Charge Trapping Insulator Nonvolatile Memory Structures (epo) Patents (Class 257/E21.679)
  • Patent number: 8003469
    Abstract: A non-volatile semiconductor device includes a memory cell in a first area of a substrate, a low voltage transistor in a second area of the substrate, and a high voltage transistor in a third area of the substrate. The memory cell includes a tunnel insulation layer formed on the substrate, a charge trapping layer pattern formed on the tunnel insulation layer in the first area of the substrate, a blocking layer pattern formed on the charge trapping layer pattern and a control gate formed on the blocking layer pattern. The control gate has a width substantially smaller than a width of the blocking layer pattern and the width of the control gate is substantially smaller than a width of the charge trapping layer pattern. In addition, an offset is formed between the control gate and the blocking layer pattern such that a spacer is not formed on a sidewall of the control gate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hak-Sun Lee, Kyoung-Sub Shin
  • Patent number: 7999307
    Abstract: A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Jung-Dal Choi, Jang-Hyun You
  • Patent number: 7994588
    Abstract: Example embodiments provide a nonvolatile memory device that may be integrated through stacking, a stack module, and a method of fabricating the nonvolatile memory device. In the nonvolatile memory device according to example embodiments, at least one bottom gate electrode may be formed on a substrate. At least one charge storage layer may be formed on the at least one bottom gate electrode, and at least one semiconductor channel layer may be formed on the at least one charge storage layer.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Huaxiang Yin, Young-soo Park, Sun-Il Kim
  • Patent number: 7989897
    Abstract: A semiconductor device includes a first MISFET and a second MISFET which are formed over a semiconductor substrate and have the same conductive type. The first MISFET has a first gate insulating film arranged over the semiconductor substrate, a first gate electrode arranged over the first gate insulating film, and a first source region and a first drain region. The second MISFET has a second gate insulating film arranged over the semiconductor substrate, a second gate electrode arranged over the second gate insulating film, and a second source region and a second drain region. The first and the second gate electrode are electrically coupled, the first and the second source region are electrically coupled, and the first and the second drain region are electrically coupled. Accordingly, the first and the second MISFET are coupled in parallel. In addition, threshold voltages are different between the first and the second MISFET.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Noriaki Maeda
  • Patent number: 7989790
    Abstract: A memory comprises a number of word lines in a first direction, a number of bit lines in a second direction, each coupled to at least one of the word lines, and a number of memory elements, each coupled to one of the word lines and one of the bit lines. Each memory element comprises a top electrode for connecting to a corresponding word line, a bottom electrode for connecting to a corresponding bit line, a resistive layer on the bottom electrode, and at least two separate liners, each liner having resistive materials on both ends of the liner and each liner coupled between the top electrode and the resistive layer.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 2, 2011
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Erh-Kun Lai, Chiahua Ho, Kuang-Yeu Hsieh
  • Publication number: 20110180864
    Abstract: A memory device is provided, including a substrate, a conductive layer, a charge storage layer, a plurality of isolation structures, a plurality of first doped regions, and a plurality of second doped regions. The substrate has a plurality of trenches. The conductive layer is disposed on the substrate and fills the trenches. The charge storage layer is disposed between the substrate and the conductive layer. The isolation structures are disposed in the substrate between two adjacent trenches, respectively. The first doped regions are disposed in an upper portion of the substrate between each isolation structure and each trench, respectively. The second doped regions are disposed in the substrate under a bottom portion of the trenches, in which each isolation structure is disposed between two adjacent second doped regions.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 28, 2011
    Applicant: MACRONIX International Co., Ltd.
    Inventors: YU-FONG HUANG, Miao-Chih Hsu, Kuan-Fu Chen, Tzung-Ting Han
  • Patent number: 7985647
    Abstract: In one embodiment of a method of manufacturing a nonvolatile memory device, a tunnel insulating layer and a charge trap layer are first formed over a semiconductor substrate that defines active regions and isolation regions. The tunnel insulating layer, the charge trap layer, and the semiconductor substrate formed in the isolation regions are etched to form trenches for isolation in the respective isolation regions. The trenches for isolation are filled with an insulating layer to form isolation layers in the respective trenches. A lower passivation layer is formed over an entire surface including top surfaces of the isolation layers. A first oxide layer is formed over an entire surface including the lower passivation layer. Meta-stable bond structures within the lower passivation layer are removed. A nitride layer, a second oxide layer, and an upper passivation layer are sequentially formed over an entire surface including the first oxide layer.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: July 26, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kwang Hyun Yun
  • Patent number: 7985648
    Abstract: A reduction of a resistance of a bit line of a memory cell array and a reduction of a forming area of the memory cell array are planed. Respective bit lines running at right angles to a word line are composed of a diffusion bit line formed in a semiconductor substrate and a linear metal bit line on an upper side of the diffusion bit line. The diffusion bit line is formed in a linear pattern on a lower side of the metal bit line in the same manner, and the metal bit line is connected with the diffusion bit line between the word lines. An interlayer insulating film is formed on the memory cell array, and the metal bit line is formed with being buried in it.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Satoshi Shimizu
  • Patent number: 7982261
    Abstract: A nonvolatile semiconductor memory device includes a first stacked body on a silicon substrate, and a second stacked body is provided thereon. The first stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a first portion of a through-hole extending in a stacking direction is formed. The second stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a second portion of the through-hole is formed. A memory film is formed on an inner face of the through-hole, and a silicon pillar is buried in an interior of the through-hole. A central axis of the second portion of the through-hole is shifted from a central axis of the first portion, and a lower end of the second portion is positioned lower than an upper portion of the first portion.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Hiroyasu Tanaka, Ryota Katsumata, Masaru Kito, Yosuke Komori, Megumi Ishiduki, Hideaki Aochi, Yoshiaki Fukuzumi
  • Publication number: 20110169071
    Abstract: A memory string is formed to surround the side surface of a columnar portion and a charge storing layer, and includes plural first conductive layers functioning as gates of memory transistors, and a first protecting layer stacked to protect an upper portion of the plural first conductive layers. The plural first conductive layers constitute a first stairway portion formed stepwise such that their ends are located at different positions. Each first conductive layer constitutes a step of the first stairway portion. A top surface of a first portion of the first stairway portion is covered with the first protecting layer including a first number of layers, and A tope surface of a second portion of the first stairway portion located at a lower level than the first portion is covered with the first protecting layer including a second number of layers fewer than the first number of layers.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 14, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tsuneo Uenaka, Kazuyuki Higashi
  • Patent number: 7977226
    Abstract: A flash memory device and a method for fabricating the same are disclosed. The flash memory device includes an ONO layer on a substrate, polysilicon gates on the ONO layer, a gate oxide layer on the substrate, the ONO layer and the polysilicon gates, and a low temperature oxide layer and polysilicon sidewall spacers on outer side surfaces of the polysilicon gates, except in a region between nearest adjacent polysilicon gates.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki Jun Yun
  • Patent number: 7960774
    Abstract: A memory device including a dielectric thin film having a plurality of dielectric layers and a method of manufacturing the same are provided. The memory device includes: a bottom electrode; at least one dielectric thin film disposed on the bottom electrode and having a plurality of dielectric layers with different charge trap densities from each other; and an top electrode disposed on the dielectric thin film. Therefore, a memory device, which can be readily manufactured by a simple process and can be highly integrated using its simple structure, can be provided.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 14, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung-Yool Choi, Min Ki Ryu, Ansoon Kim, Chil Seong Ah, Han Young Yu
  • Patent number: 7955933
    Abstract: A method of manufacturing a nonvolatile semiconductor memory device includes the steps of preparing a wafer having multiple memory cells, each memory cell having a gate electrode formed on a semiconductor substrate, charge storage units formed on both sides of the gate electrode, lightly doped regions formed beneath the charge storage units, respectively, in the upper part of the semiconductor substrate, and highly doped regions formed in a pair of regions sandwiching a region underneath the gate electrode and the lightly doped regions in between; erasing data stored in the charge storage units electrically; and treating the wafer at a high temperature for a predetermined period of time.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: June 7, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Narihisa Fujii, Takashi Ono
  • Patent number: 7956424
    Abstract: A semiconductor device and a method for manufacturing thereof are provided. The semiconductor device includes: an ONO film including a charge storage layer on a semiconductor substrate; a plurality of bit lines each extending inside the semiconductor substrate; a plurality of interspaces each interposed between the adjacent bit lines; a plurality of gates each provided along the bit line on the ONO film above the interspaces; and a plurality of word lines electrically coupled with the corresponding gates formed on one of the interspaces, each extending to intersect with the bit lines. The two gates adjacent with each other in a width direction of the bit line are connected to different word lines.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: June 7, 2011
    Assignee: Spansion LLC
    Inventor: Fumiaki Toyama
  • Patent number: 7951671
    Abstract: A method of fabricating a non-volatile memory device includes forming an isolation trench in a semiconductor substrate, and the isolation trench defines first and second fins. The method further includes forming an isolation layer partially filling the isolation trench, forming first and second charge trap patterns respectively covering parts of the first and second fins projecting from the isolation layer, and forming a control gate electrode covering the first and second charge trap patterns and crossing the first and second fins.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Wan Lim, Hyun-Seok Jang, Byung-Hong Chung, Ki-Hyun Hwang, Sang-Ryol Yang
  • Publication number: 20110115014
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a plurality of semiconductor pillars and a charge storage film. The stacked body is provided on the substrate, with a plurality of insulating films alternately stacked with a plurality of electrode films, and includes a hydrophobic layer provided between one of the insulating films and one of the electrode films. The hydrophobic layer has higher hydrophobicity than the electrode films. The plurality of semiconductor pillars extend in a stacking direction of the stacked body and pierce the stacked body, and the charge storage film is provided between the electrode films and one of the semiconductor pillars.
    Type: Application
    Filed: July 20, 2010
    Publication date: May 19, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daigo ICHINOSE, Tadashi Iguchi
  • Patent number: 7943998
    Abstract: A memory device includes a first active region on a substrate and first and second source/drain regions on the substrate abutting respective first and second sidewalls of the first active region. A first gate structure is disposed on the first active region between the first and second source/drain regions. A second active region is disposed on the first gate structure between and abutting the first and second source/drain regions. A second gate structure is disposed on the second active region overlying the first gate structure.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: May 17, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Jung Yun, Sung-Young Lee, Min-Sang Kim, Sung-Min Kim, Kyoung-Hwan Yeo
  • Patent number: 7943983
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a pair of first bit lines and a pair of second bit lines. The first and second bit lines can be formed by an implant process using first and second spacers that have different lateral lengths from each other. The spacers can be used to offset the implants, thereby controlling the lateral lengths of the bit lines.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 17, 2011
    Assignee: Spansion LLC
    Inventors: Huaqiang Wu, Hiro Kinoshita, Ning Cheng, Arturo Ruiz, Jihwan Choi
  • Patent number: 7939442
    Abstract: Strontium ruthenium oxide provides an effective interface between a ruthenium conductor and a strontium titanium oxide dielectric. Formation of the strontium ruthenium oxide includes the use of atomic layer deposition to form strontium oxide and subsequent annealing of the strontium oxide to form the strontium ruthenium oxide. A first atomic layer deposition of strontium oxide is preformed using water as an oxygen source, followed by a subsequent atomic layer deposition of strontium oxide using ozone as an oxygen source.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 10, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Bhaskar Srinivasan, Vassil Antonov, John Smythe
  • Patent number: 7939408
    Abstract: A non-volatile memory device for 2-bit operation and a method of fabricating the same are provided. The non-volatile memory device includes an active region and a gate extending in a word line direction on a semiconductor substrate, and crossing each other repeatedly; a charge storage layer disposed below the gate, and confined at a portion where the gate and the active region cross; a charge blocking layer formed on the charge storage layer; a tunnel dielectric layer formed below the charge storage layer; first and second source/drain regions formed in the active region exposed by the gate; and first and second bit lines crossing the word line direction. The active region may be formed in a first zigzag pattern and/or the gate may be formed in a second zigzag pattern in symmetry with the first zigzag pattern.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yong Choi, Dong-gun Park, Yun-gi Kim, Choong-ho Lee, Young-mi Lee, Hye-jin Cho
  • Patent number: 7932125
    Abstract: Devices and methods for forming self-aligned charge storage regions are disclosed. In one embodiment, a method for manufacturing a semiconductor device comprises forming a layer of a nitride film stacked between two oxide films on a semiconductor substrate, and forming a gate electrode on the layer of the nitride film stacked between the two oxide films. In addition, the method comprises removing side portions of the nitride film such that a central portion of the nitride film below a center portion of the gate electrode remains, oxidizing the central portion of the nitride film, and forming charge storage layers in the side portions of the nitride film, where the charge storage layers are separated by the central portion of the nitride film.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 26, 2011
    Assignee: Spansion LLC
    Inventor: Fumihiko Inoue
  • Patent number: 7932149
    Abstract: In a method of manufacturing a semiconductor device, a tunnel insulation layer is formed on a substrate. A charge trapping layer is formed on the tunnel insulation layer. A protection layer pattern or a mold is formed on the charge trapping layer. Charge trapping layer patterns are formed on the tunnel insulation layer by etching the charge trapping layer using the protection layer pattern or the mold. The charge trapping layer patterns may be spaced apart from each other. Blocking layers are formed on the charge trapping layer patterns, respectively. A gate electrode is formed on the blocking layers and the tunnel insulation layer using the protection layer pattern or the mold.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hyun Park, Jeong-Uk Han, Jae-Min Yu, Young-Cheon Jeong, Sang-Hoon Park, Kwan-Jong Roh, Byeong-Cheol Lim, Yong-Seok Chung
  • Patent number: 7932147
    Abstract: A flash memory device may include a device isolation layer and an active area formed over a semiconductor substrate, a memory gate formed over the active area, and a control gate formed over the semiconductor substrate including the memory gate, wherein the active area, where a source contact is to be formed, has the same interval spacing as a bit line, and a common source line area, where the source contact is to be formed, has an impurity area connecting neighboring active areas.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 26, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jin-Ha Park
  • Patent number: 7927967
    Abstract: A method for manufacturing a semiconductor memory device, includes: forming a stacked unit above a semiconductor substrate; making a hole in the stacked unit to pass through electrode layers and insulating layers of the stacked unit; forming an insulating film on a side wall of the hole, the insulating film including a charge storage layer; forming a semiconductor layer in an interior of the hole to align in a stacking direction of the electrode layers and the insulating layers to form a memory string; making a trench in a portion of the stacked unit proximal to the memory string to pass through the electrode layers and the insulating layers; forming a metal film on a side wall of the trench; forming a cap film to cover the metal film and fill into the trench; performing heat treatment to form a compound on the side wall of the trench.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kayo Nomura, Hideto Matsuyama
  • Patent number: 7919372
    Abstract: A semiconductor device having a silicon oxide/silicon nitride/silicon oxide (“ONO”) structure is formed by providing a first silicon oxide layer and a silicon nitride layer over a substrate having a memory region and a logic device region; patterning the first silicon oxide layer and the silicon nitride layer to define bottom oxide and silicon nitride portions of partially completed ONO stacks and to expose the substrate in the logic device regions; performing a rapid thermal annealing process in the presence of a radical oxidizing agent to form concurrently a second silicon oxide layer on the exposed surface of the silicon nitride layer and a gate oxide layer over the substrate; and depositing a conductive layer over the completed ONO stacks and the gate oxide. The invention is employed in manufacture of, for example, memory devices having and peripheral logic devices and memory cells including ONO structures.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 5, 2011
    Assignee: Macronix International, Co. Ltd.
    Inventors: Chih-Hao Wang, Hsin-Huei Chen, Chong-Jen Huang, Kuang-Wen Liu, Jia-Rong Chiou, Chong-Mu Chen
  • Patent number: 7915667
    Abstract: In an embodiment, an integrated circuit having a memory cell arrangement is provided. The memory cell arrangement may include a substrate, a fin structure disposed above the substrate, and a memory cell contacting region. The fin structure may include a memory cell region having a plurality of memory cell structures being disposed above one another, each memory cell structure having an active region of a respective memory cell. Furthermore, the memory cell contacting region may be configured to electrically contact each of the memory cell structures, wherein the memory cell contacting region may include a plurality of contact regions, which are at least partially displaced with respect to each other in a direction parallel to the main processing surface of the substrate.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 29, 2011
    Assignee: Qimonda AG
    Inventors: Roman Knoefler, Michael Specht, Franz Hofmann, Florian Beug, Dirk Manger, Stephan Riedel
  • Patent number: 7915666
    Abstract: An erase method where a corner portion on which an electric field concentrates locally is provided on the memory gate electrode, and charges in the memory gate electrode are injected into a charge trap film in a gate dielectric with Fowler-Nordheim tunneling operation is used. Since current consumption at the time of erase can be reduced by the Fowler-Nordheim tunneling, a power supply circuit area of a memory module can be reduced. Since write disturb resistance can be improved, a memory array area can be reduced by adopting a simpler memory array configuration. Owing to both the effects, an area of the memory module can be largely reduced, so that manufacturing cost can be reduced. Further, since charge injection centers of write and erase coincide with each other, so that (program and erase) endurance is improved.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kan Yasui, Tetsuya Ishimaru, Digh Hisamoto, Yasuhiro Shimamoto
  • Patent number: 7915126
    Abstract: Some embodiments include methods of utilizing polysilazane in forming non-volatile memory cells. The memory cells may be multi-level cells (MLCs). The polysilazane may be converted to silicon nitride, silicon dioxide, or silicon oxynitride with thermal processing and exposure to an ambient that contains one or both of oxygen and nitrogen. The methods may include using the polysilazane in forming a charge trapping layer of a non-volatile memory cell. The methods may alternatively, or additionally include using the polysilazane in forming intergate dielectric material of a non-volatile memory cell. Some embodiments include methods of forming memory cells of a NAND memory array.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 7915661
    Abstract: The present invention provides semiconductor device and a fabrication method therefor. The semiconductor device includes trenches (11) formed in a semiconductor substrate (10), first ONO films (18) provided on both side surfaces of the trenches, and first word lines (22) provided on side surfaces of the first ONO films (18) and running in a length direction of the trenches (11). According to the present invention, it is possible to provide a semiconductor device and a fabrication method therefor, in which higher memory capacity can be achieved.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: March 29, 2011
    Assignee: Spansion LLC
    Inventors: Masaya Hosaka, Masatomi Okanishi
  • Patent number: 7911027
    Abstract: It is an object of the invention to effectively absorb a power noise and to implement the stable operation of a circuit. The invention provides a semiconductor device comprising a bypass capacitor including an MOS structure having a gate electrode formed to be extended from a power wiring region to a portion provided under an empty region which is adjacent to the power wiring region and has no other functional layer, and formed through a capacitive insulating film on a diffusion region having one conductivity type, and a substrate contact formed under a ground wiring region and fixing a substrate potential, wherein the bypass capacitor has a contact to come in contact with the power wiring which is formed on a surface of the gate electrode and has the diffusion region having the one conductivity type and a diffusion region of the substrate contact connected to each other.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: March 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Mitsumi Itoh, Masatoshi Sawada, Junko Honma, Kenji Shimazaki, Hiroyuki Tsujikawa, Hiroshi Benno
  • Patent number: 7910432
    Abstract: Each of the memory strings includes: a first columnar semiconductor layer extending in a vertical direction to a substrate; a plurality of first conductive layers formed to sandwich an insulation layer with a charge trap layer and expand in a two-dimensional manner; a second columnar semiconductor layer formed in contact with the top surface of the first columnar semiconductor layer and extending in a vertical direction to the substrate; and a plurality of second conductive layers formed to sandwich an insulation layer with the second columnar semiconductor layer and formed in a stripe pattern extending in a first direction orthogonal to the vertical direction.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Masaru Kidoh, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Hideaki Aochi, Yasuyuki Matsuoka
  • Publication number: 20110057249
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked structural body, a semiconductor pillar, and a memory unit. The stacked structural body is provided on a major surface of the substrate. The stacked structural body includes electrode films alternately stacked with inter-electrode insulating films in a direction perpendicular to the major surface. The pillar pierces the body in the direction. The memory unit is provided at an intersection between the pillar and the electrode films. The electrode films include at least one of amorphous silicon and polysilicon. The stacked structural body includes first and second regions. A distance from the second region to the substrate is greater than a distance from the first region to the substrate. A concentration of an additive included in the electrode film in the first region is different from that included in the electrode film in the second region.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 10, 2011
    Inventors: Takashi NAKAO, Kazuaki Iwasawa
  • Patent number: 7901965
    Abstract: A thin film transistor substrate and a method of manufacturing the thin film transistor substrate comprises forming a gate line and a data line intersecting each other with a gate insulating layer interposed and defining a pixel area on the substrate, a thin film transistor electrically connected to the gate line and the data line, and a stepped-structure occurring pattern overlapping at least one of the gate line and the data line; forming a passivation layer having a stepped-structure portion formed by the stepped-structure occurring pattern on the substrate; forming a photoresist pattern having a second stepped-structure portion corresponding to the stepped-structure portion on the passivation layer; patterning the passivation layer using the photoresist pattern as a mask; forming a transparent conductive layer on the substrate; and removing the photoresist pattern where the transparent conductive layer is covered by a stripper penetrating through the stepped-structure portion of the photoresist pattern an
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Hyun Choung, Hong Sick Park, Sun Young Hong, Bong Kyun Kim, Bong Kyu Shin, Won Suk Shin, Byeong Jin Lee
  • Publication number: 20110049612
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device including a semiconductor layer with a main surface, a first insulating layer formed on the main surface of the semiconductor layer, a charge storage layer formed on the first insulating layer, a second insulating layer formed on the charge storage layer, and a control gate electrode formed on the second insulating layer. At least one inelastic scattering film that reduces energy of electrons by scattering is contained in at least one of the charge storage layer and second insulating layer.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 3, 2011
    Inventors: Masaaki HIGUCHI, Yoshio Ozawa, Katsuyuki Sekine, Ryota Fujitsuka
  • Patent number: 7897456
    Abstract: A non-volatile memory device includes a peripheral circuit region and a cell region. A method for fabricating the non-volatile memory device includes forming gate patterns over a substrate, the gate pattern including a tunnel insulation layer, a floating gate electrode, a charge blocking layer and a control gate electrode, and removing the control gate electrode and the charge blocking layer of the gate pattern formed in the peripheral circuit region.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Nam-Jae Lee
  • Patent number: 7888211
    Abstract: A method of manufacturing a flash memory device includes preparing a semiconductor substrate comprising a cell area and a peripheral area, forming a first well and an oxide-nitride-oxide (ONO) layer in the cell area, forming a second well in the peripheral area of the semiconductor substrate comprising the first well and forming a first oxide layer in the peripheral area, forming a first polysilicon layer over the ONO layer and the first oxide layer and performing a first etch process to form a memory gate comprising an ONO layer pattern and a first polysilicon pattern in the cell area, forming a second oxide layer pattern and a second polysilicon pattern over either sidewall of the memory gate and forming a gate in the peripheral area, performing a third etch process so that the second oxide layer pattern and the second polysilicon pattern remain over only the one sidewall of the memory gate to form a select gate, and forming a first impurity area in the semiconductor substrate between the memory gates adjac
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 15, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Cheon-Man Shim
  • Patent number: 7888218
    Abstract: The present invention pertains to a system method of forming at least a portion of a dual bit memory core array upon a semiconductor substrate, the method comprising forming adjacent first memory cell process assemblies; comprising a charge trapping dielectric, a first polysilicon layer and defining a first bitline opening there between, forming first polysilicon layer features over the charge trapping dielectric layer, depositing a layer of second spacer material over the charge trapping dielectric and the first polysilicon layer features, forming a sidewall spacer adjacent to the charge trapping dielectric and the first polysilicon layer features to define a second bitline opening between the adjacent memory cells, performing a bitline implant, or pocket implants, or both into the bitline opening to establish buried bitlines within the substrate having respective bitline widths that are narrower than the respective widths of the first bitline openings, removing the sidewall spacers, and performing back end
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 15, 2011
    Assignee: Spansion LLC
    Inventors: Zhizheng Liu, Shankar Sinha, Timothy Thurgate, Ming-Sang Kwan
  • Patent number: 7872296
    Abstract: A semiconductor memory device includes a semiconductor substrate having a projection, an upper end portion of the projection being curved, a first element isolation insulating film formed on the substrate surface at the root of the projection, having an upper surface lower than an upper surface of the projection, a second element isolation insulating film formed in the projection, a gate insulating film formed on the projection, and including a charge storage layer, and a gate electrode formed on the gate insulating film. A height of a first portion where the gate electrode is in contact with the gate insulating film above the upper surface of the first element isolation insulating film is smaller than that of a second portion where the gate electrode is in contact with the gate insulating film above an upper end of the second element isolation insulating film.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 18, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takayuki Okamura
  • Publication number: 20100327341
    Abstract: A nonvolatile semiconductor memory device includes first electrodes, a second and a third electrode, a first film, a first inter layer film, a second inter layer film, and a second film. The first electrodes each have a charge storage and a control electrode. The second and the third electrodes are formed above the semiconductor substrate. The first film is formed on each sidewall of the second and third electrodes and formed on the surface of the semiconductor substrate. The first inter layer film filled in a gap between the second and third electrodes. The second inter layer film filled in a gap between the first and second electrode. The second film is formed on the first to third gate electrodes, the first film and the first inter layer film, and a second inter layer insulating film to suppress diffusion of hydrogen atoms included in the first inter layer film.
    Type: Application
    Filed: November 13, 2009
    Publication date: December 30, 2010
    Inventor: Atsuhiro SUZUKI
  • Publication number: 20100327339
    Abstract: A semiconductor memory device provided with a cell array section and a peripheral circuit section, the device includes: a back gate electrode; a stacked body provided on the back gate electrode; a plurality of semiconductor pillars extending in a stacking direction; connection members, each of the connection members connecting one of the semiconductor pillars to another one of the semiconductor pillars; a back-gate electrode contact applying a potential to the back gate electrode; a gate electrode provided in the peripheral circuit section; and a gate electrode contact applying a potential to the gate electrode, the back gate electrode and the gate electrode respectively including: a lower semiconductor layer; a conductive layer provided on the lower semiconductor layer; and an upper semiconductor layer provided on the conductive layer, the connection members being provided in or on the upper semiconductor layer, the back-gate electrode contact and the gate electrode contact being in contact with the conducti
    Type: Application
    Filed: March 22, 2010
    Publication date: December 30, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroyasu TANAKA, Ryota Katsumata, Hideaki Aochi, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 7855411
    Abstract: The invention provides a memory cell. The memory cell is disposed on a substrate and comprises a plurality of isolation structures defining at least a fin structure in the substrate. Further, the surface of the fin structure is higher than the surface of the isolation structure. The memory cell comprises a doped region, a gate, a charge trapping structure and a source/drain region. The doped region is located in a top of the fin structure and near a surface of the top of the fin structure and the doped region has a first conductive type. The gate is disposed on the substrate and straddled the fin structure. The charge trapping structure is disposed between the gate and the fin structure. The source/drain region with a second conductive type is disposed in the fin structures exposed by the gate and the first conductive type is different from the second conductive type.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: December 21, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Hang-Ting Lue
  • Patent number: 7842997
    Abstract: A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Jung-Dal Choi, Jang-Hyun You
  • Publication number: 20100295115
    Abstract: A nonvolatile semiconductor memory device includes the following structure. Element isolation films are formed at predetermined intervals in a first direction in a surface region of a semiconductor substrate. The element isolation films extend in a second direction and isolate the surface region of the semiconductor substrate to provide element regions. Upper surface of the element isolation films are lower than upper surface of the element regions of the semiconductor substrate. A tunnel insulating film is formed on the element region. A charge accumulation layer is formed only on the tunnel insulating film. A block layer continuously is formed in the first direction on the charge accumulation layer and the element isolation film. A bottom surface of the block layer on the element isolation film is lower than the upper surface of the element region of the semiconductor substrate. A gate electrode is formed on the block layer.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 25, 2010
    Inventor: Kikuko SUGIMAE
  • Patent number: 7838362
    Abstract: The cell comprises a substrate having a drain region and a source region. An oxynitride layer is formed over the substrate. An embedded trap layer is formed over the oxynitride layer. An injector layer is formed over the embedded trap layer. A high dielectric constant layer is formed over the injector layer. A polysilicon control gate formed over the high dielectric constant layer. The cell can be formed in a planar architecture or a two element, split channel, three-dimensional device. The planar cell is formed with the high dielectric constant layer and the control gate being formed over and substantially around three sides of the embedded trap layer. The split channel device has a source line in the substrate under each trench and a bit line on either side of the trench.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: November 23, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Publication number: 20100283098
    Abstract: A nonvolatile semiconductor memory device includes a plurality of bit line diffusion layers formed in a semiconductor region, and extending in a row direction; a plurality of first insulating films, each being formed on the semiconductor region and between adjacent two of the bit line diffusion layers, and including a charge trapping film; a plurality of bit line insulating films formed above the respective bit line diffusion layers; and a plurality of word lines formed above the semiconductor region to cover the first insulating films and the bit line insulating films, intersecting the bit line diffusion layers, and extending in a column direction. The bit line insulating films have smaller thicknesses than the first insulating films, and upper surfaces of the bit line insulating films are parallel to upper surfaces of the first insulating films.
    Type: Application
    Filed: April 1, 2010
    Publication date: November 11, 2010
    Inventors: Koji YOSHIDA, Keita TAKAHASHI
  • Patent number: 7829412
    Abstract: A method of manufacturing a flash memory device is disclosed. A first oxide layer, a nitride layer, a second oxide layer, and a first polysilicon layer, which is a part of a polysilicon layer for a control gate, are formed to a predetermined thickness on a semiconductor substrate. A first etch process is performed to form gate patterns. An insulating layer is formed on the entire surface. A second etch process is implemented so that insulating layer spacers are formed on both sidewalls of each gate pattern while exposing the first polysilicon layer. A second polysilicon layer for the control gate is formed on the entire surface.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Woo Shin
  • Patent number: 7824991
    Abstract: A MOSFET fabrication process comprises nitridation of the dielectric silicon interface so that silicon-dangling bonds are connected with nitrogen atoms creating silicon—nitrogen bonds, which are stronger than silicon-hydrogen bonds. A tunnel dielectric is formed on the substrate. A nitride layer is then formed over the tunnel dielectric layer. The top of the nitride layer is then converted to an oxide and the interface between the substrate and the tunnel dielectric is nitrided simultaneously with conversion of the nitride layer to oxide.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Yen-Hao Shih, Shih-Chin Lee
  • Publication number: 20100270609
    Abstract: A flash memory device comprises a substrate comprising silicon with a silicon dioxide layer thereon. A silicon-oxygen-nitrogen layer is on the silicon dioxide layer, and the silicon-oxygen-nitrogen layer comprises a shaped concentration level profile of oxygen through the thickness of the layer. A blocking dielectric layer is on the silicon-oxygen-nitrogen layer, and a gate electrode is on the blocking dielectric layer. Oxygen ions can be implanted into a silicon nitride layer to form the silicon-oxygen-nitrogen layer.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 28, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Christopher Sean Olsen, Tze Wing Poon, Udayan Ganguly, Johanes Swenberg
  • Patent number: 7821058
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile semiconductor memory including: a columnar semiconductor; a charge storage insulating film including: a first insulating film formed around the columnar semiconductor, a charge storage film formed around the first insulating film, and a second insulating film formed around the charge storage film; an electrode extending two-dimensionally to surround the charge storage insulating film, the electrode having a groove; and a metal silicide formed on a sidewall of the groove.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Hideaki Aochi, Hiroyasu Tanaka, Yasuyuki Matsuoka, Yoshio Ozawa, Mitsuru Sato
  • Patent number: 7821809
    Abstract: A nonvolatile memory device including one resistor and one transistor. The resistor may correspond to a resistance layer electrically connected to a first impurity region and a second impurity region of the transistor.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: October 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-Kyeong Yoo, Myoung-Jae Lee, Sun-Ae Seo, David Seo