalanche region situated between the upper diode layer (15) and the lower diode layer (16), wherein the radiation to be detected triggers an avalanche breakdown in the avalanche region, and also including a contact-making layer (12) at the underside (10) of the semiconductor substrate (11), a laterally delimited quenching resistance layer (18) arranged in the semiconductor substrate (11) between the lower diode layer (16) and the contact-making layer (12), wherein the quenching resistance layer (18) quenches the radiation-generated avalanche breakdown in the avalanche region, and also including a depletion electrode (15) arranged laterally alongside the laterally delimited lower diode layer (16), such that the depletion electrode (15) depletes the semiconductor substrate (11) laterally alongside t
    Type: Application
    Filed: June 18, 2008
    Publication date: April 28, 2011
    Applicants: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., PNSensor GmbH.
    Inventors: Rainer Richter, Ladislav Andricek, Gerhard Lutz
  • Publication number: 20110068428
    Abstract: In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector comprises a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure.
    Type: Application
    Filed: November 22, 2010
    Publication date: March 24, 2011
    Applicant: FUJITSU LIMITED,
    Inventors: Nami Yasuoka, Haruhiko Kuwatsuka, Toru Uchida, Yoshihiro Yoneda
  • Patent number: 7910953
    Abstract: An optical semiconductor device includes a distributed Bragg reflection layer of a first conductivity type, a distortion elaxation layer of the first conductivity type, a light absorbing layer, and a semiconductor layer of a second conductivity type, sequentially arranged on a semiconductor substrate. The distortion relaxation layer the same material as the semiconductor substrate. The total optical length of layers between the distributed Bragg reflection layer and the light absorbing layer is an integer multiple of one-half the wavelength of incident light that is detected.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaharu Nakaji, Eitaro Ishimura, Eiji Yagyu
  • Patent number: 7902570
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7899339
    Abstract: Avalanche amplification structures including electrodes, an avalanche region, a quantifier, an integrator, a governor, and a substrate arranged to detect a weak signal composed of as few as several electrons are presented. Quantifier regulates the avalanche process. Integrator accumulates a signal charge. Governor drains the integrator and controls the quantifier. Avalanche amplifying structures include: normal quantifier, reverse bias designs; normal quantifier, normal bias designs; lateral quantifier, normal bias designs; changeable quantifier, normal bias, adjusting electrode designs; normal quantifier, normal bias, adjusting electrode designs; and lateral quantifier, normal bias, annular integrator designs. Avalanche amplification structures are likewise arranged to provide arrays of multi-channel devices. The described invention is expected to be used within photodetectors, electron amplifiers, chemical and biological sensors, and chemical and biological chips with lab-on-a-chip applications.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 1, 2011
    Assignee: Amplification Technologies Inc.
    Inventors: Dimitry A. Shushakov, Vitaly E. Shubin
  • Patent number: 7898051
    Abstract: An imaging device is provided and includes: a photoelectric conversion layer that has a silicon crystal structure and generates signal charges upon incidence of light; a multiplication and accumulation layer that multiplies the signal charges by a phenomenon of avalanche electron multiplication; and a wiring substrate that reads the signal charges from the multiplication and accumulation layer and transmits the read signal charges.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: March 1, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Shinji Uya
  • Patent number: 7898065
    Abstract: Disclosed are embodiments of a wafer that incorporates fill structures with varying configurations to provide uniform reflectance. Uniform reflectance is achieved by distributing across the wafer fill structures having different semiconductor materials such that approximately the same ratio and density between the different semiconductor materials is achieved within each region and, optimally, each sub-region. Alternatively, it is achieved by distributing across the wafer fill structures, including one or more hybrid fill structure containing varying proportions of different semiconductor materials, such that approximately the same ratio between the different semiconductor materials is achieved within each region and, optimally, each sub-region.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20110024863
    Abstract: A mesa photodiode which includes a mesa, the side wall of the mesa (a light-receiving region mesa) and at least a shoulder portion of the mesa in an upper face of the mesa are continuously covered with a semiconductor layer of a first conductivity type, a second conductivity type, a semi-insulating type, or an undoped type (an undoped InP layer, for example) that is grown on the side wall and the upper face of the mesa. In the semiconductor layer, a layer thickness D1 of a portion covering the side wall of the mesa is equal to or greater than 850 nm.
    Type: Application
    Filed: June 8, 2010
    Publication date: February 3, 2011
    Applicant: NEC Electronics Corporation
    Inventors: Tomoaki Koi, Isao Watanabe, Takashi Matsumoto
  • Publication number: 20110024768
    Abstract: An avalanche photodiode semiconductor device (20) for converting an impinging photon (22) includes a base n+ doped material layer (52) formed having a window section (72) for passing the photon (22). An n? doped material layer (30) is formed on the n+ doped material layer (52) having a portion of a lower surface (74) suitably exposed. An n+ doped material layer (32) is formed on the n? doped material (30). A p+ layer (24) formed on top of the n+ doped layer (32). At least one guard ring (26) is formed in the n? doped layer (30).
    Type: Application
    Filed: October 16, 2010
    Publication date: February 3, 2011
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: John V. Veliadis
  • Publication number: 20110024608
    Abstract: A semiconductor photodetector may provide charge carrier avalanche multiplication at high field regions of a semiconductor material layer. A semiconductor current amplifier may provide current amplification by impact ionization near a high field region. A plurality of metal electrodes are formed on a surface of a semiconductor material layer and electrically biased to produce a non-uniform high electric field in which the high electric field strength accelerates avalanche electron-hole pair generation, which is employed as an effective avalanche multiplication photodetection mechanism or as an avalanche impact ionization current amplification mechanism.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Yurii A. Vlasov, Fengnian Xia
  • Patent number: 7880791
    Abstract: An image sensor includes a pixel having a protection circuit connected to a charge multiplying photoconversion layer. The protection circuit prevents the pixel circuit from breaking down when the voltage in the pixel circuit reaches the operating voltage applied to the charge multiplying photoconversion layer in response to the image sensor being exposed to a strong light. The protection circuit causes additional voltage entering the pixel circuit from the charge multiplying photoconversion layer over a predetermined threshold voltage level to be dissipated from the storage node and any downstream components.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: February 1, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Isao Takayanagi, Junichi Nakamura
  • Publication number: 20110018086
    Abstract: A system and method providing for the detection of an input signal, either optical or electrical, by using a single independent discrete amplifier or by distributing the input signal into independent signal components that are independently amplified. The input signal can either be the result of photoabsorption process in the wavelengths greater than 950 nm or a low-level electrical signal. The discrete amplifier is an avalanche amplifier operable in a non-gated mode while biased in or above the breakdown region, and includes a composite dielectric feedback layer monolithically integrated with input signal detection and amplification semiconductor layers.
    Type: Application
    Filed: June 28, 2010
    Publication date: January 27, 2011
    Inventor: Krishna Linga
  • Patent number: 7875946
    Abstract: In order to improve reliability by preventing edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector includes a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 25, 2011
    Assignees: Fujitsu Limited, Eudyna Devices Inc.
    Inventors: Nami Yasuoka, Haruhiko Kuwatsuka, Toru Uchida, Yoshihiro Yoneda
  • Patent number: 7863647
    Abstract: An avalanche photodiode semiconductor device (20) for converting an impinging photon (22) includes a base n+ doped material layer (52) formed having a window section (72) for passing the photon (22). An n? doped material layer (30) is formed on the n+ doped material layer (52) having a portion of a lower surface (74) suitably exposed. An n+ doped material layer (32) is formed on the n? doped material (30). A p+ layer (24) formed on top of the n+ doped layer (32). At least one guard ring (26) is formed in the n? doped layer (30).
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: January 4, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventor: John V. Veliadis
  • Patent number: 7863518
    Abstract: A photovoltaic device capable of improving output characteristics is provided. This photovoltaic device comprises a crystalline semiconductor member, a substantially intrinsic first amorphous semiconductor layer formed on the front surface of the crystalline semiconductor member and a first conductivity type second amorphous semiconductor layer formed on the front surface of the first amorphous semiconductor layer, and has a hydrogen concentration peak in the first amorphous semiconductor layer. Thus, the quantity of hydrogen atoms in the first amorphous semiconductor layer is so increased that the hydrogen atoms increased in quantity can be bonded to dangling bonds of silicon atoms forming defects in the first amorphous semiconductor layer for inactivating the dangling bonds.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: January 4, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Akira Terakawa, Toshio Asaumi
  • Publication number: 20100327387
    Abstract: A photodiode may include a first region comprising substantially intrinsic semiconductor material, the region having a first side and a second side opposite to the first side. The photodiode may also include a second region comprising highly-doped p-type semiconductor material formed proximate to the first side of the first region. The photodiode may additionally include a third region comprising highly-doped n-type semiconductor material formed proximate to the second side of the first region. The photodiode may further include a fourth region comprising one of: (i) highly-doped p-type semiconductor formed between the first region and the third region, or (ii) highly-doped n-type semiconductor formed between the first region and the second region.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Ichiro Kasai, Justin G. A. Wehner
  • Patent number: 7851823
    Abstract: A transmitted light absorption/recombination layer, a barrier layer, a wavelength selection/absorption layer, and an InP window layer having a p-type region are supported by an n-type substrate and arranged in that order. Light with a wavelength of 1.3 ?m reaches the wavelength selection/absorption layer through the InP window layer. Then, the light is absorbed by the wavelength selection/absorption layer and drawn from the device as an electric current signal. Light with a wavelength of 1.55 ?m reaches the transmitted light absorption/recombination layer through the barrier layer. Then, the light is absorbed by the transmitted light absorption/recombination layer, generating electrons and holes. These electrons and holes recombine with each other and, hence, disappear.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: December 14, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Eitaro Ishimura
  • Patent number: 7847230
    Abstract: The invention relates to a radiation detector (1) for detecting low-intensity radiation, especially for detecting individual photons. The radiation detector includes a plurality of rows of image cells (5) with respective pluralities of image cells (5) disposed one after the other and respective signal outputs (6). The radiation to be detected generates signal charge carriers in the individual image cells (5), the charge carriers being transported along the rows of image cells to the respective signal output (6). A plurality of output amplifiers (7) are connected in parallel to one of the signal outputs each of the individual image cell columns and amplify the signal charge carriers. The invention is characterized in that the output amplifiers (7) include respective avalanche amplifiers (8).
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: December 7, 2010
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften E.V.
    Inventors: Gerhard Lutz, Lothar Strueder, Peter Holl
  • Publication number: 20100301194
    Abstract: The present invention enables the detection of light using an APD that has high gain and/or a wide range of operating temperature. A first APD is biased with a voltage bias that is controlled based on the breakdown voltage of a second APD, which is thermally coupled with the first APD. Changes in the breakdown voltage of the second APD due to aging, temperature chances, and the like, are reflective of changes in the breakdown voltage of the first APD. As a result, the first APD can be operated with greater stability and reliability at high gain and over larger temperature excursions than APDs known in the prior art.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Applicant: PRINCETON LIGHTWAVE, INC.
    Inventors: Ketan Mukund Patel, Mark Allen Itzler
  • Publication number: 20100296540
    Abstract: The CMOS field effect transistors, used in microprocessors and other digital VLSI circuits, face major challenges such as thin gate dielectrics leakage and scaling limits, severe short channel effects, limited performance improvement with scaling, complicated fabrication process with added special techniques, and surface mobility degradation. This disclosure proposes a new CMOS-compatible optoelectronic transistor. The current is much higher than the MOS transistors, due to the high carrier mobility with bulk transportation. The optoelectronic transistors are scalable to the sub-nanometer ranges without short channel effects. It is also suitable for low power applications and ULSI circuits. The new transistor consists of a laser or LED diode as drain or source, and a photo sensor diode (avalanche photo diode) as source or drain.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Inventor: James Pan
  • Patent number: 7829915
    Abstract: The present invention changes layer polarities of an epitaxy structure of an avalanche photodiode into n-i-n-i-p. A transport layer is deposed above an absorption layer to prevent absorbing photon and producing electrons and holes. A major part of electric field is concentrated on a multiplication layer for producing avalanche and a minor part of the electric field is left on the absorption layer for transferring carrier without avalanche. Thus, bandwidth limit from a conflict between RC bandwidth and carrier transferring time is relieved. Meanwhile, active area is enlarged and alignment error is improved without sacrificing component velocity too much.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 9, 2010
    Assignee: National Central University
    Inventors: Jin-Wei Shi, Yen-Hsiang Wu
  • Publication number: 20100276775
    Abstract: The semiconductor light receiving element 1 includes a semiconductor substrate 101, and a semiconductor layer having a photo-absorption layer 105 disposed on the top of the semiconductor substrate 101. The semiconductor layer of the semiconductor light receiving element 1 containing at least the photo-absorption layer 105 has a mesa structure, and a side wall of the mesa is provided with a protective film 113 covering the side wall. The protective film 113 is a silicon nitride film containing hydrogen, and a hydrogen concentration in one surface of the protective film 113 located at the side of the mesa side wall is lower than a hydrogen concentration in the other surface of the protective film 113 located at the side that is opposite to the side of the mesa side wall.
    Type: Application
    Filed: December 25, 2008
    Publication date: November 4, 2010
    Inventor: Emiko Fujii
  • Publication number: 20100271108
    Abstract: An embodiment of a Geiger-mode avalanche photodiode, having: a body made of semiconductor material of a first type of conductivity, provided with a first surface and a second surface and forming a cathode region; and an anode region of a second type of conductivity, extending inside the body on top of the cathode region and facing the first surface. The photodiode moreover has: a buried region of the second type of conductivity, extending inside the body and surrounding an internal region of the body, which extends underneath the anode region and includes the internal region and defines a vertical quenching resistor; a sinker region extending through the body starting from the first surface and in direct contact with the buried region; and a contact region made of conductive material, overlying the first surface and in direct contact with the sinker region.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Delfo Nunziato SANFILIPPO, Massimo Cataldo Mazzillo, Piero Giorgio Fallica
  • Patent number: 7821093
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Patent number: 7808015
    Abstract: Avalanche photodiodes are provided, wherein the APDs provide both high optical coupling efficiency and low dark count rate. The APDs are formed such that their cap layer has an active region of sufficient width to enable high optical coupling efficiency but the APD still exhibits a low dark count rate. These cap layers have a device area with an active region and an edge region, wherein the size of the active region is substantially matched to the mode-field diameter of an optical beam, and wherein the size of the edge region is made small so as to reduce the number of defects included. These APD designs maintain a substantially uniform gain and breakdown voltage, as necessary for practical use.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 5, 2010
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael
  • Patent number: 7808065
    Abstract: A semiconductor photosensitive element comprises: a semiconductor substrate of a first conductivity type; a first light absorption layer, a first semiconductor layer of a second conductivity type, a first semiconductor layer of the first conductivity type, a second light absorption layer, and a second semiconductor layer of a second conductivity type, arranged in this order on the semiconductor substrate; a first electrode connected the second semiconductor layer of the second conductivity type; a second electrode connected to the semiconductor substrate; and a third electrode electrically connecting the first semiconductor layer of the first conductivity type to the first semiconductor layer of the second conductivity type. The third electrode is located outside a light detection region for detecting optical signals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 5, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Eitaro Ishimura, Masaharu Nakaji
  • Publication number: 20100245809
    Abstract: An avalanche photodiode and a sensor array comprising an array of said avalanche photodiodes is disclosed. Then avalanche photodiode comprises a substrate of a first conductivity type; a first well of a second conductivity type formed within the substrate; a second well of the second conductivity type formed substantially overlying and extending into the first well; a heavily doped region of the first conductivity type formed substantially overlying and extending into the first well, the junction between the heavily doped region and the second well forming an avalanche multiplication region; a guard ring formed from a first conductivity material positioned substantially about the periphery of the multiplication region at least partially underlying the heavily doped region; and an outer well ring of the second conductivity type formed about the perimeter of the deep well and the guard ring.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 30, 2010
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Andreas G. Andreou, Miriam Adlerstein Marwick, Philippe O. Pouliquen
  • Patent number: 7795639
    Abstract: A photodiode designed to capture incident photons includes a stack of at least three superposed layers of semiconductor materials having a first conductivity type. The stack includes: an interaction layer designed to interact with incident photons so as to generate photocarriers; a collection layer to collect the photocarriers; a confinement layer designed to confine the photocarriers in the collection layer. The collection layer has a band gap less than the band gaps of the interaction layer and confinement layer. The photodiode also includes a region which extends transversely relative to the planes of the layers. The region is in contact with the collection layer and confinement layer and has a conductivity type opposite to the first conductivity type so as to form a p-n junction with the stack.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 14, 2010
    Assignee: Commissariat A l'Energie Atomique
    Inventor: Johan Rothman
  • Patent number: 7791065
    Abstract: An ultrasensitive optical detector with high resolution in time, using a waveguide, and a processes for manufacturing this detector. The detector is configured to detect at least one photon and includes a dielectric substrate and at least one detection element on the substrate, configured to generate an electrical signal starting from energy of the photon received, and a guide element to guide the photon, the energy of which is then absorbed by the detection element at an absorption zone which is less than 100 nm thick. The detection element is substantially straight on the substrate and is short, and the guide element includes a single mode light waveguide with strong confinement, placed on the detection element. The detector is particularly applicable to detection and localization of operating defects in a semiconducting circuit.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: September 7, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Laurent Frey, Jean-Claude Villegier
  • Patent number: 7777287
    Abstract: An analytical system-on-a-chip can be used as an analytical imaging device, for example, for detecting the presence of a chemical compound. A layer of analytical material is formed on a transparent layer overlying a solid state image sensor. The analytical material can react in known ways with at least one reactant to block light or to allow light to pass through to the array. The underlying sensor array, in turn, can process the presence, absence or amount of light into a digitized signal output. The system-on-a-chip may also include software that can detect and analyze the output signals of the device.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: August 17, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Terry Gilton
  • Patent number: 7772667
    Abstract: The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: August 10, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuusuke Sugawara, Kazuo Nishi, Tatsuya Arao, Daiki Yamada, Hidekazu Takahashi, Naoto Kusumoto