Light Sensor Elements Overlie Active Switching Elements In Integrated Circuit (e.g., Where The Sensor Elements Are Deposited On An Integrated Circuit) Patents (Class 257/444)
  • Patent number: 8035184
    Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 11, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Robert Olah
  • Patent number: 8030724
    Abstract: A solid-state imaging device comprises an imaging region, a peripheral circuit region formed in an outer peripheral portion of the imaging region, a first conductivity type semiconductor substrate having the imaging region and the peripheral circuit region on a main surface thereof, a second conductivity type first semiconductor layer formed in the semiconductor substrate, a first conductivity type second semiconductor layer formed in first semiconductor layer, a through electrode formed in a through hole penetrating through the semiconductor substrate in a thickness direction of the semiconductor substrate, and a pad portion formed on the semiconductor substrate and connected to the through electrode. The through hole penetrates through a first conductivity type region of the semiconductor substrate.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 4, 2011
    Assignee: Panasonic Corporation
    Inventor: Toshihiro Kuriyama
  • Patent number: 8022493
    Abstract: Provided are embodiments of an image sensor. The image sensor can comprise a first substrate including a transistor circuit, a lower interconnection layer, an upper interconnection layer, and a second substrate including a vertical stacked photodiode. The lower interconnection layer is disposed on the first substrate and comprises a lower interconnection connected to the transistor circuit. The upper interconnection layer is disposed on the lower interconnection layer and comprises an upper interconnection connected with the lower interconnection. The vertical stacked photodiode can be disposed on the upper interconnection layer and connected with the upper interconnection through, for example, a single plug connecting a blue, green, and red photodiode of the vertical stack or a corresponding plug for each of the blue, green, and red photodiode of the vertical stack.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: September 20, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Sun Kyung Bang
  • Patent number: 8013411
    Abstract: Methods and structures to reduce optical crosstalk in solid state imager arrays. Sections of pixel material layers that previously would have been etched away and disposed of as waste during fabrication are left as conserved sections. These conserved sections are used to amend the properties and performance of the imager array. In the resulting structure, the conserved sections absorb incident light. The patterned portions of conserved material provide additional light shielding for array pixels.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Bryan G. Cole
  • Patent number: 7999265
    Abstract: The photoelectric conversion device includes: a photoelectric conversion element in which a first electrode, a photoelectric conversion layer, and a second electrode are stacked in this order; and a thin film transistor (TFT) connected to the first electrode of the photoelectric conversion element via a contact hole, wherein the photoelectric conversion layer including a first photoelectric conversion layer disposed at a location which does not overlap with the contact hole and a second photoelectric conversion layer disposed at a location which overlaps with the contact hole, the first photoelectric conversion layer and the second photoelectric conversion layer are separated from each other by a separation groove, and the second electrode is selectively formed on the first photoelectric conversion layer, and the photoelectric conversion element is formed by the first electrode, the first photoelectric conversion layer, and the second electrode.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 16, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Tsukasa Eguchi
  • Patent number: 7998780
    Abstract: The invention relates to the fabrication of thinned substrate image sensors, and notably color image sensors. After the fabrication steps carried out from the front face of a silicon substrate the front face is transferred onto a substrate. The silicon is thinned, and the connection terminals are produced by the rear face. A multiplicity of localized contact holes are opened through the thinning silicon, in the location of a connection terminal. The holes exposing a first conductive layer (24) are formed during the front face steps. Aluminum (42) is deposited on the rear face, in contact with the silicon, with the aluminum penetrating into the openings and coming into contact with the first layer. The aluminum is etched to delimit the connection terminal. Finally, a peripheral trench is opened through the entire thickness of the silicon layer, and this trench completely surrounds the connection terminal.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 16, 2011
    Assignee: E2V Semiconductors
    Inventor: Pierre Blanchard
  • Publication number: 20110169017
    Abstract: An electronic device includes a substrate. The substrate includes a first pixel driving circuit, a first conductive member, and a second conductive member. The first and second conductive members are spaced apart from each other. The first conductive member is connected to the first pixel driving circuit. The second conductive member is part of a power transmission line. The electronic device further includes a well structure overlying the substrate and defining a pixel opening, a via, and a channel. The pixel opening is connected to the via through the channel. In addition, the electronic device includes a first electronic component. The electronic component includes a first electrode that contacts the first conductive member in the pixel opening, a second electrode that contacts the second conductive member in the via, and an organic layer lying between the first and second electrodes.
    Type: Application
    Filed: September 22, 2006
    Publication date: July 14, 2011
    Inventors: Matthew Stainer, Matthew Stevenson, Stephen Sorich
  • Patent number: 7973377
    Abstract: In accordance with the invention, an improved image sensor comprises an array of germanium photosensitive elements integrated with a silicon substrate and integrated with silicon readout circuits. The silicon transistors are formed first on a silicon substrate, using well known silicon wafer fabrication techniques. The germanium elements are subsequently formed overlying the silicon by epitaxial growth. The germanium elements are advantageously grown within surface openings of a dielectric cladding. Wafer fabrication techniques are applied to the elements to form isolated germanium photodiodes. Since temperatures needed for germanium processing are lower than those for silicon processing, the formation of the germanium devices need not affect the previously formed silicon devices. Insulating and metallic layers are then deposited and patterned to interconnect the silicon devices and to connect the germanium devices to the silicon circuits.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Infrared Newco, Inc.
    Inventors: Clifford A. King, Conor S. Rafferty
  • Patent number: 7973397
    Abstract: A packaging substrate having a semiconductor chip embedded and a fabrication method thereof are provided. The method includes forming a semiconductor chip in a through cavity of a core board and exposing a photosensitive portion of the semiconductor chip from the through cavity; sequentially forming a first dielectric layer and a first circuit layer on the core board, the first circuit layer being electrically connected to the electrode pads of the semiconductor chip; forming a light-permeable window on the first dielectric layer to expose the photosensitive portion of the semiconductor chip and adhering a light-permeable layer onto the light-permeable window, thereby permitting light to penetrate through the light-permeable layer to reach the photosensitive portion. Therefore, when fabricated with the method, the packaging substrate dispenses with conductive wires and dams and thus can be downsized.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: July 5, 2011
    Assignee: Unimicron Technology Corp.
    Inventors: Shin-Ping Hsu, Kan-Jung Chia
  • Publication number: 20110156197
    Abstract: An image sensor includes a sensor wafer and a circuit wafer electrically connected to the sensor wafer. The sensor wafer includes unit cells with each unit cell having at least one photodetector and a charge-to-voltage conversion region. The circuit wafer includes unit cells with each unit cell having an electrical node associated with each unit cell on the sensor wafer. An inter-wafer interconnect is connected between each unit cell on the sensor wafer and a respective unit cell on the circuit wafer. The location of at least a portion of the inter-wafer interconnects is shifted or disposed at a different location with respect to the location of one or both components connected to the shifted inter-wafer interconnects. The locations of the inter-wafer interconnects can be disposed at different locations with respect to the locations of the charge-to-voltage conversion regions or with respect to the locations of the electrical nodes.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Inventors: Cristian A. Tivarus, John P. McCarten, Joseph R. Summa
  • Patent number: 7968888
    Abstract: An object of the present invention is to provide a small solid-state image sensor which realizes significant improvement in sensitivity. The solid-state image sensor of the present invention includes a semiconductor substrate in which photoelectric conversion units are formed, a light-blocking film which is formed above the semiconductor substrate and has apertures formed so as to be positioned above respective photoelectric conversion units, and a high refractive index layer formed in the apertures. Here, each aperture has a smaller aperture width than a maximum wavelength in a wavelength of light in a vacuum converted from a wavelength of the light entering the photoelectric conversion unit through the apertures, and the high refractive index is made of a high refractive index material having a refractive index which allows transmission of light having the maximum wavelength through the aperture.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: June 28, 2011
    Assignee: Panasonic Corporation
    Inventors: Takumi Yamaguchi, Takahiko Murata, Shigetaka Kasuga
  • Patent number: 7964926
    Abstract: An image sensor package includes an image sensor chip, a handling substrate mounted on a front side of the image sensor chip and a through electrode disposed on a backside of the image sensor chip. The through electrode extends into the image sensor chip. Moreover, the image sensor chip includes a semiconductor substrate having a pixel region and a peripheral circuit region, a photoelectric transformation section disposed in the semiconductor substrate of the pixel region and a dielectric layer disposed on a front surface of the semiconductor substrate. The dielectric layer has a step region so that a top surface of the dielectric layer in the pixel region is lower than that of the dielectric layer in the peripheral circuit region. The image sensor chip further includes a conductive pad disposed on the dielectric layer in the peripheral circuit region and is electrically connected to the through electrode.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ki-Hong Kim
  • Patent number: 7956394
    Abstract: A separation type unit pixel having a 3D structure for an image sensor, composed of a plurality of transistors, includes: a first wafer which includes a photodiode, a transfer transistor, a node of a floating diffusion area functioning as static electricity for converting electric charge into a voltage, and a pad connecting the floating diffusion area and the transfer transistor to an external circuit, respectively; a second wafer which includes the rest of the circuit elements constituting a pixel (i.e., a reset transistor, a source-follower transistor, and a blocking switch transistor), a read-out circuit, a vertical/horizontal decoder, a correlated double sampling (CDS) circuit which involves in a sensor operation and an image quality, an analog circuit, an analog-digital converter (ADC), a digital circuit, and a pad connecting each pixel; and a connecting means which connects the pad of the first wafer and the pad of the second wafer.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 7, 2011
    Assignee: Siliconfile Technologies Inc.
    Inventor: Do Young Lee
  • Patent number: 7956392
    Abstract: An imaging element comprises: an optical element substrate part in which the imaging element generates a signal charge by photo-electrically converting an incident light applied from one surface side of the optical element substrate part to read the signal charge from the other surface side of the optical element substrate part and picks up an image; and a CMOS circuit substrate part connected to the other surface side of the optical element substrate part so as to transfer the signal charge generated in the photoelectric conversion layer, wherein the optical element substrate part comprises: a photoelectric conversion layer to generate the signal charge by photo-electrically converting the incident light; a charge storage part that stores the signal charge; and a reading transistor that reads the signal charge stored in the charge storage part.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: June 7, 2011
    Assignee: Fujifilm Corporation
    Inventor: Shinji Uya
  • Publication number: 20110128425
    Abstract: A CMOS image sensor allows for selectively outputting one of two vertical resolutions, e.g. 1080 to 720 lines. The scan conversion is implemented completely on the image sensor chip by using smaller sub-pixel cores, which can be electrically combined via switch transistors. A basic circuit of the CMOS image sensor has a number of pixel cells arranged in lines and columns. Each pixel cell has a photosensitive element that converts impinging light into electric charge and a first transfer element. The first transfer elements of m pixel cells arranged consecutively in the same column are arranged for transferring the charge generated in the respective m photosensitive elements during exposure to a single first charge storage element provided for the respective group of m pixel cells. In an exemplary embodiment the switching scheme allows for combining the signal information of either two or three vertically adjacent sub-pixel cores.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 2, 2011
    Inventors: Heinrich Schemmann, Petrus Gijsbertus Maria Centen, Sabine Roth, Boon Keng Teng
  • Patent number: 7948545
    Abstract: A solid-state imaging device as defined herein, in which each of the signal reading circuits for reading the detection signals of the first-color pixels includes three transistors which are a reset transistor, a row selection transistor, and an output transistor; and each of the signal reading circuits for reading the detection signals of the second-color pixels and each of the signal reading circuits for reading the detection signals of the third-color pixels include four transistors which are a read transistor, a reset transistor, a row selection transistor, and an output transistor.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: May 24, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Nobuo Suzuki
  • Publication number: 20110115043
    Abstract: According to an aspect of the invention, a solid-state image sensor having a plurality of pixels includes a plurality of lower electrode, a photoelectric conversion layer, an upper electrode, a wiring portion and a plurality of connection portions. The plurality of lower electrodes respectively corresponds to the plurality of pixels. The photoelectric conversion layer is stacked on the lower electrodes. The upper electrode is stacked on the photoelectric conversion layer. The wiring portion supplies, to the upper electrode, a voltage to generate an electric field between the upper electrode and the lower electrode. The plurality of connection portions connects the wiring portion and the upper electrode. The plurality of connection portions are disposed in a circumference region which is a region other than a sensor region in which a plurality of photoelectric conversion elements are arranged. The plurality of connection portions is disposed in a symmetrical arrangement.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: FUJIFILM CORPORATION
    Inventor: Takuya TAKATA
  • Patent number: 7935551
    Abstract: A method for manufacturing a sensor image may include forming a pixel array including a photodiode structure and an insulating film structure in an active area of a semiconductor substrate; forming a metal pad on the insulating film structure; forming a dielectric and/or etch stop film on the metal pad (and optionally over the pixel array); forming a protective layer on the dielectric and/or etch stop film; and forming a pad opening and a pixel opening by etching the protective layer.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 3, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Ki Sik Im, Woo Seok Hyun
  • Patent number: 7932942
    Abstract: A solid-state imaging device is provided and has: three photoelectric conversion layers stacked above a semiconductor substrate 1, each detecting a different color; three signal charge accumulators in a semiconductor substrate for accumulating signal charges generated in each of the three photoelectric conversion layers: and a signal readout circuit in the semiconductor substrate for reading out signals corresponding to the signal charges accumulated in the signal charge accumulators. The three signal charge accumulators are arranged in a direction in the surface of the semiconductor substrate as a pixel and a plurality of the pixels are arranged in a square lattice pattern both in the direction and a direction perpendicular thereto. The three signal charge accumulators arranged in each pixel in an odd row are arranged such that an array of the signal charge accumulators in the first sub-row of each pixel has all of the three signal charge accumulators.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: April 26, 2011
    Assignee: Fujifilm Corporation
    Inventors: Tomoki Inoue, Atsuhiko Ishihara
  • Patent number: 7928528
    Abstract: The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: April 19, 2011
    Assignee: Au Optronics Corp.
    Inventors: Shih-Chyuan Fan Jiang, Ching-Huan Lin, Chih-Ming Chang
  • Patent number: 7923750
    Abstract: A pixel sensor cell, a method for fabricating or operating the pixel sensor cell and a design structure for fabricating the pixel sensor cell each include a semiconductor substrate that includes a photoactive region separated from a floating diffusion region by a channel region. At least one gate dielectric is located upon the semiconductor substrate at least in-part interposed between the photoactive region and the floating diffusion region, and at least one optically transparent gate is located upon the gate dielectric and at least in-part over the channel region. Preferably, the at least one gate dielectric is also located over the photoactive region and the at least one optically transparent gate is also located at least in-part over the photoactive region, to provide enhanced charge transfer capabilities within the pixel sensor cell, which is typically a CMOS pixel sensor cell.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Rajendran Krishnasamy, John Joseph Ellis-Monaghan, Solomon Mulugeta, Charles Francis Musante, Richard J. Rassel
  • Patent number: 7915573
    Abstract: A photoelectric converter includes a plurality of substrates, which are located adjacent to each other and on which a plurality of photoelectric conversion devices are two-dimensionally arranged, and either scan circuits or detection circuits that are arranged on two opposing sides of the photoelectric converter, whereby scanning directions either from the scan circuits or from the detection circuits, which are arranged on the two opposing sides, are capable of being set so as to be performed in like directions.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: March 29, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Isao Kobayashi, Noriyuki Kaifu, Shinichi Takeda, Kazuaki Tashiro, Tadao Endo, Toshio Kameshima
  • Publication number: 20110068253
    Abstract: A photoelectric conversion apparatus of the present invention includes: a plurality of photoelectric conversion elements arranged on a substrate; a transistor for transferring a signal charge; and a plurality of transistors for reading out the signal charge transferred. The plurality of photoelectric conversion elements include a first photoelectric conversion element and a second photoelectric conversion element adjacent to each other. The photoelectric conversion apparatus of the present invention includes: a first semiconductor region having a first conductivity type arranged between the first photoelectric conversion element and the second photoelectric conversion element; and a second semiconductor region having the first conductivity type that is arranged on a region where the plurality of transistors are arranged and that has a width larger than that of the first semiconductor region of the first conductivity type.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 24, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yu Arishima, Yasuhiro Kawabata, Hideaki Takada, Seiichirou Sakai, Toru Koizumi
  • Patent number: 7906826
    Abstract: A CMOS image sensor with a many million pixel count. Applicants have developed techniques for combining its continuous layer photodiode CMOS sensor technology with CMOS integrated circuit lithography stitching techniques to provide digital cameras with an almost unlimited number of pixels. A preferred CMOS stitching technique exploits the precise alignment accuracy of CMOS stepper processes by using specialized mask sets to repeatedly produce a single pixel array pattern many times on a single silicon wafer with no pixel array discontinuities. The single array patterns are stitched together lithographically to form a pixel array of many million pixels. A continuous multilayer photodiode layer is deposited over the top of the many million pixel array to provide a many million pixel sensor with a fill factor of 100 percent or substantially 100 percent.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 15, 2011
    Assignee: e-Phocus
    Inventors: Peter Martin, Paul Johnson, Chris Sexton
  • Patent number: 7902621
    Abstract: A semiconductor structure including a first active area under which is buried a first reflective layer and a least one second active area under which is buried a second reflective layer, wherein the upper surface of the second reflective layer is closer to the upper surface of the structure than the upper surface of the first reflective layer.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: March 8, 2011
    Assignee: STMicroelectronics S.A.
    Inventors: Perceval Coudrain, Philippe Coronel, Michel Marty, Matthieu Bopp
  • Patent number: 7898052
    Abstract: A component comprising a semiconductor junction (HU) is proposed which is formed from crystalline doped semiconductor layers. A semiconductor circuit (IC) is formed on the surface of the component, and a diode is formed internally and directly below the circuit. Integrated circuit and diode are connected to one another and formed and integrated diode component, in particular a photodiode array.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: March 1, 2011
    Assignee: Austriamicrosystems AG
    Inventors: Anton Prantl, Franz Schrank, Rainer Stowasser
  • Patent number: 7893468
    Abstract: A complementary metal-oxide-semiconductor (CMOS) image sensor comprises a first photosensitive diode comprising a first semiconductor material is formed in a first semiconductor substrate. A second photosensitive diode comprising a second semiconductor material, which has a different light detection wavelength range than the first semiconductor material, is formed in a second semiconductor substrate. Semiconductor devices for holding and detecting charges comprising a sensing circuit of the CMOS image sensor may also be formed in the second semiconductor substrate. The first semiconductor substrate and the second semiconductor substrate are bonded so that the first photosensitive diode is located underneath the second photosensitive diode. The vertical stack of the first and second photosensitive diodes detects light in the combined detection wavelength range of the first and second semiconductor materials. Sensing devices may be shared between the first and second photosensitive diodes.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Daniel N. Maynard, Kevin N. Ogg, Richard J. Rassel, Raymond J. Rosner
  • Patent number: 7884438
    Abstract: A photodetector for detecting megavoltage (MV) radiation comprises a semiconductor conversion layer having a first surface and a second surface disposed opposite the first surface, a first electrode coupled to the first surface, a second electrode coupled to the second surface, and a low density substrate including a detector array coupled to the second electrode opposite the semiconductor conversion layer. The photodetector includes a sufficient thickness of a high density material to create a sufficient number of photoelectrons from incident MV radiation, so that the photoelectrons can be received by the conversion layer and converted to a sufficient of recharge carriers for detection by the detector array.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 8, 2011
    Assignee: Varian Medical Systems, Inc.
    Inventors: Larry Dean Partain, George Zentai
  • Patent number: 7884436
    Abstract: In a solid-state imaging device, the pixel circuit formed on the first surface side of the semiconductor substrate is shared by a plurality of light reception regions. The second surface side of the semiconductor substrate is made the light incident side of the light reception regions. The second surface side regions of the light reception regions formed in the second surface side part of the semiconductor substrate are arranged at approximately even intervals and the first surface side regions of the light reception regions formed in the first surface side part of the semiconductor substrate are arranged at uneven intervals, respectively, and the second surface side regions and the first surface side regions are joined respectively in the semiconductor substrate so that the light reception regions extend from the second surface side to the first surface side of the semiconductor substrate.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7875917
    Abstract: An image sensor and a method for manufacturing the same are provided. In the image sensor, a semiconductor substrate has a pixel region and a peripheral region defined by a first device isolation layer. First and second photodiode patterns are formed on the pixel region and are connected to lower metal lines to first and second readout circuitries. The first photodiode pattern performs as an active photodiode and the second photodiode pattern functions as a dummy pixel. The dummy pixel can measure leakage current.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: January 25, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jong Man Kim
  • Patent number: 7872284
    Abstract: An imager having a pixel cell having an associated strained silicon layer. The strained silicon layer increases charge transfer efficiency, decreases image lag, and improves blue response in imaging devices.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 18, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 7863703
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Patent number: 7863704
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Patent number: 7859074
    Abstract: A sensor is implemented in an integrated circuit. The sensor includes one or more sensor pads that are provided at or near a surface of the integrated circuit. One or more integrated circuit components such as a sense amplifier are provided in the integrated circuit die adjacent the sensor pads. One or more other components are provided in the integrated circuit die adjacent the sensor pads.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: December 28, 2010
    Assignee: Broadcom Corporation
    Inventor: Mark Buer
  • Patent number: 7859075
    Abstract: An image sensor for minimizing a dark level defect is disclosed. The image sensor includes an isolation layer formed on a substrate. A field region and an active region are defined on the substrate by the isolation layer. A photodiode is formed in the image sensor in such a structure that a first region is formed below a surface of the substrate in the active region and a second region is formed under the first region. A first conductive type impurity is implanted into the first region and a second conductive type impurity is implanted into the second region. A dark current suppressor is formed on side and bottom surfaces of the isolation layer adjacent to the first region, and the dark current suppressor is doped with the second conductive type impurity. The dark current suppressor suppresses the dark current to minimize the dark level defect caused by the dark current.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics, Co., Ltd.
    Inventor: Sang-Il Jung
  • Patent number: 7834324
    Abstract: An intermediate layer is located between a recording photoconductive layer and an electrode, which is either one of a bias electrode and a reference electrode, and which is located on the side at positive electric potential with respect to a charge accumulating section at the time of readout of electric charges of the charge accumulating section. The intermediate layer is an a-Se layer containing, as a specific substance, at least one kind of substance selected from the group consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal oxide, an alkaline earth metal oxide, SiOx, and GeOx, where x represents a number satisfying 0.5?x?1.5, in a concentration falling within the range of 0.003 mol % to 0.03 mol %.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 16, 2010
    Assignee: Fujifilm Corporation
    Inventor: Shinji Imai
  • Patent number: 7824949
    Abstract: A method of forming a sensor array. The method includes depositing a source/drain contact layer; depositing a semiconductor layer on the source/drain contact layer; and patterning the source/drain contact layer and the semiconductor layer substantially simultaneously, wherein the patterned semiconductor layer forms part of a sensor of the sensor array.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 2, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, William S. Wong, Rene A. Lujan, Scott J. Limb
  • Patent number: 7816751
    Abstract: An optical sensor includes a silicon-rich dielectric photosensitive device and a read-out device. The silicon-rich dielectric photosensitive device includes a first electrode, a second electrode, and a photosensitive silicon-rich dielectric layer disposed therebetween. The photosensitive silicon-rich dielectric layer includes a plurality of nanocrystalline silicon crystals therein. The read-out device is electrically connected to the first electrode of the silicon-rich dielectric photosensitive device for reading out opto-electronic signals transmitted from the photo-sensitive silicon-rich dielectric layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 19, 2010
    Assignee: AU Optronics Corp.
    Inventors: An-Thung Cho, Chia-Tien Peng, Kun-Chih Lin
  • Patent number: 7808065
    Abstract: A semiconductor photosensitive element comprises: a semiconductor substrate of a first conductivity type; a first light absorption layer, a first semiconductor layer of a second conductivity type, a first semiconductor layer of the first conductivity type, a second light absorption layer, and a second semiconductor layer of a second conductivity type, arranged in this order on the semiconductor substrate; a first electrode connected the second semiconductor layer of the second conductivity type; a second electrode connected to the semiconductor substrate; and a third electrode electrically connecting the first semiconductor layer of the first conductivity type to the first semiconductor layer of the second conductivity type. The third electrode is located outside a light detection region for detecting optical signals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 5, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Eitaro Ishimura, Masaharu Nakaji
  • Publication number: 20100230772
    Abstract: An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
    Type: Application
    Filed: August 26, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan H. Cannon, Michael J. Hauser, Timothy D. Sullivan
  • Patent number: 7791181
    Abstract: A device structure with preformed ring includes a sensor chip and a ring disposed and surrounded on periphery of sensitive area of an active surface thereof. The device structure with preformed ring may batchly bind and electrically connect to a carrier by a way of two-dimension array, and then a packaging process is performed. During the packaging process, the top portion of the ring can be used to against the inner side of a packaging mold, so as to stop the packaging material covering the device at outside of the ring and stick with the ring. Therefore, an opening is formed on the sensitive area surface of the device. Depending on the ring, the extra process for eliminating the packaging material on the sensitive area surface can be avoided in the conventional process.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 7, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Lung-Tai Chen, Chun-Hsun Chu
  • Patent number: 7791159
    Abstract: A solid-state imaging device comprises an imaging region, a peripheral circuit region formed in an outer peripheral portion of the imaging region, a first conductivity type semiconductor substrate having the imaging region and the peripheral circuit region on a main surface thereof, a second conductivity type first semiconductor layer formed in the semiconductor substrate, a first conductivity type second semiconductor layer formed in first semiconductor layer, a through electrode formed in a through hole penetrating through the semiconductor substrate in a thickness direction of the semiconductor substrate, and a pad portion formed on the semiconductor substrate and connected to the through electrode. The through hole penetrates through a first conductivity type region of the semiconductor substrate.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventor: Toshihiro Kuriyama
  • Patent number: 7786545
    Abstract: Disclosed are an image sensor and a method for manufacturing the same. The image sensor includes a substrate provided with a transistor circuit, first and second interconnections separated from each other on the substrate, a first conductive-type conductive layer formed at side surfaces of the first interconnection, a second conductive-type conductive layer formed at side surfaces of the second interconnection, and an intrinsic layer formed between the first and second conductive-type conductive layers thereby forming a P-I-N structure.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 31, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Seoung Hyun Kim
  • Patent number: 7786543
    Abstract: A MOS or CMOS based active pixel sensor with special sampling features to substantially eliminate clock noise. The sensor includes an array of pixels fabricated in or on a substrate, each pixel defining a charge collection node on which charges generated inside a photodiode region are collected, a charge integration node, at which charges generated in said pixel are integrated to produce pixel signals, a charge sensing node from which reset signals and the pixel signals are sensed. In preferred embodiments the sensor includes a continuous electromagnetic radiation detection structure located above the pixel circuits providing a photodiode region for each pixel. The sensor includes integrated circuit elements adapted to maintain voltage potentials of the charge integration nodes substantially constant during charge integration cycles. The sensor also includes integrated circuit elements having electrical capacitance adapted to store charges providing an electrical potential at the charge integration node.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: August 31, 2010
    Assignee: e-Phocus
    Inventor: Tzu-Chiang Hsieh
  • Patent number: 7781857
    Abstract: The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: August 24, 2010
    Assignee: AU Optronics Corp.
    Inventors: Shih-Chyuan Fan Jiang, Ching-Huan Lin, Chih-Ming Chang
  • Patent number: 7782522
    Abstract: Methods and devices used for the encapsulation of MEMS devices, such as an interferometric modulator, are disclosed. Encapsulation is provided to MEMS devices to protect the devices from such environmental hazards as moisture and mechanical shock. In addition to the encapsulation layer providing protection from environmental hazards, the encapsulation layer is additionally planarized so as to function as a substrate for additional circuit elements formed above the encapsulation layer.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: August 24, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Je-Hsiung Lan
  • Patent number: 7772666
    Abstract: A CMOS image sensor and a method for manufacturing the same are provided. The CMOS image sensor may be capable of improved thickness uniformity form microlenses formed at a reduced distance from the photodiodes. The CMOS image sensor can include: a semiconductor substrate on which a pixel array is formed, the pixel array including photodiodes formed on the semiconductor substrate to different depths for sensing red, green, and blue signals, respectively; an interlayer dielectric formed on the semiconductor substrate and having a trench at an upper portion of the pixel array; an insulating layer sidewall formed at a side of the trench; and a plurality of microlenses formed on the interlayer dielectric in the trench at predetermined intervals.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: August 10, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Heui Gyun Ahn
  • Patent number: 7768089
    Abstract: A semiconductor device comprises a semiconductor substrate comprised of an interposer having one surface and a semiconductor element provided on the one surface of the interposer, the semiconductor element including a light receiving portion for receiving light thereon; a transparent substrate having light-transmitting property and one surface facing the light receiving portion, the transparent substrate arranged in a spaced-apart relationship with the one surface of the interposer through a gap formed between the one surface of the interposer and the one surface of the transparent substrate; and a spacer formed in a shape of a frame, the spacer positioned between the one surface of the interposer and the one surface of the transparent substrate for regulating the gap, and the spacer having an inner surface and an outer surface, wherein the one surface of the interposer, the one surface of the transparent substrate and the inner surface of the spacer form a space which is hermetically sealed, and wherein the
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 3, 2010
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takashi Hirano, Toyosei Takahashi, Toshihiro Sato, Masakazu Kawata
  • Patent number: 7763917
    Abstract: A photovoltaic device and method of manufacture provides a P-N junction formed between doped semiconductor materials and adapted to produce photovoltaic current in response to radiant energy reaching the P-N junction, and a silicon dioxide protective window layer located in proximity to doped semiconductor material and adapted to allow radiant energy to pass therethrough en route to the P-N junction, the protective layer including a high optical transparency layer of amorphous silica, having a silicon dioxide chemistry greater than 75 molar percent (75 mol %).
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 27, 2010
    Inventor: L. Pierre de Rochemont
  • Patent number: 7755157
    Abstract: Solar cells and methods of their manufacture are described that exhibit decreased or eliminated leak current, improved open voltage and improved fill factor characteristics. In an embodiment, a separate processed surface is interposed between a first and a second main surface of a crystal substrate, as prepared by laser irradiation and cut processing. The laser irradiation is applied to an amorphous semiconductor layer of the same conductive type as an underlying single crystal substrate, but does not penetrate an underlying amorphous opposite type layer. Details of lamination and laser characteristics for processing the layers are provided.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 13, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Toshio Asaumi, Toshiaki Baba, Akira Terakawa, Yasufumi Tsunomura