Charge Trapping Insulator Nonvolatile Memory Structures (epo) Patents (Class 257/E21.679)
  • Patent number: 8309417
    Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8298899
    Abstract: Exposed are a semiconductor device and method of fabricating the same. The device includes an insulation film that is disposed between an active pattern and a substrate, which provides various improvements. This structure enhances the efficiency of high integration and offers an advanced structure for semiconductor devices.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 30, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Woo Oh, Sung-Hwan Kim, Dong-Gun Park
  • Patent number: 8288227
    Abstract: A reduction of a resistance of a bit line of a memory cell array and a reduction of a forming area of the memory cell array are planed. Respective bit lines running at right angles to a word line are composed of a diffusion bit line formed in a semiconductor substrate and a linear metal bit line on an upper side of the diffusion bit line. The diffusion bit line is formed in a linear pattern on a lower side of the metal bit line in the same manner, and the metal bit line is connected with the diffusion bit line between the word lines. An interlayer insulating film is formed on the memory cell array, and the metal bit line is formed with being buried in it.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 16, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Satoshi Shimizu
  • Patent number: 8278695
    Abstract: A nonvolatile semiconductor memory device includes a substrate, and a plurality of memory strings, the memory string including a first selection transistor including a first pillar shaped semiconductor formed perpendicular to the substrate, a first gate insulating film formed around the first pillar shaped semiconductor, and a first gate electrode formed around the first gate insulating film, and a plurality of memory cells including a second pillar shaped semiconductor formed on the first pillar shaped semiconductor, the diameter of the first pillar shaped semiconductor being larger than the diameter of the second pillar shaped semiconductor at the part where the second pillar shaped semiconductor is connected to the first pillar shaped semiconductor, a first insulating film formed around the second pillar shaped semiconductor, a charge storage layer formed around the first insulating film, a second insulating film formed around the charge storage layer, and first to nth electrodes formed around the second i
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Ryota Katsumata, Hiroyasu Tanaka, Hideaki Aochi, Masaru Kito
  • Patent number: 8273628
    Abstract: A semiconductor device manufacturing method includes: alternately stacking a plurality of insulating layers and electrode layers; forming a hole penetrating through a multilayer body of the insulating layers and the electrode layers; forming a conductive film on an inner wall of the hole; anisotropically etching the conductive film to selectively leave the conductive film on a sidewall of the hole; altering the conductive film into an insulator by heat treatment; and removing the insulator covering the electrode layers to expose the electrode layers into the hole.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Katsunori Yahashi
  • Patent number: 8274108
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked body including a plurality of insulating films alternately stacked with a plurality of electrode films, the electrode films being divided to form a plurality of control gate electrodes aligned in a first direction; a plurality of semiconductor pillars aligned in a stacking direction of the stacked body, the semiconductor pillars being arranged in a matrix configuration along the first direction and a second direction intersecting the first direction to pierce the control gate electrodes; and a connection member connecting a lower end portion of one of the semiconductor pillars to a lower end portion of one other of the semiconductor pillars, an upper end portion of the one of the semiconductor pillars being connected to a source line, an upper end portion of the one other of the semiconductor pillars being connected to a bit line.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 8263458
    Abstract: Embodiments of the present technology are directed toward charge trapping region process margin engineering for charge trapping field effect transistor. The techniques include forming a plurality of shallow trench isolation regions on a substrate, wherein the tops of the shallow trench isolation regions extend above the substrate by a given amount. A portion of the substrate is oxidized to form a tunneling dielectric region. A first set of one or more nitride layers are deposited on the tunneling dielectric region and shallow trench isolation regions, wherein a thickness of the first set of nitride layers is approximately half of the given amount that the tops of the shallow trench isolation regions extend above the substrate. A portion of the first set of nitride layers is etched back to the tops of the trench isolation regions. A second set of one or more nitride layers is deposited on the etched back first set of nitride layers.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 11, 2012
    Assignee: Spansion LLC
    Inventors: Tung-Sheng Chen, Shenqing Fang
  • Patent number: 8263465
    Abstract: Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: September 11, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai, Tuan D. Pham
  • Patent number: 8253187
    Abstract: A non-volatile semiconductor storage device 10 has a plurality of memory strings 100 with a plurality of electrically rewritable memory transistors MTr1-MTr4 connected in series. The memory string 100 includes a columnar semiconductor CLmn extending in a direction perpendicular to a substrate, a plurality of charge accumulation layers formed around the columnar semiconductor CLmn via insulating films, and selection gate lines on the drain side SGD contacting the columnar semiconductor to configure transistors. The selection gate lines on the drain side SGD have lower selection gate lines on the drain side SGDd, each of which is arranged with an interval with a certain pitch, and upper selection gate lines on the drain side SGDu located on a higher layer than the lower selection gate lines on the drain side SGDd, each of which is arranged on gaps between the lower selection gate lines on the drain side SGDd.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kido, Hideaki Aochi, Mitsuru Sato, Yasuyuki Matsuoka
  • Patent number: 8252654
    Abstract: In a method for manufacturing a memory cell, a substrate is provided. A doped region with a first conductive type is formed in the substrate near a surface of the substrate. A portion of the substrate is removed to define a plurality of fin structures in the substrate. A plurality of isolation structures is formed among the fin structures. A surface of the isolation structures is lower than a surface of the fin structures. A gate structure is formed over the substrate and straddles the fin structure. The gate structure includes a gate straddling the fin structure and a charge storage structure located between the fin structure and the gate. A source/drain region is formed with a second conductive type in the fin structure exposed by the gate structure, and the first conductive type is different from the second conductive type.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: August 28, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Hang-Ting Lue
  • Patent number: 8247860
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a stacked body with a plurality of dielectric films and electrode films alternately stacked therein, the stacked body being provided on the substrate and having a step in its end portion for each of the electrode films; an interlayer dielectric film burying the end portion of the stacked body; a plurality of semiconductor pillars extending in the stacking direction of the stacked body and penetrating through a center portion of the stacked body; a charge storage layer provided between one of the electrode films and one of the semiconductor pillars; and a plug buried in the interlayer dielectric film and connected to a portion of each of the electrode films constituting the step, a portion of each of the dielectric films in the center portion having a larger thickness than a portion of each of the dielectric films in the end portion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Tadashi Iguchi
  • Patent number: 8222075
    Abstract: A plurality of bit lines s arranged crossing a plurality of first word lines. A first diode is arranged at each cross point of the first word lines and the bit lines. A cathode of the first diode is connected to one of the first word lines. A first variable resistance film configuring the first diode is provided between the anodes of the first diodes and the bit lines, and configures a first memory cell together with each of the first diodes, and further, is used in common to the first diodes.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Ito
  • Patent number: 8222122
    Abstract: Provided is a method of forming a nonvolatile memory device. The method may include alternatingly stacking n number of dielectric layers and n number of conductive layers on a substrate, forming a non-photosensitive pattern on the alternatingly stacked dielectric layers and conductive layers, etching the i-th conductive layer and i-th dielectric (2?i?n, i is a natural number indicating a stacking order of the conductive layers and the dielectric layers) by using the non-photosensitive pattern as an etch mask, laterally etching a sidewall of the non-photosensitive pattern and etching the i-th conductive layer, (i?1)-th conductive layer, i-th dielectric layer and (i?1)-th dielectric layer by using the etched non-photosensitive pattern as an etch mask.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: July 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seungmok Shin, Soodoo Chae, JinGyun Kim
  • Patent number: 8222106
    Abstract: A nonvolatile semiconductor memory device includes a semiconductor substrate, a plurality of first element isolation insulating films formed on a surface of the semiconductor substrate corresponding to a first cell array region into a band shape, a plurality of second element isolation insulating films formed on a surface of the semiconductor substrate corresponding to a second cell array region into a band shape. Each first element isolation insulating film has a level from a surface of the semiconductor substrate, the first charge storage layer has a level from the surface of the semiconductor substrate, and each second element isolation insulating film has a level from the surface of the semiconductor substrate, the level of each first element isolation insulating film being lower than the level of the first charge storage layer and higher than the level of each second element isolation insulating film.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroaki Hazama
  • Patent number: 8216900
    Abstract: Provided are a nonvolatile memory device, a method of manufacturing the nonvolatile memory device, and a method of manufacturing a flat panel display device provided therein with the nonvolatile memory device. According to an embodiment, an amorphous silicon layer is formed on a substrate, and then annealed by using an Excimer laser to form a crystallized silicon layer. A nitrogen plasma treatment is performed for the crystallized silicon layer to planarize an upper surface of the crystallized silicon layer. An ONO layer is formed on the nitrogen plasma-treated crystallized silicon layer. A metal layer is formed on the ONO layer. The metal layer, the ONO layer and the nitrogen plasma-treated crystallized silicon layer are patterned.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 10, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Dae Young Kim
  • Publication number: 20120147675
    Abstract: A NAND string of memory cells has stacks of split word lines (gates), with resulting increased bit density. Variants add a top assist gate to the NAND string, a bottom assist gate to the NAND string, or both a top assist gate and a bottom assist gate to the NAND string.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Yi-Hsuan Hsiao
  • Patent number: 8198156
    Abstract: A non-volatile memory device includes a peripheral circuit region and a cell region. A method for fabricating the non-volatile memory device includes forming gate patterns over a substrate, the gate pattern including a tunnel insulation layer, a floating gate electrode, a charge blocking layer and a control gate electrode, and removing the control gate electrode and the charge blocking layer of the gate pattern formed in the peripheral circuit region.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: June 12, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Nam-Jae Lee
  • Patent number: 8178405
    Abstract: A memory cell device has a bottom electrode and a top electrode, a plug of memory material in contact with the bottom electrode, and a cup-shaped conductive member having a rim that contacts the top electrode and an opening in the bottom that contacts the memory material. Accordingly, the conductive path in the memory cells passes from the top electrode through the conductive cup-shaped member, and through the plug of phase change material to the bottom electrode.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: May 15, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, ChiaHua Ho, Kuang Yeu Hsieh
  • Patent number: 8178407
    Abstract: A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi-level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: May 15, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Ming-Hsiu Lee, Chao-I Wu, Ming-Chang Kuo
  • Publication number: 20120115292
    Abstract: An embodiment of a method is disclosed to integrate silicon oxide nitride oxide silicon (SONOS) non-volatile memory (NVM) into a conventional complementary metal oxide semiconductor (CMOS) semiconductor foundry process flow. An embodiment of the method only adds a few additional steps to a standard CMOS foundry process flow and makes minor changes to the rest of the baseline CMOS foundry process flow to form a new process module that includes both CMOS devices and an embedded SONOS NVM.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Inventors: Joseph Terence Smith, A. Dennis Adams, Patrick Bruckner Shea
  • Patent number: 8173505
    Abstract: A method includes forming a first layer of gate material over a semiconductor substrate; forming a hard mask layer over the first layer; forming an opening; forming a charge storage layer over the hard mask layer and within the opening; forming a second layer of gate material over the charge storage layer; removing a portion of the second layer and a portion of the charge storage layer which overlie the hard mask layer, wherein a second portion of the second layer remains within the opening; forming a patterned masking layer over the hard mask layer and over the second portion, wherein the patterned masking layer defines both a first and second bitcell; and forming the first and second bitcell using the patterned masking layer, wherein each of the first and second bitcell comprises a select gate made from the first layer and a control gate made from the second layer.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 8, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Matthew T. Herrick, Ko-Min Chang, Gowrishankar L. Chindalore, Sung-Taeg Kang
  • Patent number: 8158470
    Abstract: A thin film transistor substrate and a method of manufacturing the thin film transistor substrate comprises forming a gate line and a data line intersecting each other with a gate insulating layer interposed and defining a pixel area on the substrate, a thin film transistor electrically connected to the gate line and the data line, and a stepped-structure occurring pattern overlapping at least one of the gate line and the data line; forming a passivation layer having a stepped-structure portion formed by the stepped-structure occurring pattern on the substrate; forming a photoresist pattern having a second stepped-structure portion corresponding to the stepped-structure portion on the passivation layer; patterning the passivation layer using the photoresist pattern as a mask; forming a transparent conductive layer on the substrate; and removing the photoresist pattern where the transparent conductive layer is covered by a stripper penetrating through the stepped-structure portion of the photoresist pattern an
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: April 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Hyun Choung, Hong Sick Park, Sun Young Hong, Bong Kyun Kim, Bong Kyu Shin, Won Suk Shin, Byeong Jin Lee
  • Patent number: 8153488
    Abstract: Manufacturing a nonvolatile storage device including: stacking a first electrode film forming a first electrode and a first storage unit film forming a first storage unit on a substrate; processing the first electrode film and the first storage unit film into a strip shape; burying a sacrifice layer between the processed first electrode films and between the processed first storage unit films; forming a second electrode film forming a second electrode on the first storage unit film and the sacrifice layer; forming a mask layer on the second electrode film; processing the second electrode film into a strip shape using the mask layer; removing a portion of the first storage unit film exposed from the sacrifice layer using the mask layer processing the first storage unit film into a columnar shape, removing the sacrifice layer exposing the first storage unit film; and removing the exposed first storage unit film.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhito Nishitani, Eiji Ito, Machiko Tsukiji, Hiroyuki Fukumizu, Naoya Hayamizu, Katsuhiro Sato
  • Patent number: 8153485
    Abstract: A method for fabricating a memory is described. Word lines are provided in a first direction. Bit lines are provided in a second direction. A top electrode is formed connecting to a corresponding word line. A bottom electrode is formed connecting to a corresponding bit line. A resistive layer is formed on the bottom electrode. At least two separate L-shaped liners are formed, wherein each L-shaped liner has variable resistive materials on both ends of the L-shaped liner and each L-shaped liner is coupled between the top electrode and the resistive layer.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 10, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Erh-Kun Lai, Chia-Hua Ho, Kuang-Yeu Hsieh
  • Patent number: 8143665
    Abstract: The invention provides a memory array. The memory array comprises a substrate, a plurality of word lines, a charge trapping structure, a plurality of trench channels and a plurality of bit lines. The word lines are located over the substrate and the word lines are parallel to each other. The charge trapping structure covers a surface of each of the word lines. The trench channels are located over the substrate and the word lines and the trench channels are alternatively arranged and each trench channel is separated from the adjacent word lines by the charge trapping structure. The bit lines are located over the word lines and each bit line is across over each of the word lines and each trench channel is electrically coupled to the bit lines.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: March 27, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Jyun-Siang Huang, Wen-Jer Tsai, Tien-Fan Ou
  • Patent number: 8138540
    Abstract: A non-volatile memory. The non-volatile memory comprises a substrate, a conductive layer, a charge storage layer, several first doped regions and several second doped regions. The substrate has a plurality of trenches formed therein. The conductive layer is located over the substrate, wherein the conductive layer fills in the trenches. The charge storage layer is located between the substrate and the conductive layer. The first doped regions are located in the substrate adjacent to both sides of the trenches respectively, wherein the first doped regions between the neighboring trenches are separated from each other. The second doped regions are located in a portion of the substrate under the bottoms of the trenches respectively.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: March 20, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventor: Chao-I Wu
  • Patent number: 8124477
    Abstract: In a non-volatile semiconductor memory device having a MONOS structure, a memory cell section for storing information, and a periphery circuitry section for writing and reading the information with respect to the memory cell section are formed in the surface region of a silicon substrate. A plurality of memory cells is formed in the memory cell section, while a plurality of periphery circuitry transistors are formed also in the periphery circuitry section. Since the periphery circuitry transistor has a structure wherein no electric charge accumulation layer exists, it is possible to prevent from electric charge injection to the periphery circuitry transistor, whereby hot carrier characteristics of the periphery circuitry transistor are improved.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: February 28, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Toshiyuki Orita, Junya Maneki
  • Patent number: 8120089
    Abstract: Provided are nonvolatile memory devices with a three-dimensional structure and methods of fabricating the same. The nonvolatile memory device includes conductive patterns three-dimensionally arranged on a semiconductor substrate, semiconductor patterns that extend from the semiconductor substrate and intersect one-side walls of the conductive patterns, charge storage layers interposed between the semiconductor patterns and one-side walls of the conductive patterns, and seed layer patterns interposed between the charge storage layers and one-side walls of the conductive patterns.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hoo Kim, Daehyuk Kang, Youngok Kim, Sang Won Bae, Boun Yoon, Kuntack Lee
  • Patent number: 8119483
    Abstract: Some embodiments include methods of utilizing polysilazane in forming non-volatile memory cells. The memory cells may be multi-level cells (MLCs). The polysilazane may be converted to silicon nitride, silicon dioxide, or silicon oxynitride with thermal processing and exposure to an ambient that contains one or both of oxygen and nitrogen. The methods may include using the polysilazane in forming a charge trapping layer of a non-volatile memory cell. The methods may alternatively, or additionally include using the polysilazane in forming intergate dielectric material of a non-volatile memory cell. Some embodiments include methods of forming memory cells of a NAND memory array.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 8114732
    Abstract: A method and system for forming a non-volatile memory structure. The method includes providing a semiconductor substrate and forming a gate dielectric layer overlying a surface region of the semiconductor substrate. A polysilicon gate structure is formed overlying the gate dielectric layer. The method subjects the polysilicon gate structure to an oxidizing environment to cause formation of a first silicon oxide layer overlying the polysilicon gate structure and formation of an undercut region underneath the polysilicon gate structure. An aluminum oxide material is formed overlying the polysilicon gate structure filling the undercut region. In a specific embodiment, the aluminum oxide material has a nanocrystalline silicon material sandwiched between a first aluminum oxide layer and a second aluminum oxide layer. The aluminum oxide material is subjected to a selective etching process while maintaining the aluminum oxide material in an insert region in a portion of the undercut region.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Mieno Fumitake
  • Patent number: 8114736
    Abstract: A method for forming an integrated circuit system is provided including forming a memory section having a spacer with a substrate, forming an outer doped region of the memory section in the substrate, forming a barrier metal layer over the spacer, and forming a metal plug over the outer doped region and the barrier metal layer.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: February 14, 2012
    Assignees: Globalfoundries Inc., Spansion LLC
    Inventors: Simon Siu-Sing Chan, Hidehiko Shiraiwa, Kuo-Tung Chang, Angela T. Hui
  • Patent number: 8097531
    Abstract: Manufacturing of a charge trap type memory device can include forming a tunnel insulating layer on a substrate. A charge-trapping layer can be formed on the tunnel insulating layer. A blocking layer can be formed on the charge-trapping layer. Gate electrodes can be formed on the blocking layer and divided by a trench. A portion of the charge-trapping layer aligned with the trench may be converted into a charge-blocking pattern with a vertical side profile by an anisotropic oxidation process.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Geun Park, Jae-Young Ahn, Jun-Kyu Yang, Dong-Woon Shin
  • Publication number: 20120001252
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: SanDisk Corporation
    Inventors: Johann Alsmeier, Vinod Robert Purayath, Henry Chien, George Matamis, Yao-Sheng Lee, James Kai, Yuan Zhang
  • Publication number: 20120001249
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: SanDisk Corporation
    Inventors: Johann Alsmeier, George Samachisa
  • Patent number: 8076201
    Abstract: A method of manufacturing a flash memory device according to an embodiment includes forming a second oxide layer pattern having a mask pattern buried therein on a first nitride layer pattern and a first oxide layer stack on a semiconductor substrate; forming first polysilicon patterns at sidewalls of the buried mask pattern; removing portions of the first oxide layer, the first nitride layer pattern, and the second oxide layer pattern to form a third oxide layer pattern, a second nitride layer pattern, and a fourth oxide layer pattern at lower portions of the first polysilicon patterns and the mask pattern; forming a fifth oxide layer pattern surrounding each of the first polysilicon patterns; forming second polysilicon patterns on sidewalls of the fifth oxide layer pattern; and removing the mask pattern and parts of the third oxide layer pattern and the second nitride layer pattern between the first polysilicon patterns.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 13, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Hee Don Jeong
  • Patent number: 8076198
    Abstract: A method of fabricating a nonvolatile memory device with a three-dimensional structure includes alternately stacking first and second material layers in two or more layers on a semiconductor substrate, forming trenches penetrating the stacked first and second material layers by performing a first etching process, and removing the second material layers exposed in the trenches by performing a second etching process. The first and second material layers are formed of materials that have the same main component but have different impurity contents, respectively.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyosan Lee, Boun Yoon, Kuntack Lee, Donghyun Kim, Daehyuk Kang, Imsoo Park, Youngok Kim, Young-Hoo Kim, Sang Won Bae
  • Patent number: 8076200
    Abstract: A nonvolatile read-only memory having a thin nitrided tunnel insulator surface with a charge blocking insulator over the nitrided surface is presented. The tunnel insulator may be formed of a metal oxide, a metal oxycarbide, a semiconductor oxide, or oxycarbide. The dielectric structure may be formed by nitridation of a surface of a tunnel insulator using ammonia and deposition of a blocking insulator having a larger band gap than the tunnel insulator. The dielectric structure may form part of a memory device, as well as other devices and systems.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8072025
    Abstract: A first lamination part includes: a charge accumulation layer provided on the respective sidewalls of laminated first conductive layers and accumulating charges; and a first semiconductor layer provided in contact with the fourth insulation layer and formed to extend to the lamination direction. A second lamination part includes a second semiconductor layer provided in contact with the first semiconductor layer. A third lamination part includes: a plurality of first contact layers formed in contact with the respective second lamination part, extending to a first direction perpendicular to the lamination direction, and in line with each other along a second direction perpendicular to the first direction; and a plurality of contact plug layers formed in contact with any one of the first contact layers and extending to the lamination direction. The contact plug layers are arranged at different positions relative to each other in the first direction.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiyohito Nishihara, Fumitaka Arai
  • Patent number: 8072024
    Abstract: A nonvolatile semiconductor memory device with a substrate. A plurality of dielectric films and electrode films are alternately stacked on the substrate and have a through hole penetrating in the stacking direction. A semiconductor pillar is formed inside the through hole. A charge storage layer is provided at least between the semiconductor pillar and the electrode film. At least part of a side surface of a portion of the through hole located in the electrode film is sloped relative to the stacking direction.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Ishikawa, Katsunori Yahashi
  • Patent number: 8063436
    Abstract: Memory cells including a control gate, a charge trapping material, and a charge blocking material between the control gate and the charge trapping material. The charge blocking material is configured to allow for erasure of the memory cell by enhanced F-N tunneling of holes from the control gate to the charge trapping material.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: November 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Arup Bhattacharyya, Kirk D. Prall, Luan C. Tran
  • Patent number: 8058162
    Abstract: A method of manufacturing a nonvolatile semiconductor memory includes: forming an insulator structure on a semiconductor substrate in a first region; forming a first gate insulating film on the semiconductor substrate outside the first region; blanket depositing a first gate material film and etching-back the first gate material film to form a first gate electrode on the first gate insulating film lateral to the insulator structure; removing the insulator structure; blanket forming a second gate insulating film; blanket depositing a second gate material film and etching-back the second gate material film to form a second gate electrode on the second gate insulating film in the first region; and silicidation of upper surfaces of the first and second gate electrodes. Any one of the first and second gate insulating films is a charge trapping film.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Onda
  • Publication number: 20110266604
    Abstract: A nonvolatile memory device includes a plurality of strings each having vertically-stacked active layers over a plurality of word lines, at least one bit line connection unit vertically formed over one end of the word lines and having a stairway shape, and a plurality of bit lines each coupled to each of a plurality of active regions of the bit line connection unit.
    Type: Application
    Filed: December 30, 2010
    Publication date: November 3, 2011
    Inventors: Suk-Goo KIM, Seung-Beck Lee, Jun-Hyuk Lee, Seul-Ki Oh
  • Patent number: 8049269
    Abstract: In a non-volatile memory device, active fin structures extending in a first direction may be formed on a substrate. A tunnel insulating layer may be formed on surfaces of the active fin structures and bottom surfaces of trenches that may be defined by the active fin structures. A charge trapping layer and a blocking layer may be sequentially formed on the tunnel insulating layer. A gate electrode structure may include first portions disposed over top surfaces of the active fin structures and second portions vertically spaced apart from portions of the charge trapping layer that may be disposed over the bottom surfaces of the trenches, and may extend in a second direction substantially perpendicular to the first direction. Thus, lateral electron diffusion may be reduced in the charge trapping layer, and thereby the data retention performance and/or reliability of the non-volatile memory device may be improved.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Hoon Lee, Kyu-Charn Park, Jeong-Dong Choe
  • Patent number: 8044455
    Abstract: A step is provided between a substrate surface of a select gate and a substrate surface of a memory gate. When the substrate surface of the select gate is lower than the substrate surface of the memory gate, electrons in a channel upon writing obliquely flow in the step portion. Even if the electrons obtain the energy required for passing a barrier during the oblique flow, the electron injection does not occur because electrons are away from the substrate surface. The injection can occur only on a drain region side from a position where the electrons reach the substrate surface. As a result, the injection of the electrons into a gap region is suppressed, so that the electron distribution comes close to the hole distribution. Therefore, variation in a threshold value upon information retention is suppressed, and information-retaining characteristics of a memory cell are improved.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 25, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Okuyama, Tsuyoshi Arigane
  • Patent number: 8039345
    Abstract: A method of forming a semiconductor device may include forming a first pattern on a substrate, and forming a first dielectric layer on the first pattern. The first pattern may be between portions of the first dielectric layer and the substrate. A second dielectric layer may be formed on the first dielectric layer, and the first dielectric layer may be between the first pattern and the second dielectric layer. A second pattern may be formed on the second dielectric layer. Portions of the second dielectric layer may be exposed by the second pattern, and the first and second dielectric layers may be between portions of the first and second patterns. The exposed portions of the second dielectric layer may be isotropically etched.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-yub Jeon, Jong-heui Song, Song-yi Yang
  • Patent number: 8026136
    Abstract: Memory cells comprising: a semiconductor substrate having at least two source/drain regions separated by a channel region; a charge-trapping structure disposed above the channel region; and a gate disposed above the charge-trapping structure; wherein the charge-trapping structure comprises a bottom insulating layer, a first charge-trapping layer, and a second charge-trapping layer, wherein an interface between the bottom insulating layer and the substrate has a hydrogen concentration of less than about 3×1011/cm?2, and methods for forming such memory cells.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: September 27, 2011
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Yen-Hao Shih, Min-Ta Wu, Shih-Chin Lee, Jung-Yu Hsieh, Erh-Kun Lai, Kuang Yeu Hsieh
  • Publication number: 20110227140
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a memory film, and a SiGe film. The stacked body includes a plurality of conductive layers and a plurality of insulating layers alternately stacked above the substrate. The memory film includes a charge storage film. The memory film is provided on a sidewall of a memory hole punched through the stacked body. The SiGe film is provided inside the memory film in the memory hole.
    Type: Application
    Filed: July 12, 2010
    Publication date: September 22, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Megumi ISHIDUKI, Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hideaki Aochi
  • Patent number: 8017485
    Abstract: Methods of fabricating a semiconductor device are provided, the methods include forming a first dielectric layer, a data storage layer, and a second dielectric layer, which are sequentially stacked, on a semiconductor substrate. A mask having a first opening exposing a first region of the second dielectric layer is formed on the second dielectric layer. A gate electrode filling at least a portion of the first opening is formed. A second opening exposing a second region of the second dielectric layer is formed by etching the mask such that the second region is spaced apart from the first region. A second dielectric pattern and a data storage pattern are formed by sequentially etching the exposed second region of the second dielectric layer and the data storage layer. The second dielectric pattern is formed to have a greater width than a lower surface of the gate electrode.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Du-Hyun Cho, Tae-Hyuk Ahn, Sang-Sup Jeong, Jin-Hyuk Yoo
  • Patent number: 8013389
    Abstract: Nonvolatile memory devices are provided and methods of manufacturing such devices. In the method, conductive layers and insulating layers are alternatingly stacked on a substrate. A first sub-active bar is formed which penetrates a first subset of the conductive layers and a first subset of the insulating layers. The first sub-active bar is electrically connected with the substrate. A second sub-active bar is formed which penetrates a second subset of the conductive layers and a second subset of the insulating layers. The second sub-active bar is electrically connected to the first sub-active bar. A width of a bottom portion of the second sub-active bar is less than a width of a top portion of the second sub-active bar.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Yong Oh, Woonkyung Lee, Jin-Sung Lee, Sunil Shim, Hansoo Kim, Wonseok Cho, Jaehoon Jang, Jin-Soo Lim
  • Patent number: 8008146
    Abstract: A method (that produces a structure) patterns at least two wires of semiconductor material such that a first wire of the wires has a larger perimeter than a second wire of the wires. The method performs an oxidation process simultaneously on the wires to form a first gate oxide on the first wire and a second gate oxide on the second wire. The first gate oxide is thicker than the second gate oxide. The method also forms gate conductors over the first gate oxide and the second gate oxide, forms sidewall spacers on the gate conductors, and dopes portions of the first wire and the second wire not covered by the sidewall spacers and the gate conductors to form source and drain regions within the first wire and the second wire.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Andres Bryant, Guy Cohen, Jeffrey W. Sleight