Interconnection Or Wiring Or Contact Manufacturing Related Aspects (epo) Patents (Class 257/E21.641)
  • Patent number: 8114706
    Abstract: A method of packaging an integrated circuit, including providing a lead frame having lead fingers, where the lead frame has a gold layer thereon on a top surface and a bottom surface. An integrated circuit die is attached to the lead frame. The gold layer is substantially removed from portions of the top surface of the lead frame. The integrated circuit die is wire bonded to the lead fingers with a plurality of wire stitches subsequent to substantially removing the gold. The die is encapsulated in a mold compound to form a packaged integrated circuit.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Takahiko Kudoh, Muhammad Faisal Khan
  • Patent number: 8105940
    Abstract: A first through via is electrically insulated from surrounding wafer substrate material. A second through via is not electrically insulated from the surrounding wafer substrate material. This configuration is advantageous when the non-insulated via serves as the path for either Vdd or GND. By not insulating the through via, a first supply voltage (Vdd or GND) is allowed to flow through the surrounding wafer substrate material thereby decreasing the resistance of the first supply voltage path.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Todd Alan Christensen, John Edward Sheets, II
  • Patent number: 8105874
    Abstract: A memory circuit arrangement and fabrication method thereof are presented in which the parts of the memory circuit arrangement are situated on two different substrates. An integrated memory cell array is situated on one substrate. An integrated control circuit that controls access to the memory cells is situated on the other (logic circuit) substrate. The control circuit controls sequences when reading, writing or erasing content of a memory cell. The logic circuit substrate also contains a CPU and encryption coprocessor. The memory circuit contains a sense amplifier, with the aid of which the memory state of a memory cell can be determined, and a decoding circuit that selects a word or bit line.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 31, 2012
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Gruber, Ronald Kakoschke, Thomas Schweizer, Dominik Wegertseder
  • Patent number: 8084794
    Abstract: A semiconductor device includes a first wiring extending in a first direction and a second wiring extending in a second direction which crosses the first direction and being disposed with a space interposed between the first wiring and the second wiring, and including a tantalum layer, a tantalum nitride layer formed over the tantalum layer, and a metal layer formed over the tantalum nitride layer.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: December 27, 2011
    Assignee: Fujitsu Limited
    Inventors: Yoichi Kamada, Naoya Okamoto
  • Patent number: 8084308
    Abstract: Nanowire-based devices are provided. In one aspect, a field-effect transistor (FET) inverter is provided. The FET inverter includes a plurality of device layers oriented vertically in a stack, each device layer having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region, wherein the source and drain regions of one or more of the device layers are doped with an n-type dopant and the source and drain regions of one or more other of the device layers are doped with a p-type dopant; a gate common to each of the device layers surrounding the nanowire channels; a first contact to the source regions of the one or more device layers doped with an n-type dopant; a second contact to the source regions of the one or more device layers doped with a p-type dopant; and a third contact common to the drain regions of each of the device layers. Techniques for fabricating a FET inverter are also provided.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Josephine Chang, Paul Chang, Michael A. Guillorn, Jeffrey Sleight
  • Patent number: 8076236
    Abstract: Improved SRAMs are formed with significantly reduced local interconnect to gate shorts, by a technique providing bidirectional, self-aligned local interconnects, employing a gate hard mask over portions of the gates not connected to the local interconnects. Embodiments include forming a gate hard mask over gates, forming bidirectional trenches overlying portions of the gate electrodes and active silicon regions, etching the hard mask layer to expose regions of the gate electrodes that are to connect to local interconnects, and filling the trenches with conductive material to form self-aligned local interconnects.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: December 13, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Richard T. Schultz, Donald R. Weiss
  • Patent number: 8072070
    Abstract: A barrier layer is deposited over a layer of passivation including in an opening to a contact pad created in the layer of passivation. A column of three layers of metal is formed overlying the barrier layer and aligned with the contact pad and having a diameter that is about equal to the surface of the contact pad. The three metal layers of the column comprise, in succession when proceeding from the layer that is in contact with the barrier layer, a layer of pillar metal, a layer of under bump metal and a layer of solder metal. The layer of pillar metal is reduced in diameter, the barrier layer is selectively removed from the surface of the layer of passivation after which reflowing of the solder metal completes the solder bump of the invention.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 6, 2011
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin, Ching-Cheng Huang
  • Publication number: 20110284874
    Abstract: In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side than the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first, second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 24, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Naoki Yutani
  • Patent number: 8022547
    Abstract: A non-volatile memory cell that includes a first electrode; a second electrode; and an electrical contact region that electrically connects the first electrode and the second electrode, the electrical contact region has a end portion and a continuous side portion, and together, the end portion and the continuous side portion form an open cavity, wherein the memory cell has a high resistance state and a low resistance state that can be switched by applying a voltage across the first electrode and the second electrode.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: September 20, 2011
    Assignee: Seagate Technology LLC
    Inventors: Venugopalan Vaithyanathan, Wei Tian, Insik Jin
  • Patent number: 8004085
    Abstract: A semiconductor device has an element interconnection 2, a top-layer element interconnection 4, a super-connect interconnection 10 and a bump 7. The element interconnection 2 is provided on a semiconductor substrate 1 through a plurality of insulating layers 50. The top-layer element interconnection 4 is formed above the element interconnection 2 by using a substantially equivalent process equipment. The super-connect interconnection 10 is provided on the top-layer element interconnection 4 through a super-connect insulating layer 9 having a thickness five or more times larger than that of the insulating layer 5, and has a thickness three or more times larger than that of each the element interconnection 2 and the top-layer element interconnection 4. The bump 7 is formed on the super-connect interconnection 10. The top-layer element interconnection 4 has a signal pad 4s, a power source pad 4v and a ground pad 4g.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: August 23, 2011
    Assignee: NEC Corporation
    Inventors: Shintaro Yamamichi, Katsumi Kikuchi, Jun Sakai, Hikaru Kouta
  • Patent number: 7999388
    Abstract: An apparatus includes a volume of insulator disposed over a top surface of a semiconductor substrate, a tube of soft dielectric, and a metal conductor. The insulator has a hardness of more than approximately three gigapascals (gPa) and the soft dielectric has a hardness of less than three gPa. The tube of soft dielectric and the metal conductor are both embedded within the volume of insulator. The tube defines a central volume and the metal conductor extends in a direction through the central volume for a distance of at least one inch. The metal conductor is encircled by the soft dielectric when the apparatus is viewed in a cross-sectional plane perpendicular to the direction. The metal conductor may include a plurality of bend portions. The metal conductor does not break when the apparatus is temperature cycled over a range from zero to eighty five degrees Celsius.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: August 16, 2011
    Assignee: Research Triangle Institute
    Inventor: Robert O. Conn
  • Publication number: 20110148466
    Abstract: An integrated circuit containing CMOS logic gates and a logic-cell-compatible decoupling capacitor adjacent to the logic gates, in which the decoupling capacitor includes p+/n and n+/p capacitors, resistors between 1 and 1000 ohms connecting the capacitors to Vdd and Vss buses, and gate elements which have widths and spacings similar to the adjacent logic gates. A process of forming an integrated circuit containing CMOS logic gates and a logic-cell-compatible decoupling capacitor adjacent to the logic gates, in which the decoupling capacitor includes p+/n and n+/p capacitors, resistors between 1 and 1000 ohms connecting the capacitors to Vdd and Vss buses, and gate elements which have widths and spacings similar to the adjacent logic gates.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 23, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Thomas John Aton
  • Patent number: 7964970
    Abstract: By locally adapting the size and/or density of a contact structure, for instance, within individual transistors or in a more global manner, the overall performance of advanced semiconductor devices may be increased. Hence, the mutual interaction between the contact structure and local device characteristics may be taken into consideration. On the other hand, a high degree of compatibility with conventional process strategies may be maintained.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 21, 2011
    Assignee: Globalfoundries, Inc.
    Inventors: Martin Gerhardt, Ralf Richter, Thomas Feudel, Uwe Griebenow
  • Patent number: 7956466
    Abstract: A design structure is provided for interconnect structures containing various capping materials for electrical fuses and other related applications. The structure includes a first interconnect structure having a first interfacial structure and a second interconnect structure adjacent to the first structure. The second interconnect structure has second interfacial structure different from the first interfacial structure.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, William R. Tonti, Chih-Chao Yang
  • Patent number: 7935623
    Abstract: In a method for fabricating a semiconductor device, first, a first metal interconnect is formed in an interconnect formation region, and a second metal interconnect is formed in a seal ring region. Subsequently, by chemical mechanical polishing or etching, the upper portions of the first metal interconnect and the second metal interconnect are recessed to form recesses. A second insulating film filling the recesses is then formed above a substrate, and the upper portion of the second insulating film is planarized. Next, a hole and a trench are formed to extend halfway through the second insulating film, and ashing and polymer removal are performed. Subsequently to this, the hole and the trench are allowed to reach the first metal interconnect and the second metal interconnect.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: May 3, 2011
    Assignee: Panasonic Corporation
    Inventor: Shunsuke Isono
  • Patent number: 7902581
    Abstract: By providing contact plugs having a lower plug portion, formed on the basis of well-established tungsten-based technologies, and an upper plug portion, which may comprise a highly conductive material such as copper or a copper alloy, a significant increase in conductivity of the contact structure may be achieved. For this purpose, after the deposition of a first dielectric layer of the inter-layer stack, a planarization process may be performed so as to allow the formation of the lower plug portions on the basis of tungsten, while, after the deposition of the second dielectric layer, a corresponding copper-based technology may be used for forming the upper plug portions of significantly enhanced conductivity.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 8, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kai Frohberg, Carsten Peters, Thomas Werner
  • Patent number: 7883908
    Abstract: A method for fabricating a semiconductor component with an encapsulated through wire interconnect includes the steps of providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The polymer layer can be formed using a film assisted molding process including the steps of: forming a mold film on tip portions of the bonding members, molding the polymer layer, and then removing the mold film to expose the tip portions of the bonding members. The through wire interconnect provides a multi level interconnect having contacts on opposing sides of the semiconductor substrate.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: February 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 7875542
    Abstract: It is required that a line width of a wiring is prevented from being wider to be miniaturized when the wiring or the like is formed by a dropping method typified by an ink-jetting method. The invention provides a method for narrowing (miniaturizing) a line width according to a method different from a conventional method. One feature of the invention is that a plasma treatment is performed before forming a wiring or the like by a dropping method typified by an ink-jetting method. As the result of the plasma treatment, a surface for forming a conductive film is modified to be liquid-repellent. Consequently, a wiring or the like formed by a dropping method can be miniaturized.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: January 25, 2011
    Assignee: Semiconductor Energy laboratory Co., Ltd.
    Inventors: Shinji Maekawa, Koji Muranaka
  • Patent number: 7875979
    Abstract: A metal line of a semiconductor device having a diffusion barrier including CrxBy and a method for forming the same is described. The metal line of a semiconductor device includes an insulation layer formed on a semiconductor substrate. The insulation layer is formed having a metal line forming region. A diffusion barrier including a CrxBy layer is subsequently formed on the surface of the metal line forming region and the insulation layer. A metal line is finally formed to fill the metal line forming region of the insulation layer on the diffusion barrier including a CrxBy layer.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: January 25, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong Ha Jung, Seung Jin Yeom, Baek Mann Kim, Young Jin Lee, Jeong Tae Kim
  • Patent number: 7875544
    Abstract: A reduction in the intersection of vias on the last layer (“VL”) and holes in the last thin metal layer (“MLHOLE”) can be achieved without degrading product yield or robustness or increasing copper dishing. The mutation of some dense redundant VLs to MLHOLEs decreases the number of intersections between VLs and MLHOLEs.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: January 25, 2011
    Assignees: Infineon Technologies AG, International Business Machines Corporation, United Microelectronics Co.
    Inventors: Robert C. Wong, Ernst H. Demm, Pak Leung, Alexander M. Hirsch
  • Patent number: 7855141
    Abstract: A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the grooves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide grooves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the grooves to be filled.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Shimooka, Hideki Shibata, Hideshi Miyajima, Kazuhiro Tomioka
  • Patent number: 7847405
    Abstract: In one aspect of the present invention, a semiconductor device may include an inter-wiring dielectric film in which a wiring trench is formed, a metal wiring layer formed in the wiring trench in the inter-wiring dielectric film, a first barrier layer formed on a side surface of the wiring trench, the first barrier layer being an oxide film made from a metal different from a main constituent metal element in the wiring layer, a second barrier layer formed on a side surface of the wiring layer, the second barrier layer having a Si atom of the metal used in the wiring layer, and a gap formed between the first barrier layer and the second barrier layer.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadayoshi Watanabe, Yumi Hayashi, Takamasa Usui
  • Patent number: 7838999
    Abstract: An integrated circuit/substrate interconnect apparatus and method of manufacture are provided. Included is a substrate with a plurality of wells and a landing pad formed in each of the wells. The substrate further includes a seed layer deposited in each of the wells over the landing pad, and a metalized layer deposited in each of the wells over the seed layer. Before assembly, an upper surface of the metalized layer forms a well.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: November 23, 2010
    Assignee: NVIDIA Corporation
    Inventors: Inderjit Singh, Ray Chen, Behdad Jafari
  • Patent number: 7838421
    Abstract: A method of forming metal lines of a semiconductor device, comprising providing a semiconductor substrate in which a plurality of gates and junctions formed between the gates are included in a cell area and a peripheral area; forming an insulating layer over the semiconductor substrate including the gates; forming an etch protection layer over the insulating layer; etching the etch protection layer and the insulating layer, and gap-filling conductive material to form contact plugs contacting the junctions of the cell area; and, forming first metal lines contacting the contact plugs and forming second metal lines contacting the junctions of the peripheral area by etching the etch protection layer and the insulating layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Sik Jang
  • Patent number: 7834459
    Abstract: An inventive semiconductor device includes at least three interconnection layers sequentially stacked without intervention of a via layer. At least one of the interconnection layers includes an interconnection and a via which connects interconnections provided in interconnection layers underlying and overlying the one interconnection layer.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: November 16, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Patent number: 7834389
    Abstract: Provided is a semiconductor device including a substrate. A gate formed on the substrate. The gate includes a sidewall. A spacer formed on the substrate and adjacent the sidewall of the gate. The spacer has a substantially triangular geometry. A contact etch stop layer (CESL) is formed on the first gate and the first spacer. The thickness of the CESL to the width of the first spacer is between approximately 0.625 and 16.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 16, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Yi-Chen Huang, Jim Cy Huang, Weng Chang, Hun-Jan Tao
  • Publication number: 20100270623
    Abstract: A semiconductor device fabrication method including: forming a gate conductor including a gate for a transistor in the first region, and a gate for a transistor in the second region, and a first film over a first stress film for covering the transistors; etching the first film from the second region by using a mask layer and etching the first film under the mask layer in the direction parallel to the surface of the semiconductor substrate by a first width from an edge of the first mask layer, and the first stress film from the second region; forming a second stress film covering the first stress film and the first film; etching the second stress film so that a portion of the second stress film overlaps a portion of the first stress film and a portion of the first film; and forming a contact hole connected with the gate conductor.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 28, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Tomoyuki Kirimura, Jusuke Ogura
  • Patent number: 7800184
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: September 21, 2010
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 7786513
    Abstract: In a semiconductor integrated circuit device, from a first power source strap supplying a potential to a first standard cell receiving a supply of the potential, the potential is supplied via a first cell power source line having a constant width. The width of the first cell power source line is determined in accordance with power consumed by the first standard cell and with the number of standard cells that can be placed between the first power source strap and a third power source strap.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 31, 2010
    Assignee: Panasonic Corporation
    Inventor: Masanori Tsutsumi
  • Patent number: 7767577
    Abstract: A processing layer, such as silicon, is formed on a metal silicide contact followed by a metal layer. The silicon and metal layers are annealed to increase the thickness of the metal silicide contact. By selectively increasing the thickness of silicide contacts, Rs of transistors in iso and nested regions can be matched.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 3, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Johnny Widodo, Liang Choo Hsia, James Yong Meng Lee, Wen Zhi Gao, Zhao Lun, Huang Liu, Chung Woh Lai, Shailendra Mishra, Yew Tuck Chow, Fang Chen, Shiang Yang Ong
  • Patent number: 7759798
    Abstract: A semiconductor device wherein destruction of a sealing ring caused by cracking of an interlayer dielectric film is difficult to occur, as well as a method for manufacturing the semiconductor device, are provided. A first laminate comprises first interlayer dielectric films having a first mechanical strength. A second laminate comprises second interlayer dielectric films having a mechanical strength higher than the first mechanical strength. A first region includes first metallic layers and vias provided within the first laminate. A second region includes second metallic layers and vias provided within the second laminate. When seen in plan, the second region overlaps at least a part of the first region, is not coupled with the first region by vias, and sandwiches the second interlayer dielectric film between it and the first region.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hiroyuki Chibahara, Atsushi Ishii, Naoki Izumi, Masahiro Matsumoto
  • Patent number: 7745326
    Abstract: A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the grooves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide grooves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the grooves to be filled.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: June 29, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Shimooka, Hideki Shibata, Hideshi Miyajima, Kazuhiro Tomioka
  • Publication number: 20100148274
    Abstract: A semiconductor device including an N-channel insulated gate field effect transistor and a P-channel insulated gate field effect transistor, the device having: a first insulating layer and a second insulating layer; and gate electrode contact plugs. Each of the gate electrodes of the N-channel insulated gate field effect transistor and the P-channel insulated gate field effect transistor is buried in a gate electrode formation opening provided in the first insulating layer.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: SONY CORPORATION
    Inventors: Kaori Tai, Masanori Tsukamoto, Masashi Nakata, Itaru Oshiyama
  • Patent number: 7732325
    Abstract: In one embodiment, a method for depositing materials on a substrate is provided which includes forming a titanium nitride barrier layer on the substrate by sequentially exposing the substrate to a titanium precursor containing a titanium organic compound and a nitrogen plasma formed from a mixture of nitrogen gas and hydrogen gas. In another embodiment, the method includes exposing the substrate to the deposition gas containing the titanium organic compound to form a titanium-containing layer on the substrate, and exposing the titanium-containing layer disposed on the substrate to a nitrogen plasma formed from a mixture of nitrogen gas and hydrogen gas. The method further provides depositing a conductive material containing tungsten or copper over the substrate during a vapor deposition process. In some examples, the titanium organic compound may contain methylamido or ethylamido, such as tetrakis(dimethylamido)titanium, tetrakis(diethylamido)titanium, or derivatives thereof.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Toshio Itoh, Ming Xi
  • Patent number: 7732922
    Abstract: The invention is directed to an improved semiconductor structure, such that within the same insulating layer, Cu interconnects embedded within the same insulating level layer have a different Cu grain size than other Cu interconnects embedded within the same insulating level layer.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Louis C. Hsu, Rajiv V. Joshi
  • Publication number: 20100136737
    Abstract: Techniques for manufacturing a CMOS image sensor are provided. A semiconductor substrate is provided, and at least one isolation region can be formed between a periphery region of the substrate and a photo-sensing region of the substrate. A first well in the periphery region and a second well in the photo-sensing region of the substrate are formed. A third well associated with a photodiode is also formed. A gate oxide layer, polysilicon layer, and first metal layer are respectively deposited. The polysilicon layer and first metal layer are etched to form an least one gate in the photo-sensing region and at least one gate in the periphery region. At least two doped regions in the first well are formed, as well as a doped region in the second well. A silicide block layer is deposited over the photo-sensing region of the substrate. A second metal layer is deposited at least over the periphery region after deposition of the silicide block. The substrate is exposed to a thermal environment to form silicide.
    Type: Application
    Filed: February 4, 2010
    Publication date: June 3, 2010
    Applicant: Semiconductor Manufacturing International
    Inventors: Jianping Yang, Jieguang Huo, Chunyan Xin
  • Patent number: 7727887
    Abstract: A first through via is electrically insulated from surrounding wafer substrate material. A second through via is not electrically insulated from the surrounding wafer substrate material. This configuration is advantageous when the non-insulated via serves as the path for either Vdd or GND. By not insulating the through via, a first supply voltage (Vdd or GND) is allowed to flow through the surrounding wafer substrate material thereby decreasing the resistance of the first supply voltage path.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Todd Alan Christensen, John Edward Sheets, II
  • Patent number: 7709956
    Abstract: A copper-topped interconnect structure allows the combination of high density design areas, which have low current requirements that can be met with tightly packed thin and narrow copper traces, and low density design areas, which have high current requirements that can be met with more widely spaced thick and wide copper traces, on the same chip.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: May 4, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Abdalla Aly Naem, Reda Razouk
  • Patent number: 7704868
    Abstract: Methods of fabricating micro-electromechanical system devices from complementary metal oxide semiconductors (CMOS) are provided.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 27, 2010
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Huikai Xie, Khai D. T. Ngo
  • Patent number: 7687340
    Abstract: A semiconductor structure fabrication method. First, a semiconductor structure is provided including (a) a semiconductor block having a first semiconductor material doped with a first doping polarity and having a first lattice orientation, and (b) a semiconductor region on the semiconductor block, wherein the semiconductor region is physically isolated from the semiconductor block by a dielectric region, and wherein the semiconductor region includes a second semiconductor material (i) doped with a second doping polarity opposite to the first doping polarity and (ii) having a second lattice orientation different from the first lattice orientation. Next, first and second gate stacks are formed on the semiconductor block and the semiconductor region, respectively. Then, (i) first and second S/D regions are simultaneously formed in the semiconductor block on opposing sides of the first gate stack and (ii) first and second discharge prevention semiconductor regions in the semiconductor block.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Jeffrey Peter Gambino, Alain Loiseau, Kirk David Peterson
  • Publication number: 20100075476
    Abstract: A method of manufacturing a semiconductor device which includes forming first and second gate patterns, forming first and second sidewall spacers on sidewalls of the first and second gate patterns respectively, implanting a first impurity into the semiconductor substrate, forming a third sidewall spacer on the first sidewall spacer and a fourth sidewall spacer on the second sidewall spacer in such a manner that the third sidewall spacer is in contact with the fourth sidewall spacer between the first and second gate patterns, implanting a second impurity into the semiconductor substrate, and removing the third and the fourth sidewall spacers.
    Type: Application
    Filed: August 20, 2009
    Publication date: March 25, 2010
    Applicant: FUJITSU LIMITED
    Inventor: Toshihiko Miyashita
  • Patent number: 7674712
    Abstract: A method of patterning a substrate by mechanically locating a first masking film over the substrate; removing one or more first opening portions in first locations in the first masking film to form one or more first masking portions in the first masking film. First materials are deposited over the substrate in the first locations to form first patterned areas before mechanically locating a second masking film over the substrate and first masking portions. One or more second opening portions are removed from second locations, different from the first locations, in both the second masking film and the first masking portions to form one or more second masking portions. Second materials are deposited over the substrate in the second locations to form second patterned areas.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 9, 2010
    Inventor: Ronald S. Cok
  • Patent number: 7675177
    Abstract: A copper interconnect with a Sn coating is formed in a damascene structure by forming a trench in a dielectric layer. The trench is formed by electroplating copper simultaneously with a metal dopant to form a doped copper layer. The top level of the doped copper layer is reduced to form a planarized surface level with the surface of the first dielectric layer. The doped copper is annealed to drive the metal dopants to form a metal dopant capping coating at the planarized top surface of the doped copper layer.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 9, 2010
    Assignee: LSI Corporation
    Inventors: Hongqiang Lu, Byung-Sung Kwak, Wilbur G. Catabay
  • Patent number: 7659598
    Abstract: A ground shield is disclosed that includes a ‘cheesed’ metal positioned within a dielectric layer and a metal region positioned within a first metal level over the cheesed metal. The ground shield can have different forms depending on the metal used, and provisions are made to prevent diffusion of copper (Cu) when that is used as the metal in the cheese metal of the ground shield. The ground shield provides a low resistance, very thick metal at a first metal (M1) level for passive RF elements in conjunction with the standard back-end-of-line (BEOL) integration. The invention also includes a method of forming the ground shield.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Mete Erturk, Alvin J. Joseph, Anthony K. Stamper
  • Patent number: 7659202
    Abstract: A method performed on a wafer having multiple chips each including a doped semiconductor and substrate involves etching an annulus trench, metalizing an inner and an outer perimeter side wall of the annulus trench, etching a via trench into the wafer, making a length of the via trench electrically conductive, thinning a surface of the substrate.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 9, 2010
    Inventor: John Trezza
  • Patent number: 7659612
    Abstract: A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) attached to the substrate contact. The through wire interconnect provides a multi level interconnect having contacts on opposing first and second sides of the semiconductor substrate. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via having a bonded connection with the substrate contact, a first contact on the wire proximate to the first side, and a second contact on the wire proximate to the second side. The through wire interconnect (TWI) also includes a polymer layer which partially encapsulates the through wire interconnect (TWI) while leaving the first contact exposed. The semiconductor component can be used to fabricate stacked systems, module systems and test systems. A method for fabricating the semiconductor component can include a film assisted molding process for forming the polymer layer.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 7633163
    Abstract: The present invention provides a method for depositing nano-porous low dielectric constant films by reacting an oxidizable silicon containing compound or mixture comprising an oxidizable silicon component and an oxidizable non-silicon component having thermally liable groups with nitrous oxide, oxygen, ozone, or other source of reactive oxygen in gas-phase plasma-enhanced reaction. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a low-density structure. The nano-porous silicon oxide based films are useful for forming layers between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: December 15, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Robert P. Mandal
  • Patent number: 7622808
    Abstract: A semiconductor device includes a first interconnection layer and a interlayer insulating layer. The first interconnection layer is formed on a upper side of a substrate, and includes a first interconnection. The interlayer insulating layer is formed on the first interconnection layer, and includes a via connected with the first interconnection at one end of the via and a second interconnection connected with the via at another end of the via. The interlayer insulating layer has a relative dielectric constant lower than that of a silicon oxide film. An upper portion of the interlayer insulating layer includes a silicon-oxide film, a silicon nitride film and a silicon oxide film in order from a lower portion.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: November 24, 2009
    Assignee: NEC Corporation
    Inventors: Hiroto Ohtake, Masayoshi Tagami, Munehiro Tada, Yoshihiro Hayashi
  • Patent number: 7598609
    Abstract: A composite conductive film formed of a polymer-matrix and a plurality of conductive lines less than micro-sized and its fabricating method are provided. The conductive lines are arranged parallel and spaced apart from each other so as to provide anisotropic conductivity. The present conductive film can serve as an electrical connection between a fine-pitch chip and a substrate. Additionally, an adhesive layer is formed on two opposite sides of the conductive film along its conductive direction to increase adhesive areas. The strength and reliability of the package using the conductive film are thus enhanced.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: October 6, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Ruoh Huey Uang, Yu Chih Chen, Ren Jay Lin, Syh Yuh Cheng
  • Patent number: 7595232
    Abstract: The present invention relates to complementary devices, such as n-FETs and p-FETs, which have hybrid channel orientations and are connected by conductive connectors that are embedded in a semiconductor substrate. Specifically, the semiconductor substrate has at least first and second device regions of different surface crystal orientations (i.e., hybrid orientations). An n-FET is formed at one of the first and second device regions, and a p-FET is formed at the other of the first and second device regions. The n-FET and the p-FET are electrically connected by a conductive connector that is located between the first and second device regions and embedded in the semiconductor substrate. Preferably, a dielectric spacer is first provided between the first and second device regions and recessed to form a gap therebetween. The conductive connector is then formed in the gap above the recessed dielectric spacer.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: September 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Byeong Y. Kim, Xiaomeng Chen, Yoichi Otani