Capacitor In U- Or V-shaped Trench In Substrate (epo) Patents (Class 257/E21.651)
  • Patent number: 11961921
    Abstract: A semiconductor device has a semiconductor substrate and a semiconductor film doped with impurities that is formed so as to cover an inner wall surface of a trench formed so as to extend from a first surface of the semiconductor substrate towards an interior thereof. The semiconductor film is formed so as to extend continuously from the inner wall surface to the first surface of the semiconductor substrate. The semiconductor device further has an opposite electrode having a first portion that is provided at a position opposing the semiconductor substrate while sandwiching the semiconductor film therebetween, and that extends on the first surface of the semiconductor substrate, and a second portion that is continuous with the first portion and extends so as to fill the trench. The semiconductor device further has an insulating film that insulates the semiconductor film from the opposite electrode.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: April 16, 2024
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Hiroshi Shibata
  • Patent number: 11942147
    Abstract: A memory device is provided, which may include a first electrode, a memory layer stack including at least one semiconducting metal oxide layer and at least one hydrogen-containing metal layer, and a second electrode. A semiconductor device is provided, which may include a semiconducting metal oxide layer containing a source region, a drain region, and a channel region, a hydrogen-containing metal layer located on a surface of the channel region, and a gate electrode located on the hydrogen-containing metal layer. Each hydrogen-containing metal layer may include at least one metal selected from platinum, iridium, osmium, and ruthenium at an atomic percentage that is at least 90%, and may include hydrogen atoms at an atomic percentage in a range from 0.001% to 10%. Hydrogen atoms may be reversibly impregnated into a respective semiconducting metal oxide layer to change resistivity and to encode a memory bit.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Marcus Johannes Henricus Van Dal, Gerben Doornbos, Georgios Vellianitis, Blandine Duriez, Mauricio Manfrini
  • Patent number: 11943913
    Abstract: A semiconductor structure includes a substrate and a buried gate structure in the substrate. The buried gate structure includes a gate dielectric layer formed on the sidewall and the bottom surface of a trench in the substrate, a barrier layer formed in the trench and on the sidewall and the bottom surface of the gate dielectric layer, a first work function layer formed in the trench and including a main portion and a protruding portion, a second work function layer formed at opposite sides of the protruding portion, and an insulating layer formed in the trench and on the protruding portion of the first work function layer and the second work function layer. The barrier layer surrounds the main portion of the first work function layer. The area of the top surface of the protruding portion is less than the area of the bottom surface of the protruding portion.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: March 26, 2024
    Assignee: WINBOND ELECTRONICS CORP.
    Inventors: Te-Hsuan Peng, Kai Jen, Mei-Yuan Chou
  • Patent number: 11929213
    Abstract: A structure of capacitors connected in parallel includes a substrate. A trench embedded in the substrate. Numerous electrode layers respectively conformally fill in and cover the trench. The electrode layers are formed of numerous nth electrode layers, wherein n is a positive integer from 1 to M, and M is not less than 3. The nth electrode layer with smaller n is closer to the sidewall of the trench. When n equals to M, the Mth electrode layer fills in the center of the trench, and the top surface of the Mth electrode is aligned with the top surface of the substrate. A capacitor dielectric layer is disposed between the adjacent electrode layers. A first conductive plug contacts the nth electrode layer with odd-numbered n. A second conductive plug contacts the nth electrode layer with even-numbered n.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Xingxing Chen, Chao Jin
  • Patent number: 11923355
    Abstract: Devices and methods for manufacturing a deep trench capacitor fuse for high voltage breakdown defense. A semiconductor device comprising a deep trench capacitor structure and a transistor structure. The transistor structure may comprise a base, a first terminal formed within the base, and a second terminal formed within the base. The first terminal and the second terminal may be formed by doping the base. The deep trench capacitor structure may comprise a first metallic electrode layer and a second metallic electrode layer. The first terminal may be electrically connected to the first metallic electrode layer, and the second terminal may be electrically connected to the second metallic electrode layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Jen-Yuan Chang
  • Patent number: 11901291
    Abstract: A semiconductor device includes a landing pad on a substrate, a lower electrode on the landing pad, the lower electrode including an outer protective layer, a conductive layer between opposing sidewalls of the outer protective layer, and an inner protective layer between opposing sidewalls of the conductive layer, a first supporter pattern on a side surface of the lower electrode, the first supporter pattern including a supporter hole, a dielectric layer on a surface of each of the lower electrode and the first supporter pattern, and an upper electrode on the dielectric layer. The outer protective layer includes titanium oxide, the conductive layer includes titanium nitride, and the inner protective layer includes titanium silicon nitride. In a horizontal cross-sectional view, the outer protective layer has an arc shape that extends between the dielectric layer and the conductive layer.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: February 13, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheoljin Cho, Jungmin Park, Hanjin Lim, Jaehyoung Choi
  • Patent number: 11877514
    Abstract: A process for producing a crystalline layer of PZT material, comprising the transfer of a monocrystalline seed layer of SrTiO3 material to a carrier substrate of silicon material, followed by epitaxial growth of the crystalline layer of PZT material.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: January 16, 2024
    Assignee: Soitec
    Inventor: Bruno Ghyselen
  • Patent number: 11869930
    Abstract: A method for forming a semiconductor structure and a semiconductor structure are provided. The method includes: a stacked structure is formed on a surface of a substrate, the stacked structure including supporting layers and sacrificial layers which are alternately stacked; a buffer layer is formed on a surface of the stacked structure facing away from the substrate; capacitor holes penetrating through the stacked structure and the buffer layer and exposing capacitor contacts are formed; a first electrode layer covering inner walls of the capacitor holes is formed; an etching window penetrating through the buffer layer is formed; part of the supporting layers and all of the sacrificial layers in the stacked structure are removed along the etching window; the buffer layer is removed; and a dielectric layer and a second electrode layer are formed to form a capacitor.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 9, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Yong Lu
  • Patent number: 11832448
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a semiconductor substrate having sidewalls that define a recess within an upper surface of the semiconductor substrate. A plurality of upper electrode segments are arranged over the semiconductor substrate and are vertically separated from the upper surface of the semiconductor substrate by a first dielectric layer. A lower electrode segment is arranged directly between the sidewalls of the semiconductor substrate and directly between adjacent ones of the plurality of upper electrode segments. A second dielectric layer is arranged directly between the sidewalls of the semiconductor substrate and the lower electrode segment and also directly between the plurality of upper electrode segments and the lower electrode segment.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Chen Chen, Yu-Hsiung Wang, Han-Yu Chen
  • Patent number: 11823836
    Abstract: A method of fabricating a capacitor that includes: forming a three-dimensional structure over a substrate, the three-dimensional structure having a region with elongated pores extending towards the substrate from a top surface of the three-dimensional structure remote from the substrate or elongated columns extending away from the substrate towards the top surface of the three-dimensional structure remote from the substrate; forming a first electrode layer over a surface of the region of the three-dimensional structure, the first electrode conformal to the surface of the region; forming an intermediate layer over the first electrode layer; and forming a second electrode layer over the intermediate layer, the second electrode layer conformal to the intermediate layer, wherein forming the intermediate layer includes: forming a solid-state electrolyte layer partially conformal to the first electrode layer; and forming a dielectric layer conformal to the first electrode layer.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: November 21, 2023
    Assignees: MURATA MANUFACTURING CO., LTD., COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Valentin Sallaz, Frédéric Voiron, Sami Oukassi
  • Patent number: 11797737
    Abstract: This disclosure describes a method for finding equivalent classes of hard defects in a stacked MOSFET array. The method includes identifying the stacked MOSFET array in a circuit netlist. The stacked MOSFET array includes standard MOSFETs sharing gate and bulk terminals. The method further includes determining electrical defects for the standard MOSFETs, grouping the electrical defects into at least one intermediate equivalent defect class based on a topological equivalence of the electrical defects, grouping the electrical defects in the at least one intermediate equivalent defect class into at least one final equivalent defect class based on an electrical equivalence of the electrical defects, performing a defect simulation on an electrical defect in the at least one final equivalent defect class, and attributing a result of the defect simulation on the electrical defect to additional electrical defects in the final equivalent defect class.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: October 24, 2023
    Assignee: Synopsys, Inc.
    Inventors: Mayukh Bhattacharya, Michal Jerzy Rewienski, Shan Yuan, Michael Durr, Chih Ping Antony Fan
  • Patent number: 11769792
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Patent number: 11756991
    Abstract: A semiconductor device has: a semiconductor substrate; a trench that extends from a first surface of the semiconductor substrate towards an interior of the semiconductor substrate, and that has a recess/protrusion structure on a side wall surface thereof; a semiconductor film that is formed so as to cover the side wall surface of the trench, be continuous with the side wall surface, and extend onto the first surface of the semiconductor substrate; an opposite electrode having a first portion that is provided at a position opposing the semiconductor substrate while sandwiching the semiconductor film therebetween, and that extends on the first surface of the semiconductor substrate, and a second portion that is continuous with the first portion and extends so as to fill the trench; and an insulating film that insulates the semiconductor film from the opposite electrode.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: September 12, 2023
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Hiroshi Shibata
  • Patent number: 11737282
    Abstract: A semiconductor storage device and an electronic device that include a ferroelectric capacitor having a more optimized structure, as a memory cell are provided. A semiconductor storage device includes a field-effect transistor provided in an active region of a semiconductor substrate, a ferroelectric capacitor including a first capacitor electrode and a second capacitor electrode sandwiching a ferroelectric film, the first capacitor electrode being electrically connected to one of a source or a drain of the field-effect transistor, a source line electrically connected to the second capacitor electrode of the ferroelectric capacitor, and a bit line electrically connected to another one of the source or the drain of the field-effect transistor, in which a gate electrode of the field-effect transistor extends in a first direction across the active region, and the source line and the bit line extend in a second direction orthogonal to the first direction.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 22, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Masanori Tsukamoto
  • Patent number: 11721801
    Abstract: A silicon-based electrode forms an interface with a layer pair being: 1. a thin, semi-dielectric layer made of a lithium (Li) compound, e.g. lithium fluoride, LiF, disposed on and adheres to the electrode surface of the silicon-based electrode and 2. an molten-ion conductive layer of a lithium containing salt (lithium salt layer) disposed on the semi-dielectric layer. One or more device layers can be disposed on the layer pair to make devices such as energy storage devices, like batteries. The interface has a low resistivity that reduces the energy losses and generated heat of the devices.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: August 8, 2023
    Assignee: International Business Machines Corporation, Armonk
    Inventors: John Collins, Teodor Krassimirov Todorov, Ali Afzali-Ardakani, Joel P. de Souza, Devendra K. Sadana
  • Patent number: 11721646
    Abstract: An ultralong time constant time measurement device includes elementary capacitive elements that are connected in series. Each elementary capacitive element is formed by a stack of a first conductive region, a dielectric layer having a thickness suited for allowing charge to flow by direct tunnelling effect, and a second conductive region. The first conductive region is housed in a trench extending from a front face of a semiconductor substrate down into the semiconductor substrate. The dielectric layer rests on the first face of the semiconductor substrate and in particular on a portion of the first conductive region in the trench. The second conductive region rests on the dielectric layer.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: August 8, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Abderrezak Marzaki, Pascal Fornara
  • Patent number: 11695072
    Abstract: Some embodiments include an integrated assembly having first and second pillars of semiconductor material laterally offset from one another. The pillars have source/drain regions and channel regions vertically offset from the source/drain regions. Gating structures pass across the channel regions, and extend along a first direction. An insulative structure is over regions of the first and second pillars, and extends along a second direction which is crosses the first direction. Bottom electrodes are coupled with the source/drain regions. Leaker-device-structures extend upwardly from the bottom electrodes. Ferroelectric-insulative-material is laterally adjacent to the leaker-device-structures and over the regions of the bottom electrodes. Top-electrode-material is over the ferroelectric-insulative-material and is directly against the leaker-device-structures. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: July 4, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Marcello Mariani, Giorgio Servalli
  • Patent number: 11610893
    Abstract: A method for forming a semiconductor device is disclosed. A substrate having a semiconductor substrate, an insulator layer on the semiconductor substrate, and a silicon device layer on the insulator layer is provided. At least one capacitor cavity with corrugated sidewall surface is formed within the insulator layer between the semiconductor substrate and the silicon device layer. At least one buried capacitor is formed in the at least one capacitor cavity. The at least one buried capacitor comprises inner and outer electrodes with a capacitor dielectric layer therebetween. At least one transistor is formed on the substrate. The at least one transistor comprises a source region, a drain region, a channel region between the source region and the drain region, and a gate over the channel region. The source region is electrically connected to the inner electrode of the at least one buried capacitor.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: March 21, 2023
    Assignee: HeFeChip Corporation Limited
    Inventors: Geeng-Chuan Chern, Liang-Choo Hsia
  • Patent number: 11594597
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a semiconductor device, a polysilicon isolation structure, and a first and second insulator liner. The semiconductor device is disposed on a frontside of a substrate. The polysilicon isolation structure continuously surrounds the semiconductor device and extends from the frontside of the substrate towards a backside of the substrate. The first insulator liner and second insulator liner respectively surround a first outermost sidewall and a second outermost sidewall of the polysilicon isolation structure. The substrate includes a monocrystalline facet arranged between the first and second insulator liners. A top of the monocrystalline facet is above bottommost surfaces of the polysilicon isolation structure, the first insulator liner, and the second insulator liner.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Po-Wei Liu, Yeur-Luen Tu, Yu-Chun Chang
  • Patent number: 11588059
    Abstract: A structural body according to an embodiment includes a conductive substrate. A main surface of the conductive substrate includes a first region and a second region adjacent to the first region and lower in height than the first region. The first region is provided with one or more recesses having a bottom, a position of which is lower than a position of the second region. A surface region of the conductive substrate on a side of the main surface includes a porous structure at a position between the second region and the one or more recesses.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: February 21, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuo Sano, Susumu Obata, Kazuhito Higuchi, Kazuo Shimokawa
  • Patent number: 11545543
    Abstract: Various embodiments of the present disclosure are directed towards a trench capacitor with a trench pattern for yield improvement. The trench capacitor is on a substrate and comprises a plurality of capacitor segments. The capacitor segments extend into the substrate according to the trench pattern and are spaced with a pitch on an axis. The plurality of capacitor segments comprises an edge capacitor segment at an edge of the trench capacitor and a center capacitor segment at a center of the trench capacitor. The edge capacitor segment has a greater width than the center capacitor segment and/or the pitch is greater at the edge capacitor segment than at the center capacitor segment. The greater width may facilitate stress absorption and the greater pitch may increase substrate rigidity at the edge of the trench capacitor where thermal expansion stress is greatest, thereby reducing substrate bending and trench burnout for yield improvements.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Sheng Huang, Yi-Chen Chen
  • Patent number: 11538900
    Abstract: A semiconductor device includes a landing pad and a capacitor disposed on and electrically connected to the landing pad. The capacitor includes a cylindrical bottom electrode, a dielectric layer and a top electrode. The cylindrical bottom electrode is disposed on an in contact with the landing pads, wherein an inner surface the cylindrical bottom electrode includes a plurality of protruding portions, and an outer surface of the cylindrical bottom electrode includes a plurality of concaved portions. The dielectric layer is conformally disposed on the inner surface and the outer surface of the cylindrical bottom electrode, and covering the protruding portions and the concaved portions. The top electrode is conformally disposed on the dielectric layer over the inner surface and the outer surface of the cylindrical bottom electrode.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: December 27, 2022
    Assignee: Winbond Electronics Corp.
    Inventor: Hiroyuki Takaba
  • Patent number: 11488957
    Abstract: The present disclosure provides a semiconductor structure having a memory structure and a method for manufacturing the semiconductor structure. The semiconductor structure includes a first layer, a second layer over the first layer, a third layer over the second layer, and a trench capacitor. The trench capacitor is disposed in a trench penetrating the first layer, the second layer, and the third layer. The trench capacitor includes a bottom metal layer, a middle insulating layer, and a top metal layer. The bottom metal layer covers a side wall of the first layer, a side wall of the second layer, and a first portion of a side wall of the third layer. The middle insulating layer covers the bottom metal layer and a second portion of the side wall of the third layer. The top metal layer covers the middle insulating layer.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: November 1, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Li-Han Lin, Jen-I Lai, Chun-Heng Wu
  • Patent number: 11469295
    Abstract: A system on a chip (SOC) device includes a substrate, processing circuitry formed on the substrate, and noise reduction circuitry formed on the processing circuitry. The noise reduction circuitry is configured to reduce noise caused by variations in current consumed by the processing circuitry. The noise reduction circuitry includes a decoupling capacitor, which includes (i) two or more first layers, (ii) one or more second layers interleaved between the first layers, (iii) dielectric layers formed between adjacent first and second layers and configured to electrically isolate between the adjacent first and second layers, (iv) a first contact, which is electrically connected to the first layers so as to form a first electrode of the decoupling capacitor, and (v) a second contact, which is electrically connected to the second layers so as to form a second electrode of the decoupling capacitor.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 11, 2022
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Runzi Chang, Huahung Kao
  • Patent number: 11430512
    Abstract: A memory device is provided, which may include a first electrode, a memory layer stack including at least one semiconducting metal oxide layer and at least one hydrogen-containing metal layer, and a second electrode. A semiconductor device is provided, which may include a semiconducting metal oxide layer containing a source region, a drain region, and a channel region, a hydrogen-containing metal layer located on a surface of the channel region, and a gate electrode located on the hydrogen-containing metal layer. Each hydrogen-containing metal layer may include at least one metal selected from platinum, iridium, osmium, and ruthenium at an atomic percentage that is at least 90%, and may include hydrogen atoms at an atomic percentage in a range from 0.001% to 10%. Hydrogen atoms may be reversibly impregnated into a respective semiconducting metal oxide layer to change resistivity and to encode a memory bit.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Marcus Johannes Henricus Van Dal, Gerben Doornbos, Georgios Vellianitis, Blandine Duriez, Mauricio Manfrini
  • Patent number: 11121207
    Abstract: A method for forming trench capacitors includes forming a silicon nitride layer over a first region of a semiconductor surface doped a first type and over a second region doped a second type. A patterned photoresist layer is directly formed on the silicon nitride layer. An etch forms a plurality of deep trenches (DTs) within the first region. A liner oxide is formed that lines the DTs. The silicon nitride layer is etched forming an opening through the silicon nitride layer that is at least as large in area as the area of an opening in the semiconductor surface of the DT below the silicon nitride layer. The liner oxide is removed, a dielectric layer(s) on a surface of the DTs is formed, a top plate material layer is deposited to fill the DTs, and the top plate material layer is removed beyond the DT to form a top plate.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: September 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Abbas Ali, Sopa Chevacharoenkul, Jarvis Benjamin Jacobs
  • Patent number: 10720499
    Abstract: A semiconductor device includes a substrate including a semiconductor surface layer. A field plate (FP) includes a trench in the semiconductor surface layer filled with a single polysilicon layer positioned on at least one side of a power metal-oxide-semiconductor field effect transistor (power MOSFET). The power MOSFET includes a dielectric liner lining a sidewall of the trench under the polysilicon layer including a second dielectric liner on a first dielectric liner. An upper portion of the dielectric liner has a lower dielectric thickness as compared to a dielectric thickness on its lower portion. The single polysilicon layer extends continuously over the dielectric liner along both the lower portion and the upper portion. The power MOSFET includes a drain including a drain contact below a vertical drift region in the semiconductor surface layer, and a gate, body and a source above the vertical drift region.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ya ping Chen, Hong Yang, Peng Li, Seetharaman Sridhar, Yunlong Liu, Rui Liu
  • Patent number: 10532169
    Abstract: The invention relates to a small, low-noise side channel compressor for producing a defined volumetric flow, such as is needed in particular for devices for ventilation therapy. This is achieved by means of a new type of shape of the blade chambers (24) in the impeller (12) and the blade chamber walls (29), which separate the blade chambers and become thicker toward the circumference of the impeller, supported by a high-speed drive and a large number of blade chambers (24) at a small impeller diameter.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 14, 2020
    Assignee: TNI MEDICAL AG
    Inventors: Dietmar Eberhard, Ewald Anger
  • Patent number: 10535676
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a plurality of upper electrodes separated from a semiconductor substrate by a first dielectric layer. A lower electrode is laterally disposed between the plurality of upper electrodes and between sidewalls of the semiconductor substrate. A second dielectric layer lines opposing sidewalls and a lower surface of the lower electrode. The second dielectric layer laterally separates the lower electrode from the plurality of upper electrodes and from the sidewalls of the semiconductor substrate.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Chen Chen, Yu-Hsiung Wang, Han-Yu Chen
  • Patent number: 10205032
    Abstract: One or more embodiments relate to a method of forming a semiconductor structure, comprising: providing a semiconductor substrate; forming an opening within the substrate; forming a conductive layer within the opening; and forming a semiconductor layer over the conductive layer.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 12, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventor: Thoralf Kautzsch
  • Patent number: 10199276
    Abstract: Fabrication of an integrated circuit comprising: at least one first transistor made at least partially in a first semiconducting layer, at least one second transistor made at least partially in a second semiconducting layer formed above the first semiconducting layer, an insulating layer formed between the first transistor and the second transistor, one or several connection elements passing through the insulating layer between the first and the second transistor, at least one connection element being connected to the first and/or the second transistor and being based on a metal-semiconductor alloy.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 5, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Claire Fenouillet-Beranger, Fabrice Nemouchi
  • Patent number: 10157780
    Abstract: A method of making a device includes forming an opening in a dielectric layer to expose a conductive region in a substrate. The method further includes depositing a conformal layer of dopant material along sidewalls of the opening and along a top surface of the dielectric layer. The method further includes diffusing the dopant from the conformal layer of dopant material into the dielectric layer using an anneal process.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chii-Ming Wu, Cheng-Ta Wu
  • Patent number: 10134830
    Abstract: A deep trench capacitor and a method for providing the same in a semiconductor process are disclosed. The method includes forming a plurality of deep trenches in a first region of a semiconductor wafer, the first region having well doping of a first type. A dielectric layer is formed on a surface of the plurality of deep trenches and a doped polysilicon layer is deposited to fill the plurality of deep trenches, with the doped polysilicon being doped with a dopant of a second type. Shallow trench isolation is formed overlying the dielectric layer at an intersection of the dielectric layer with the surface of the semiconductor wafer.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Hideaki Kawahara, Sameer P. Pendharkar
  • Patent number: 9728506
    Abstract: Through-substrate vias (TSVs) include a strain engineering layer configured to minimize or otherwise control local stress fields. The strain engineering layer can be separate from and in addition to a TSV sidewall isolation layer that is deposited along the via sidewall surface for the purpose of electric isolation. For instance, the strain engineering layer can be a partial depth layer that extends over only a portion of the TSV sidewall.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: August 8, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mukta G. Farooq, Joyce C. Liu, Jennifer A. Oakley
  • Patent number: 9576946
    Abstract: A method of manufacturing a semiconductor device, comprising: providing a substrate; forming a first trough structure, which comprises at least a first sidewall, on the substrate; forming a first doping layer on the first sidewall; covering the first doping layer and a part of a surface of the substrate by a photoresist; forming a second trough structure, which comprises at least a second sidewall, on a part of the substrate which is not covered by the photoresist; removing the photoresist; forming an insulation layer on the substrate, the first trough structure, and the second trough structure; forming a conductive layer on the substrate, the first trough structure, and the second trough structure; and removing parts of the insulation layer and the conductive layer outside the first trough structure and the second trough structure to expose a surface of the first doping layer at the opening of the first trough structure.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: February 21, 2017
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Hsiao-Tsung Yen, Yuh-Sheng Jean, Ta-Hsun Yeh
  • Patent number: 9564444
    Abstract: At least one dielectric pad layer is formed on a semiconductor-on-insulator (SOI) substrate. A deep trench is formed in the SOI substrate, and a combination of an outer electrode, a node dielectric, and an inner electrode are formed such that the top surface of the inner electrode is recessed below the top surface of a buried insulator layer of the SOI substrate. Selective epitaxy is performed to fill a cavity overlying the inner electrode with an epitaxial semiconductor material portion. A top semiconductor material layer and the epitaxial semiconductor material portion are patterned to form a fin structure including a portion of the top semiconductor material layer and a portion of the epitaxial semiconductor material portion. The epitaxial semiconductor material portion functions as a conductive strap structure between the inner electrode and a semiconductor device to be formed on the fin structure.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Babar A. Khan, Dae-Gyu Park, Xinhui Wang
  • Patent number: 9472690
    Abstract: The present disclosure provides a deep trench capacitor device. A first capacitor electrode is made up of a doped region of semiconductor substrate in which two or more trenches are arranged. A second capacitor electrode is made up of a continuous body of conductive material. The continuous body of conductive material includes a lower body portion filling the two or more trenches and an upper body portion extending continuously over the lower body portion. The upper body portion extends upwardly out of the trenches by a non-zero distance. A capacitor dielectric liner is arranged in the two or more trenches to separate the first and second capacitor electrodes. The capacitor dielectric liner extends continuously out of the two or more trenches along outer sidewalls of the upper body portion.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: October 18, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wu-An Weng, Chen-Chien Chang
  • Patent number: 9391116
    Abstract: A junction type field effect transistor (JFET) in a substrate includes channel and source regions of a first conductivity type and first through fourth gate regions of a second conductivity type. The first and second gate regions are disposed in a direction along a surface of the substrate. The third and fourth gate regions are disposed in the direction. The first and third gate regions are disposed in a depth direction. The first gate region is disposed between the surface and the third gate region. The second and fourth gate regions are disposed in the depth direction. The second gate region is disposed between the surface and the fourth gate region. The channel region includes a first region disposed between the first and third gate regions and a second region disposed between the second and fourth gate regions. The source region is disposed between the first and second gate regions.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 12, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mahito Shinohara, Hideomi Kumano
  • Patent number: 9312124
    Abstract: A method of fabricating a semiconductor device may include: forming a field region defining an active region in a substrate; forming a gate trench in which the active and field regions are partially exposed; forming a gate insulating layer on a surface of the active region; conformally forming a gate barrier layer including metal on the gate insulating layer and partially exposed field region; forming a gate electrode layer including metal on the gate barrier layer; and/or forming a gate capping layer. Forming the gate insulating layer may include forming a first gate oxide layer by primarily oxidizing the active region's surface, and forming a second gate oxide layer between the active region's surface and the first gate oxide layer by secondarily oxidizing the active region's surface. The gate capping layer may be in contact with the gate insulating layer, gate barrier layer, and/or gate electrode layer.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: April 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su Park, Gun-Joong Lee, Young-Dong Lee, Sang-Chul Han, Joo-Byoung Yoon
  • Patent number: 9012967
    Abstract: Embedded memories. The devices include a substrate, a first dielectric layer, a second dielectric layer, a third dielectric layer, and a plurality of capacitors. The substrate comprises transistors. The first dielectric layer, embedding first and second conductive plugs electrically connecting the transistors therein, overlies the substrate. The second dielectric layer, comprising a plurality of capacitor openings exposing the first conductive plugs, overlies the first dielectric layer. The capacitors comprise a plurality of bottom plates, respectively disposed in the capacitor openings, electrically connecting the first conductive plugs, a plurality of capacitor dielectric layers respectively overlying the bottom plates, and a top plate, comprising a top plate opening, overlying the capacitor dielectric layers. The top plate opening exposes the second dielectric layer, and the top plate is shared by the capacitors.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ching Lin, Chun-Yao Chen, Chen-Jong Wang, Shou-Gwo Wuu, Chung S. Wang, Chien-Hua Huang, Kun-Lung Chen, Ping Yang
  • Patent number: 8993396
    Abstract: A method for fabricating a capacitor includes forming a mold structure over a substrate, wherein the mold structure has a plurality of open parts and has a mold layer stacked with a support layer; forming cylinder type lower electrodes in the open parts; forming a first upper electrode over an entire surface of a structure including the cylinder type lower electrodes to fill the cylinder type lower electrodes; defining a through hole that passes through portions of the first upper electrode and the support layer; removing the mold layer through the through hole and exposing the cylinder type lower electrodes; forming a second upper electrode to fill the through hole and spaces between the cylinder type lower electrodes; and forming a third upper electrode to connect the second upper electrode and the first upper electrode with each other.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: SK Hynix Inc.
    Inventors: Jong-Kook Park, Yong-Tae Cho
  • Patent number: 8927384
    Abstract: A method of fabricating a semiconductor memory device includes forming a hard mask pattern using a damascene method on a lower mold layer stacked on a substrate and etching the lower mold layer using the hard mask pattern as an etch mask to define a protrusion under the hard mask pattern. A support pattern is formed on a top surface of the etched lower mold layer, the top surface of the etched lower mold layer being located at a lower level than a top surface of the protrusion. A lower electrode supported by the support pattern is formed.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Kyu Kim, Sangsup Jeong, Kukhan Yoon, Junsoo Lee, SungII Cho, Yong-Joon Choi
  • Patent number: 8916435
    Abstract: A memory device, and a method of forming a memory device, is provided that includes a capacitor with a lower electrode of a metal semiconductor alloy. In one embodiment, the memory device includes a trench present in a semiconductor substrate including a semiconductor on insulating (SOI) layer on top of a buried dielectric layer, wherein the buried dielectric layer is on top of a base semiconductor layer. A capacitor is present in the trench, wherein the capacitor includes a lower electrode of a metal semiconductor alloy having an upper edge that is self-aligned to the upper surface of the base semiconductor layer, a high-k dielectric node layer, and an upper electrode of a metal. The memory device further includes a pass transistor in electrical communication with the capacitor.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Damon B. Farmer, Michael P. Chudzik, Keith Kwong Hon Wong, Jian Yu, Zhen Zhang, Chengwen Pei
  • Patent number: 8895385
    Abstract: A method of forming a semiconductor structure includes forming a through-substrate-via (TSV) structure in a substrate. The method includes forming a first etch stop layer over the TSV structure. The method further includes forming a first dielectric layer in contact with the first etch stop layer. The method still further includes forming a second etch stop layer in contact with the first dielectric layer. The method also includes forming a metal-insulator-metal (MIM) capacitor structure in contact with the second etch stop layer. The method further includes forming a first conductive structure through the first etch stop layer and the first dielectric layer, wherein the first conductive structure is electrically coupled with the TSV structure and the TSV structure is substantially wider than the first conductive structure.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hua Chang, Sung-Hui Huang, Der-Chyang Yeh
  • Patent number: 8809929
    Abstract: Memory devices comprise a lower layer that extends across a cell array region and across a peripheral region and that includes a flat outer surface from the cell array region to the peripheral region. A signal transfer conductor layer extends in the cell array region beneath the flat outer surface of the lower layer and extends in the peripheral region above the flat outer surface of the lower layer. An insulating layer is provided on the lower layer, including a flat outer surface from the cell array region to the peripheral region. A flat stopper layer is provided on the flat outer surface of the insulating layer and extending across the cell array region and the peripheral region. Related methods are also provided.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wonmo Park, Hyunchul Kim, Hyodong Ban, Hyunju Lee
  • Patent number: 8785997
    Abstract: A semiconductor device includes a semiconductor body including a first surface. The semiconductor device further includes a continuous silicate glass structure over the first surface. A first part of the continuous glass structure over an active area of the semiconductor body includes a first composition of dopants that differs from a second composition of dopants in a second part of the continuous glass structure over an area of the semiconductor body outside of the active area.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 22, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Susiti, Markus Zundel, Reinhard Ploss
  • Patent number: 8765547
    Abstract: An on-chip decoupling capacitor is disclosed. One or more carbon nanotubes are coupled to a first electrode of the capacitor. A dielectric skin is formed on the one or more carbon nanotubes. A metal coating is formed on the dielectric skin. The dielectric skin is configured to electrically isolate the one or more carbon nanotubes from the metal coating.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Shu-Jen Han, George S. Tulevski
  • Patent number: 8759192
    Abstract: A wiring trench is formed in an interlayer insulating film partway in the depth direction of the interlayer insulating film. A via hole is formed extending from the bottom of the wiring trench to the bottom of the interlayer insulating film. A capacitor recess is formed reaching the bottom of the interlayer insulating film. A conductive member is embedded in the wiring trench and via hole. A capacitor is embedded in the capacitor recess, including a lower electrode, a capacitor dielectric film and an upper electrode. The lower electrode is made of the same material as that of the conductive member and disposed along the bottom and side surface of the capacitor recess. A concave portion is formed on an upper surface of the lower electrode, and the capacitor dielectric film covers an inner surface of the concave portion. The upper electrode is embedded in the concave portion.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Fujitsu Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8653596
    Abstract: An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8587047
    Abstract: A capacitor structure for a pumping circuit includes a substrate, a U-shaped bottom electrode in the substrate, a T-shaped top electrode in the substrate and a dielectric layer disposed between the U-shaped bottom and T-shaped top electrode. The contact area of the capacitor structure between the U-shaped bottom and T-shaped top electrode is extended by means of the cubic engagement of the U-shaped bottom electrode and the T-shaped top electrode.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 19, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Yu-Wei Ting, Shing-Hwa Renn, Yu-Teh Chiang, Chung-Ren Li, Tieh-Chiang Wu