Dynamic Random Access Memory, Dram, Structure (epo) Patents (Class 257/E27.084)
  • Patent number: 8921906
    Abstract: Sacrificial plugs for forming contacts in integrated circuits, as well as methods of forming connections in integrated circuit arrays are disclosed. Various pattern transfer and etching steps can be used to create densely-packed features and the connections between features. A sacrificial material can be patterned in a continuous zig-zag line pattern that crosses word lines. Planarization can create parallelogram-shaped blocks of material that can overlie active areas to form sacrificial plugs, which can be replaced with conductive material to form contacts.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Byron Neville Burgess, John K. Zahurak
  • Patent number: 8916470
    Abstract: The present invention relates to a method of manufacturing sidewall spacers on a memory device. The method comprises forming sidewall spacers on a memory device having a memory array region and at least one peripheral circuit region by forming a first sidewall spacer adjacent to a word line in the memory array region and a second sidewall spacer adjacent to a transistor in the peripheral circuit region. The first sidewall spacer has a first thickness and the second sidewall spacer has a second thickness, wherein the second thickness is greater than the first thickness.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: December 23, 2014
    Assignee: Nanya Technology Corporation
    Inventors: Durga Panda, Jaydip Guha, Robert Kerr
  • Patent number: 8912588
    Abstract: A semiconductor memory device includes a bit line, an active region formed in a semiconductor substrate, a plug formed on the active region and connecting the bit line to the active region, a memory cell which includes a first gate insulating film on the active region, a charge storage layer on the first gate insulating film, a first insulating film on the charge storage layer, and a control gate electrode on the first insulating film, a select transistor formed between the plug and the memory cell on the active region and including a second gate insulating film on the active region, a first electrode layer on the second gate insulating film, a second insulating film on the first electrode layer, and a second electrode layer on the second insulating film, and a wiring formed above the active region between the plug and the second electrode layer of the select transistor.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: December 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazushige Kanda
  • Patent number: 8901629
    Abstract: A semiconductor device includes a semiconductor substrate divided into a cell region and a peripheral circuit region defined in a first direction, wherein the peripheral circuit region is divided into a first region and a second region defined in a second direction substantially orthogonal to the first direction; gate lines formed over the semiconductor substrate in the cell region and arranged in the second direction; and a capacitor including lower electrodes over the semiconductor substrate, a dielectric layer and an upper electrode, wherein the lower electrodes in the first and second regions, separated from each other in the first direction and coupled to each other in the first region, the dielectric layer is formed along surfaces of the lower electrodes in the second region, and the upper electrode is formed over the dielectric layer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jung Ryul Ahn, Yun Kyoung Lee
  • Patent number: 8890225
    Abstract: The NVM device includes a semiconductor substrate having a first region and a second region. The NVM device includes a data-storing structure formed in the first region and designed operable to retain charges. The NVM device includes a capacitor formed in the second region and coupled with the data-storing structure for data operations. The data-storing structure includes a first doped well of a first-type in the semiconductor substrate. The data-storing structure includes a first gate dielectric feature on the first doped well. The data-storing structure includes a first gate electrode disposed on the first gate dielectric feature and configured to be floating. The capacitor includes a second doped well of the first-type. The capacitor includes a second gate dielectric feature on the second doped well. The capacitor also includes a second gate electrode disposed on the second gate dielectric feature and connected to the first gate electrode.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chuan Liao, Chien-Kao Yang, Ying-Kit Tsui, Shih-Hsien Chen, Liang-Tai Kuo, Chun-Yao Ko
  • Patent number: 8872247
    Abstract: Memory arrays having folded architectures and methods of making the same. Specifically, memory arrays having a portion of the transistors in a row that are reciprocated and shifted with respect to other transistors in the same row. Trenches formed between the rows may form a weave pattern throughout the array, in a direction of the row. Trenches formed between legs of the transistors may also form a weave pattern throughout the array in a direction of the row.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Shigeki Tomishima
  • Patent number: 8866204
    Abstract: A method for fabricating a finFET device having an insulating layer that insulates the fin from a substrate is described. The insulating layer can prevent leakage current that would otherwise flow through bulk semiconductor material in the substrate. The structure may be fabricated starting with a bulk semiconductor substrate, without the need for a semiconductor-on-insulator substrate. Fin structures may be formed by epitaxial growth, which can improve the uniformity of fin heights in the devices.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 21, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Qing Liu, Junli Wang
  • Patent number: 8860108
    Abstract: It is an object to provide a semiconductor having a novel structure. In the semiconductor device, a plurality of memory elements are connected in series and each of the plurality of memory elements includes first to third transistors thus forming a memory circuit. A source or a drain of a first transistor which includes an oxide semiconductor layer is in electrical contact with a gate of one of a second and a third transistor. The extremely low off current of a first transistor containing the oxide semiconductor layer allows storing, for long periods of time, electrical charges in the gate electrode of one of the second and the third transistor, whereby a substantially permanent memory effect can be obtained. The second and the third transistors which do not contain an oxide semiconductor layer allow high-speed operations when using the memory circuit.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato
  • Patent number: 8860112
    Abstract: A method of forming a strap connection structure for connecting an embedded dynamic random access memory (eDRAM) to a transistor comprises forming a buried oxide layer in a substrate, the buried oxide layer defining an SOI layer on a surface of the substrate; forming a deep trench through the SOI layer and the buried oxide layer in the substrate; forming a storage capacitor in a lower portion of the deep trench; conformally doping a sidewall of an upper portion of the deep trench; depositing a metal strap on the conformally doped sidewall and on the storage capacitor; forming at least one fin in the SOI layer, the fin being in communication with the metal strap; forming a spacer over the metal strap and over a juncture of the fin and the metal strap; and depositing a passive word line on the spacer.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Effendi Leobandung, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8853760
    Abstract: An integrated circuit may include an element placed in an insulating region adjacent to a copper metallization level and including a barrier layer in contact with a metallization level. The element may be electrically connected to and spaced away from a copper line of the metallization level by way of an electrical link passing through the barrier layer and including an electrically conductive material different from copper in direct contact with the copper line.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: October 7, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sébastien Cremer, Sébastien Gaillard
  • Patent number: 8841717
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first groove; and a plurality of first pillars over the substrate. The plurality of first pillars is disposed beside the first groove. A first insulator is disposed in the first groove. A bit contact is disposed in the first groove and over the first insulator. The bit contact is coupled to side surfaces of the plurality of first pillars.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: September 23, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Noriaki Mikasa
  • Patent number: 8841195
    Abstract: A method for fabricating a semiconductor device includes forming a first dielectric structure over a second region of a substrate to expose a first region of the substrate, forming a barrier layer over an entire surface including the first dielectric structure, forming a second dielectric structure over the barrier layer in the first region, forming first open parts and second open parts in the first region and the second region, respectively, by etching the second dielectric structure, the barrier layer and the first dielectric structure, forming first conductive patterns filled in the first open parts and second conductive patterns filled in the second open parts, forming a protective layer to cover the second region, and removing the second dielectric structure.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 23, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jun-Hyeub Sun, Sang-Oh Lee, Su-Young Kim
  • Patent number: 8822996
    Abstract: A semiconductor device including a memory cell is provided. The memory cell comprises a transistor, a memory element and a capacitor. One of first and second electrodes of the memory element and one of first and second electrodes of the capacitor are formed by a same metal film. The metal film functioning as the one of first and second electrodes of the memory element and the one of first and second electrodes of the capacitor is overlapped with a film functioning as the other of first and second electrodes of the capacitor.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takayuki Abe, Yasuyuki Takahashi
  • Patent number: 8817534
    Abstract: Techniques for providing a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus including a first region and a second region. The apparatus may also include a body region disposed between the first region and the second region and capacitively coupled to a plurality of word lines, wherein each of the plurality of word lines is capacitively coupled to different portions of the body region.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 26, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Serguei Okhonin, Viktor I Koldiaev, Mikhail Nagoga, Yogesh Luthra
  • Patent number: 8803213
    Abstract: Some embodiments include apparatus and methods having a base; a memory cell including a body, a source, and a drain; and an insulation material electrically isolating the body, the source, and the drain from the base, where the body is configured to store information. The base and the body include bulk semiconductor material. Additional apparatus and methods are described.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Paul Grisham
  • Patent number: 8792284
    Abstract: In a semiconductor device which conducts multilevel writing operation and a driving method thereof, a signal line for controlling on/off of a writing transistor for conducting a writing operation on a memory cell using a transistor including an oxide semiconductor layer is disposed along a bit line, and a multilevel writing operation is conducted with use of, also in a writing operation, a voltage which is applied to a capacitor at a reading operation. Because an oxide semiconductor material that is a wide gap semiconductor capable of sufficiently reducing off-state current of a transistor is used, data can be held for a long period.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: July 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tatsuya Ohnuki
  • Patent number: 8779488
    Abstract: In the semiconductor memory device, one of a source and a drain of a first transistor is connected to one of a source and a drain of a second transistor, a gate of the first transistor is connected to one of a source and a drain of a third transistor and one of a pair of capacitor electrodes included in a capacitor, the other of the source and the drain of the first transistor and the other of the source and the drain of the third transistor are connected to a bit line, the other of the pair of capacitor electrodes included in the capacitor is connected to a common wiring, and the common wiring is grounded (GND). The common wiring has a net shape when seen from the above, and the third transistor is provided in a mesh formed by the common wiring.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: July 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Toshihiko Saito
  • Patent number: 8779487
    Abstract: A Dynamic Random Access Memory (DRAM) device can include a semiconductor substrate that includes an active region including a source region therein. A gate line can cross the active region and a first contact plug can be on the active region adjacent to the gate line and can be connected to the source region. A conductive layer can be on the first contact plug to expose a portion of the first contact plug and a capacitor storage node electrode can be on the conductive layer.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-il Kim, Makoto Yoshida
  • Patent number: 8779432
    Abstract: A conventional DRAM needs to be refreshed at an interval of several tens of milliseconds to hold data, which results in large power consumption. In addition, a transistor therein is frequently turned on and off; thus, deterioration of the transistor is also a problem. These problems become significant as the memory capacity increases and transistor miniaturization advances. A transistor is provided which includes an oxide semiconductor and has a trench structure including a trench for a gate electrode and a trench for element isolation. Even when the distance between a source electrode and a drain electrode is decreased, the occurrence of a short-channel effect can be suppressed by setting the depth of the trench for the gate electrode as appropriate.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: July 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiromichi Godo
  • Patent number: 8772849
    Abstract: A semiconductor memory device includes a semiconductor film; a first gate insulating film covering the semiconductor film; a first gate electrode provided over the semiconductor film with the first gate insulating film interposed therebetween; a first conductive film which is provided over the first gate insulating film; an insulating film which is provided over the first gate insulating film, exposes top surfaces of the first gate electrode and the first conductive film, and has a groove portion between the first gate electrode and the first conductive film; an oxide semiconductor film which is provided over the insulating film and is in contact with the first gate electrode, the first conductive film, and the groove portion; a second gate insulating film covering the oxide semiconductor film; and a second gate electrode provided over the oxide semiconductor film and the groove portion with the second gate insulating film interposed therebetween.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kosei Noda
  • Patent number: 8772105
    Abstract: A semiconductor device and a method for forming the same are disclosed. The semiconductor device includes a first junction region formed at the bottom of a vertical pillar, a bit line formed below the first junction region, and an insulation film formed below the bit line. As a result, the 4F2-sized semiconductor device is provided and the bit line is configured in the form of a laminated structure of a conductive layer and a polysilicon layer, so that bit line resistance is reduced. In addition, the semiconductor device reduces ohmic contact resistance by forming silicide between the conductive layer and the polysilicon layer, and includes an insulation film at a position between the semiconductor substrate and the bit line, resulting in reduction of bit line capacitance. Therefore, the sensing margin of the semiconductor device is increased and the data retention time is also increased.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 8, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Tae Su Jang, Min Soo Yoo
  • Patent number: 8772848
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Patent number: 8766342
    Abstract: Methods and an apparatus are described for an integrated circuit within which an electroless Cu plated layer having an oxygen content is formed on the top of a seed layer comprising Cu and Mn. The integrated circuit is then exposed to a sufficient high temperature to cause the self-formation of a MnSiOx barrier layer.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventor: Rohan N. Akolkar
  • Patent number: 8766399
    Abstract: To improve a performance of a semiconductor device having a capacitance element. An MIM type capacitance element, an electrode of which is formed with comb-shaped metal patterns composed of the wirings, is formed over a semiconductor substrate. A conductor pattern, which is a dummy gate pattern for preventing dishing in a CMP process, and an active region, which is a dummy active region, are disposed below the capacitance element, and these are coupled to shielding metal patterns composed of the wirings and then connected to a fixed potential. Then, the conductor pattern and the active region are disposed so as not to overlap the comb-shaped metal patterns in the wirings in a planar manner.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Maeda, Yasushi Sekine, Tetsuya Watanabe
  • Patent number: 8742529
    Abstract: A semiconductor memory includes: a plurality of active regions AAi, AAi?1, . . . , AAn, which extend on a memory cell array along the column length; a plurality of non-uniformly arranged word line patterns WL1, WL2, . . . , extending along the row length; a plurality of select gate line patterns SG1, SG2, . . . , arranged parallel to the plurality of word line patterns; borderless contacts formed near the ends of the word line patterns on the memory cell array, in contact with part of an interconnect extended from the end of the memory cell array, but not in contact with interconnects adjacent to that interconnect; and bit line contacts formed within contact forming regions provided by removing part of the plurality of word line patterns and select gate line patterns through double exposure.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kikuko Sugimae, Satoshi Tanaka, Koji Hashimoto, Masayuki Ichige
  • Patent number: 8742482
    Abstract: A semiconductor device including: a bit line being arranged on top surfaces of first and second contact plugs via a first insulation layer and extending in a direction connecting a first impurity diffusion layer and a second impurity diffusion layer; a bit line contact plug being formed through the first insulation layer and electrically connecting the bit line to the first contact plug; a first cell capacitor having a first lower electrode beside one of side surfaces of the bit line; a first insulation film insulating the bit line and the first lower electrode from each other; and a first contact conductor electrically connecting a bottom end of the first lower electrode to a side surface of the second contact plug.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 3, 2014
    Inventor: Hiroyuki Uchiyama
  • Patent number: 8729615
    Abstract: A semiconductor memory device has a memory cell region and a peripheral region. The device includes low voltage transistors at the peripheral region having gate insulation films with different thicknesses. For example, a gate insulation film of a low voltage transistor used in an input/output circuit of the memory device may be thinner than the gate insulation film of a low voltage transistor used in a core circuit for the memory device. Since low voltage transistors used at an input/output circuit are formed to be different from low voltage transistors used at a core circuit or a high voltage pump circuit, high speed operation and low power consumption characteristics of a non-volatile memory device may be.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Hyun Lee, Young-Woo Park, Kye-Hyun Kyung, Cheon-An Lee, Sung-il Chang, Chul Bum Kim
  • Patent number: 8716776
    Abstract: A structure and method is provided for fabricating isolated capacitors. The method includes simultaneously forming a plurality of deep trenches and one or more isolation trenches surrounding a group or array of the plurality of deep trenches through a SOI and doped poly layer, to an underlying insulator layer. The method further includes lining the plurality of deep trenches and one or more isolation trenches with an insulator material. The method further includes filling the plurality of deep trenches and one or more isolation trenches with a conductive material on the insulator material. The deep trenches form deep trench capacitors and the one or more isolation trenches form one or more isolation plates that isolate at least one group or array of the deep trench capacitors from another group or array of the deep trench capacitors.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Oh-Jung Kwon, Junedong Lee, Paul C. Parries, Dominic J. Schepis
  • Patent number: 8710570
    Abstract: A semiconductor device includes: bit lines each extending in a first direction; word lines each extending in a second direction, which crosses the first direction; pillars provided in a region between the bit lines and the word lines, wherein the pillars are each arranged along a third direction; and bit line contacts arranged along the third direction and alternately between the pillars and coupled to alternate bit lines.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 29, 2014
    Assignee: SK Hynix Inc.
    Inventor: Woo Jun Lee
  • Patent number: 8710566
    Abstract: Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Wayne Ellis, John Kim
  • Patent number: 8698217
    Abstract: A device includes a semiconductor substrate having a front side and a backside. An active image sensor pixel array is disposed on the front side of the semiconductor substrate. A metal shield is disposed on the backside of, and overlying, the semiconductor substrate. The metal shield has an edge facing the active image sensor pixel array. The metal shield has a middle width, and a top width greater than the middle width.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Hsu, Kun-Ei Chen, Huai-Tei Yang, Chien-Chung Chen
  • Patent number: 8692372
    Abstract: Provided are semiconductor devices including a semiconductor substrate, an insulating layer including a contact hole through which the semiconductor substrate is exposed, and a polysilicon layer filling the contact hole. The polysilicon layer is doped with impurities and includes an impurity-diffusion prevention layer. In the semiconductor devices, the impurities included in the polysilicon layer do not diffuse into the insulating layer and the semiconductor substrate due to the impurity-diffusion prevention layers.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-kak Lee, Sung-gil Kim, Soo-jin Hong, Sun-ghil Lee, Deok-hyung Lee
  • Patent number: 8674421
    Abstract: The semiconductor device includes a first conductor formed over a semiconductor substrate; a first insulator formed over the first conductor; a second insulator formed over the first insulator, the second insulator having an etching characteristic different from an etching characteristic of the first insulator; a second conductor formed on the second insulator, the second conductor being in contact with the second insulator; a third insulator formed over the second conductor, the third insulator having an etching characteristic different from the etching characteristic of the second insulator; a first contact hole formed through the third insulator and the second conductor, the first contact hole reaching the second insulator; a third conductor formed in the first contact hole, wherein a side wall of the third conductor is electrically connected to a side wall of the second conductor; a second contact hole formed through the third insulator and the first insulator, the second contact hole reaching the first c
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Tohru Anezaki
  • Patent number: 8674455
    Abstract: A semiconductor device is provided, which includes an N well having a peak concentration of 2E+17 atom/cm3 or more in the range of 0.2 to 1 ?m depth from the surface of a P-type semiconductor substrate, and a region provided below the N well, the region containing P-type impurities with higher concentration than concentration of electrons.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 18, 2014
    Inventors: Kensuke Okonogi, Kazuhiro Nojima, Kiyonori Oyu
  • Publication number: 20140070292
    Abstract: A method of forming a deep trench capacitor in a semiconductor-on-insulator substrate is provided. The method may include providing a pad layer positioned above a bulk substrate, etching a deep trench into the pad layer and the bulk substrate extending from a top surface of the pad layer down to a location within the bulk substrate, and doping a portion of the bulk substrate to form a buried plate. The method further including depositing a node dielectric, an inner electrode, and a dielectric cap substantially filling the deep trench, the node dielectric being located between the buried plate and the inner electrode, the dielectric cap being located at a top of the deep trench, removing the pad layer, growing an insulator layer on top of the bulk substrate, and growing a semiconductor-on-insulator layer on top of the insulator layer.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20140054745
    Abstract: Memory cell support lattices and methods of forming the same are described herein. As an example, a method of forming a memory cell support lattice includes forming a mask on a number of capacitor elements in an array, such that a space between vertically and horizontally adjacent capacitor elements is fully covered and a space between diagonally adjacent capacitor elements is partially covered and forming a support lattice in a support material by etching the support material to remove portions of the support material below the openings in the mask.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Zhimin Song, Che-Chi Lee, Brett Busch
  • Patent number: 8648403
    Abstract: A dynamic random access memory cell is disclosed that comprises a capacitive storage device and a write access transistor. The write access transistor is operatively coupled to the capacitive storage device and has a gate stack that comprises a high-K dielectric, wherein the high-K dielectric has a dielectric constant greater than a dielectric constant of silicon dioxide. Also disclosed are a memory array using the cells, a computing apparatus using the memory array, a method of storing data, and a method of manufacturing.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Jin Cai
  • Publication number: 20140021523
    Abstract: A top semiconductor layer and conductive cap structures over deep trench capacitors are simultaneously patterned by an etch. Each patterned portion of the conductive cap structures constitutes a conductive cap structure, which laterally contacts a semiconductor material portion that is one of patterned remaining portions of the top semiconductor layer. Gate electrodes are formed as discrete structures that are not interconnected. After formation and planarization of a contact-level dielectric layer, passing gate lines are formed above the contact-level dielectric layer in a line level to provide electrical connections to the gate electrodes. Gate electrodes and passing gate lines that are electrically connected among one another constitute a gate line that is present across two levels.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Babar A. Khan, Effendi Leobandung
  • Patent number: 8629528
    Abstract: According to one embodiment, a semiconductor memory device includes a plurality of word lines formed on a semiconductor substrate at predetermined intervals, selecting transistors arranged on at least one side of the plurality of word lines, an interlayer insulating film formed to cover upper surfaces of the word lines and the selecting transistors, a first air gap located between each pair of adjacent ones of the word lines and covered by the interlayer insulating film, a second air gap located at a first side wall portion of a word line adjacent to the selecting transistors covered by the interlayer insulating film, the first side wall portion facing the selecting transistors, and a third air gap located at a second side wall portion of each of the selecting transistors and covered by the interlayer insulating film. The first, second, and third air gaps are filled with air.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kyoko Ando, Satoshi Nagashima, Kenji Aoyama
  • Patent number: 8629559
    Abstract: A stress reduction apparatus comprises a metal structure formed over a substrate, an inter metal dielectric layer formed over the substrate, wherein a lower portion of the metal structure is embedded in the inter metal dielectric layer and an inverted cup shaped stress reduction layer formed over the metal structure, wherein an upper portion of the metal structure is embedded in the inverted cup shaped stress reduction layer.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ti Lu, Wen-Tsao Chen, Ming-Ray Mao, Kuan-Chi Tsai
  • Publication number: 20140008711
    Abstract: A semiconductor device includes a substrate having a primary side. A first pillar extends vertically with respect to the primary side of the substrate, the first pillar defining first and second conductive regions and a channel region that is provided between the first and second conductive regions. A first gate is provided over the channel region of the first pillar. A buried word line extends along a first direction below the first pillar, the buried word line configured to provide a first control signal to the first gate. A first interposer is coupled with the buried word line and the first gate to enable the first control signal to be applied to the first gate via the buried word line.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: SK Hynix, Inc.
    Inventor: Jinchul PARK
  • Patent number: 8609457
    Abstract: Generally, the present disclosure is directed to a semiconductor device with DRAM bit lines made from the same material as the gate electrodes in non-memory regions of the device, and methods of making the same. One illustrative method disclosed herein comprises forming a semiconductor device including a memory array and a logic region. The method further comprises forming a buried word line in the memory array and, after forming the buried word line, performing a first common process operation to form at least a portion of a conductive gate electrode in the logic region and to form at least a portion of a conductive bit line in the memory array.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 17, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser, Frank Jakubowski
  • Patent number: 8610249
    Abstract: Disclosed herein are embodiments of non-planar capacitor. The non-planar capacitor can comprise a plurality of fins above a semiconductor substrate. Each fin can comprise at least an insulator section on the semiconductor substrate and a semiconductor section, which has essentially uniform conductivity, stacked above the insulator section. A gate structure can traverse the center portions of the fins. This gate structure can comprise a conformal dielectric layer and a conductor layer (e.g., a blanket or conformal conductor layer) on the dielectric layer. Such a non-planar capacitor can exhibit a first capacitance, which is optionally tunable, between the conductor layer and the fins and a second capacitance between the conductor layer and the semiconductor substrate. Also disclosed herein are method embodiments, which can be used to form such a non-planar capacitor and which are compatible with current state of the art multi-gate non-planar field effect transistor (MUGFET) processing.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8610189
    Abstract: A semiconductor device includes a plurality of MOS transistors and wiring connected to a source electrode or a drain electrode of the plurality of MOS transistors and, the wiring being provided in the same layer as the source electrode and the drain electrode in a substrate, or in a position deeper than a surface of the substrate.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 17, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Uchiyama
  • Patent number: 8610187
    Abstract: A first transistor including a channel formation region, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode; a second transistor including an oxide semiconductor layer, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode; and a capacitor including one of the second source electrode and the second drain electrode, the second gate insulating layer, and an electrode provided to overlap with one of the second source electrode and the second drain electrode over the second gate insulating layer are provided. The first gate electrode and one of the second source electrode and the second drain electrode are electrically connected to each other.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 17, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato
  • Patent number: 8610219
    Abstract: In a DRAM-incorporated semiconductor device (SOC) which has a DRAM section and a logic section being formed on one and the same substrate, with the object of providing, with low cost, a SOC having necessary and sufficient characteristics in the DRAM section, while attaining higher-speed performance of the whole elements, silicide is formed at least on all the surfaces of the source-drain regions (10) and the gate surfaces (6) of transistors in the DRAM section and the logic section, concurrently in one and the same step.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: December 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Ken Inoue, Masayuki Hamada
  • Publication number: 20130320422
    Abstract: A conductive strap structure in lateral contact with a top semiconductor layer is formed on an inner electrode of a deep trench capacitor. A cavity overlying the conductive strap structure is filled with a dielectric material to form a dielectric capacitor cap having a top surface that is coplanar with a topmost surface of an upper pad layer. A portion of the upper pad layer is removed to define a line cavity. A fin-defining spacer comprising a material different from the material of the dielectric capacitor cap and the upper pad layer is formed around the line cavity by deposition of a conformal layer and an anisotropic etch. The upper pad layer is removed, and the fin-defining spacer is employed as an etch mask to form a semiconductor fin that laterally contacts the conductive strap structure. An access finFET is formed employing two parallel portions of the semiconductor fin.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Babar A. Khan, Paul C. Parries, Xinhui Wang
  • Publication number: 20130320423
    Abstract: A conductive strap structure in lateral contact with a top semiconductor layer is formed on an inner electrode of a deep trench capacitor. A cavity overlying the conductive strap structure is filled a dielectric material to form a dielectric capacitor cap having a top surface that is coplanar with a topmost surface of an upper pad layer. A semiconductor mandrel in lateral contact with the dielectric capacitor cap is formed. The combination of the dielectric capacitor cap and the semiconductor mandrel is employed as a protruding structure around which a fin-defining spacer is formed. The semiconductor mandrel is removed, and the fin-defining spacer is employed as an etch mask in an etch process that etches a lower pad layer and the top semiconductor layer to form a semiconductor fin that laterally wraps around the conductive strap structure. An access finFET is formed employing two parallel portions of the semiconductor fin.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Felix Beaudoin, Stephen M. Lucarini, Xinhui Wang, Xinlin Wang
  • Patent number: 8592282
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: November 26, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Sean Barstow, Tony P. Chiang, Pragati Kumar, Prashant B. Phatak, Sunil Shanker, Wen Wu
  • Patent number: 8587046
    Abstract: An embedded memory system includes an array of random access memory (RAM) cells, on the same substrate as an array of logic transistors. Each RAM cell includes an access transistor and a capacitor structure. The capacitor structure is fabricated by forming a metal-insulator-metal capacitor in a dielectric layer. The embedded RAM system includes fewer metal layers in the memory region than in the logic region.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 19, 2013
    Assignee: MoSys, Inc.
    Inventor: Jeong Y Choi