Geometry Or Disposition Of Pixel-elements, Address-lines, Or Gate-electrodes (epo) Patents (Class 257/E27.131)
  • Patent number: 11916092
    Abstract: The present disclosure relates to a solid-state imaging device, a manufacturing method thereof, and an electronic apparatus, in which both oblique light characteristics and sensitivity can be improved. The solid-state imaging device includes pixel array unit in which a plurality of pixels is two-dimensionally arranged in a matrix and multi-stage light shielding walls are provided between the pixels. The present disclosure is applicable to, for example, a back-illuminated type solid-state imaging device and the like.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: February 27, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Ippei Yoshiba, Yoichi Ootsuka
  • Patent number: 11876095
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a patterned mask on the second region; and performing a process to enlarge the first fin-shaped structure so that the top surfaces of the first fin-shaped structure and the second fin-shaped structure are different.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: January 16, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hao Lin, Hsin-Yu Chen, Shou-Wei Hsieh
  • Patent number: 11862660
    Abstract: An image sensor having pixels that include two patterned semiconductor layers. The top patterned semiconductor layer contains the photoelectric elements of pixels having substantially 100% fill-factor. The bottom patterned semiconductor layer contains transistors for detecting, resetting, amplifying and transmitting signals charges received from the photoelectric elements. The top and bottom patterned semiconductor layers may be separated from each other by an interlayer insulating layer that may include metal interconnections for conducting signals between devices formed in the patterned semiconductor layers and from external devices.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: January 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jung-Chak Ahn
  • Patent number: 11791366
    Abstract: The present technology relates to a solid-state imaging device and an electronic device capable of improving a saturation characteristic. A photo diode is formed on a substrate, and a floating diffusion accumulates a signal charge read from the photo diode. A plurality of vertical gate electrodes is formed from a surface of the substrate in a depth direction in a region between the photo diode and the floating diffusion, and an overflow path is formed in a region interposed between a plurality of vertical gate electrodes. The present technology may be applied to a CMOS image sensor.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: October 17, 2023
    Assignee: SONY GROUP CORPORATION
    Inventor: Hideo Kido
  • Patent number: 11470276
    Abstract: A pixel is included, the pixel including a photoelectric conversion portion configured to convert incident light to a charge by photoelectric conversion and accumulate the charge, a charge transfer unit configured to transfer the charge generated in the photoelectric conversion portion, a diffusion layer to which the charge is transferred through the charge transfer unit, the diffusion layer having a predetermined storage capacitance, a conversion unit configured to convert the charge transferred to the diffusion layer to a pixel signal, and connection wiring configured to connect the diffusion layer and the conversion unit. The connection wiring is connected to the diffusion layer and the conversion unit through contact wiring extending in a vertical direction with respect to a semiconductor substrate on which the diffusion layer is formed and is formed closer to the semiconductor substrate than other wiring provided in the pixel.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 11, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Takeshi Yanagita, Masaaki Takizawa, Yuuji Nishimura, Shinichi Arakawa, Yuugo Nakamura, Yohei Chiba
  • Patent number: 11044428
    Abstract: Imaging devices and electronic apparatuses with one or more shared pixel structures are provided. The shared pixel structure includes a plurality of photoelectric conversion devices or photodiodes. Each photodiode in the shared pixel structure is located within a rectangular area. The shared pixel structure also includes a plurality of shared transistors. The shared transistors in the shared pixel structure are located adjacent the photoelectric conversion devices of the shared pixel structure. The rectangular area can have two short sides and two long sides, with the shared transistors located along one of the long sides. In addition, a length of one or more of the transistors can be extended in a direction parallel to the long side of the rectangular area.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 22, 2021
    Assignee: SONY CORPORATION
    Inventors: Nanako Kato, Toshifumi Wakano, Yusuke Otake
  • Patent number: 11011560
    Abstract: A pixel includes a photodiode and a readout node for receiving charge transferred from the photodiode. The readout node is configured to have a variable capacitance that is non-linear with respect to a voltage at the readout node. The readout node is resettable. The readout node may be configured to have a lower capacitance when reset to a reset voltage than when getting filled with charge from the photodiode. The readout node may be configured such that the capacitance of the readout node continuously increases as additional charge is received by the readout node after the readout node is reset. The readout node may be configured such that the capacitance of the readout node jumps from a first capacitance to a second capacitance after the readout node has been filled with a certain amount of charge. An image sensor includes a pixel array with a plurality of the pixels.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: May 18, 2021
    Inventor: Alexander Krymski
  • Patent number: 10983395
    Abstract: A display apparatus includes a backlight unit to emit blue light, a first base substrate disposed on the backlight unit, a gate pattern disposed on the first base substrate, a first inorganic insulation layer disposed on the gate pattern, a data pattern disposed on the first inorganic insulation layer, a blue light blocking pattern disposed on the first inorganic insulation layer on which the data pattern is disposed, a second inorganic insulation layer disposed on the data pattern and the first inorganic insulation layer, a shielding electrode disposed on the blue light blocking pattern and overlapping the gate pattern and/or the data pattern, a pixel electrode disposed on the second inorganic insulation layer, and electrically connected to the drain electrode, a color conversion pattern overlapping the pixel electrode, and includes a quantum dot and/or phosphor, and a liquid crystal layer disposed between the pixel electrode and the color conversion pattern.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: April 20, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Doyeong Park, Kee-Bum Park, Seongyoung Lee
  • Patent number: 10854649
    Abstract: An image sensor may include unit pixel blocks with each having pixels for sensing incident light. Each unit pixel block may include a first sub pixel block including a first floating diffusion, a second sub pixel block including a second floating diffusion, and a common transistor block including a first drive transistor adjacent to the first floating diffusion and a second drive transistor adjacent to the second floating diffusion. The first and second floating diffusions may be electrically coupled in common to the first and second drive transistors.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 1, 2020
    Assignee: SK hynix Inc.
    Inventor: Pyong-Su Kwag
  • Patent number: 10855941
    Abstract: A solid-state imaging element of the present disclosure includes a pixel. The pixel includes a charge accumulation unit that accumulates a charge photoelectrically converted by a photoelectric conversion unit, a reset transistor that selectively applies a reset voltage to the charge accumulation unit, an amplification transistor having a gate electrode electrically connected to the charge accumulation unit, and a selection transistor connected in series to the amplification transistor. Additionally, the solid-state imaging element includes a first wiring electrically connecting the charge accumulation unit and the gate electrode of the amplification transistor, a second wiring electrically connected to a common connection node of the amplification transistor and the selection transistor and formed along the first wiring, and a third wiring electrically connecting the amplification transistor and the selection transistor.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 1, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Nobuhiro Kawai
  • Patent number: 10784306
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 22, 2020
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 10777756
    Abstract: Disclosed is a flexible display apparatus in which a bending area bent with respect to a bending line disposed in a first direction is provided, and even when the flexible display apparatus is folded with respect to a folding line provided in a second direction intersecting the first direction, a crack does not occur. The flexible display apparatus includes a cover substrate and a display module disposed on a rear surface of the cover substrate to display an image. Also, the flexible display apparatus includes a flat part, a first bending part bent at a first curvature from a first side of the flat part with respect to a first bending line, and a folding part folded with respect to a folding line. The folding part does not overlap the first bending part.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 15, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventors: MinJic Lee, HongSik Kim, ChangSeung Woo
  • Patent number: 10770562
    Abstract: Techniques are provided for fabricating a semiconductor integrated circuit device which implement an interlayer dielectric (ILD) layer replacement process to replace an initial sacrificial ILD layer with a low-k ILD layer, while forming silicide or dielectric capping layers to protect source/drain contacts of field-effect transistor devices from etch damage during the ILD replacement process. For example, source/drain contact openings (e.g., trenches) are formed in a sacrificial ILD layer and metallic source/drain contacts are formed in the source/drain contact openings. Protective capping layers (e.g., metal-semiconductor alloy capping layers or dielectric capping layers) are formed on upper surfaces of the metallic source/drain contacts. The sacrificial ILD layer is removed using an etch process to etch down the sacrificial ILD layer selective to the protective capping layers, and a low-k ILD layer is formed in place of the removed sacrificial ILD layer.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Andrew Greene, Vimal Kamineni, Adra Carr, Chanro Park, Ruilong Xie
  • Patent number: 10720458
    Abstract: A solid-state imaging device including an imaging area where a plurality of unit pixels are disposed to capture a color image, wherein each of the unit pixels includes: a plurality of photoelectric conversion portions; a plurality of transfer gates, each of which is disposed in each of the photoelectric conversion portions to transfer signal charges from the photoelectric conversion portion; and a floating diffusion to which the signal charges are transferred from the plurality of the photoelectric conversion portions by the plurality of the transfer gates, wherein the plurality of the photoelectric conversion portions receive light of the same color to generate the signal charges, and wherein the signal charges transferred from the plurality of the photoelectric conversion portions to the floating diffusion are added to be output as an electrical signal.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 21, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Hiroaki Ishiwata
  • Patent number: 10529748
    Abstract: There is provided a peeling method capable of preventing a damage to a layer to be peeled. Thus, not only a layer to be peeled having a small area but also a layer to be peeled having a large area can be peeled over the entire surface at a high yield. Processing for partially reducing contact property between a first material layer (11) and a second material layer (12) (laser light irradiation, pressure application, or the like) is performed before peeling, and then peeling is conducted by physical means. Therefore, sufficient separation can be easily conducted in an inner portion of the second material layer (12) or an interface thereof.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 7, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Shunpei Yamazaki
  • Patent number: 10531034
    Abstract: An image sensor that provides global shutter scanning with exposure time control during image capture. The image sensor includes a pixel array with shared pixel units that each include four photodiodes with a floating diffusion node shared therebetween and respective global shutter gates disposed between each photodiode and a supply voltage of the pixel array. Moreover, an image capture timing controller controls an exposure time of each photodiode by adjusting a width of a global shutter reset pulse applied to the plurality of global shutter gates after each readout cycle during image capture to change the respective exposure time of each shared pixel unit.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: January 7, 2020
    Assignee: GRASS VALLEY CANADA
    Inventors: Jeroen Rotte, Petrus Gijsbertus Centen, Arnaud Defernez
  • Patent number: 10462430
    Abstract: A solid state imaging device includes: a group of a plurality of pixels configured to include pixels of the same color coding and with no pixel sharing between each other; and a color filter that is formed by Bayer arrangement of the group of a plurality of pixels.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 29, 2019
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Atsuhiko Yamamoto
  • Patent number: 10458789
    Abstract: A signal processing device for performing processing for reducing noise in a displacement amount measured on a basis of light reflected from a detection object includes a moving-average calculating unit that performs moving average calculation for an input signal to reduce a noise component included in the input signal and an infinite impulse response filter that reduces a noise component included in an input signal by digital signal processing. A filter coefficient of the infinite impulse response filter is determined on a basis of a difference between a first calculation result output by the moving-average calculating unit and a second calculation result output by the infinite impulse response filter when a same signal is input to the moving-average calculating unit and the infinite impulse response filter.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 29, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daiki Ata, Keiichi Yamada, Kazuhiko Nakamura
  • Patent number: 10277800
    Abstract: An image pickup apparatus which, when performing image-plane phase-difference AF, eliminate a noise difference in phase difference information obtained based on signals read from pupil-dividing pixels of an image pickup device, which are arranged in rows and columns in a two-dimensional form. A first image signal is read from one pixel of each pupil-dividing pixels, and a second image signal is read from the other pixel. The order in which they are read is alternately switched on a row-by-row basis. Each of the first and second image signals is subtracted from a third image signal, which is a sum of the first image signal and the second image signal, to obtain first and second separated image signals. The first image signal and the first separated image signal are added together, and the second image signal and the second separated image signal are added together in the column direction.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: April 30, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Toshiyuki Okubo
  • Patent number: 10147758
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 4, 2018
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 10075659
    Abstract: Imaging devices and electronic apparatuses with one or more shared pixel structures are provided. The shared pixel structure includes a plurality of photoelectric conversion devices or photodiodes. Each photodiode in the shared pixel structure is located within a rectangular area. The shared pixel structure also includes a plurality of shared transistors. The shared transistors in the shared pixel structure are located adjacent the photoelectric conversion devices of the shared pixel structure. The rectangular area can have two short sides and two long sides, with the shared transistors located along one of the long sides. In addition, a length of one or more of the transistors can be extended in a direction parallel to the long side of the rectangular area.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 11, 2018
    Assignee: SONY CORPORATION
    Inventors: Nanako Kato, Toshifumi Wakano, Yusuke Otake
  • Patent number: 10068935
    Abstract: A CMOS image sensor pixel (200) comprising a photosensitive element (101) for generating a charge in response to incident light; a plurality of charge storage elements (103); a plurality of transfer gates (102) for enabling the transfer of charge between the photosensitive element and an associated one of the charge storage elements; and one or more first electrical connections (201) for placing at least two of the plurality of charge storage elements in mutual electrical contact.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: September 4, 2018
    Assignee: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Daniel Gaebler, Xuezhou Cao
  • Patent number: 9948850
    Abstract: Disclosed is an image sensor capable of efficiently implementing readout of signals for focus detection and image signals. The disclosed image sensor has a first type of pixel row and a second type of pixel row in which focus detection pixels and imaging pixels are respectively arranged in a first pattern and a second pattern. Readout control that differs between the first type of pixel row and the second type of pixel row is performed, according to the arrangement pattern of the focus detection pixels and the imaging pixels.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: April 17, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventor: Satoshi Suzuki
  • Patent number: 9848119
    Abstract: The image pickup apparatus includes: a first imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally; a second imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally, each pixel including one micro lens, and a first and a second photoelectric conversion units; a light beam splitting unit for splitting a flux of light entering an optical system into fluxes of light entering the first and the second imaging sensors separately; a first image processing unit for processing signals from the first imaging sensor, the first image processing unit generating a still image based on signals from the first imaging sensor; and a second image processing unit for processing signals from the second imaging sensor, the second image processing unit generating signals usable for focal point detection of a phase difference method and generating a moving image based on signals from the second imaging sensor.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: December 19, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Sambonsugi, Kento Inai
  • Patent number: 9838636
    Abstract: Provided is an image pickup apparatus, including: first and second photoelectric conversion elements; first and second transfer transistors configured to transfer charges respectively from the first and second photoelectric conversion elements when the first and second transfer transistors are brought into conductive states, respectively; a floating diffusion region configured to accumulate the charges transferred by the first and second transfer transistors; an amplifying transistor configured to output a signal corresponding to the charges transferred by the first and second transfer transistors; first and second drive wirings, which are electrically connected to gates of the first and second transfer transistors, respectively; and a conductive member, which is configured to electrically connect the floating diffusion region and a gate of the amplifying transistor to each other, and is configured to extend beyond the floating diffusion region in a plan view while being opposed to the first drive wiring.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: December 5, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Hiromasa Tsuboi
  • Patent number: 9752928
    Abstract: An image sensor pixel the conformist single pixel of a larger array. The image sensor pixel can be a large one, such as larger than 100 ?m. The image sensor pixel has readout notes on multiple sides thereof, e.g. on to work for sides, that are symmetrically located on the pixel. The readout notes are simultaneously read out to read out a part of the image from the pixel.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 5, 2017
    Assignee: Forza Silicon Corporation
    Inventors: Guang Yang, Loc Truong
  • Patent number: 9698173
    Abstract: A thin film transistor (TFT) device is provided. The TFT device includes a first conductive layer including a gate electrode and a connection pad. The TFT device further includes a first dielectric layer covering the gate electrode, and a semiconductor layer disposed on the dielectric layer and overlapping the gate electrode. The TFT device further includes a second dielectric layer disposed on the semiconductor layer and the first dielectric layer so as to expose first and second portions of the semiconductor layer and the connection pad. The TFT device further includes a second conductive layer which includes a source electrode portion covering the first portion of the semiconductor layer; a pixel electrode portion extending to the source electrode portion; a drain electrode portion covering the second portion of the semiconductor layer; and an interconnection portion disposed on the connection pad and extending to the drain electrode portion.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: July 4, 2017
    Assignee: ROYOLE CORPORATION
    Inventors: Peng Wei, Xiaojun Yu, Ze Yuan, Jigang Zhao, Haojun Luo, Zihong Liu
  • Patent number: 9621834
    Abstract: Disclosed herein is a solid-state imaging element including a pixel unit configured to include a plurality of pixels arranged in a matrix and a pixel signal readout unit configured to include an analog-digital conversion unit that carries out analog-digital conversion of a pixel signal read out from the pixel unit. Each one of the pixels in the pixel unit includes a plurality of divided pixels arising from division into regions different from each other in optical sensitivity or a charge accumulation amount. The pixel signal readout unit reads out divided-pixel signals of the divided pixels in the pixel. The analog-digital conversion unit carries out analog-digital conversion of the divided-pixel signals that are read out and adds the divided-pixel signals to each other to obtain a pixel signal of one pixel.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: April 11, 2017
    Assignee: Sony Corporation
    Inventor: Hiroki Ui
  • Patent number: 9577006
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: February 21, 2017
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 9543341
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: January 10, 2017
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 9521304
    Abstract: An image sensor pixel may include an array of four photosites, a transverse isolator wall separating the array in two rows of two photosites, and a longitudinal isolator wall separating the array in two columns of two photosites. Both ends of the longitudinal wall may be set back relative to the edges of the array. First and second conversion nodes may be arranged in the spaces between the longitudinal wall and the edges of the matrix. Each conversion node may be common to two adjacent photosites, and an independent transfer gate may be between each photosite and the corresponding conversion node.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: December 13, 2016
    Assignee: STMICROELECTRONICS (GRENOBLE 2) SAS
    Inventors: Flavien Hirigoyen, Emilie Huss
  • Patent number: 9490281
    Abstract: An image sensor comprising a plurality of image sensing pixel groups is provided. Each of the image sensing pixel groups has a plurality of first pixels each having photoelectric conversion portions arrayed in first and second directions for first and second numbers of divisions, respectively, and a plurality of second pixels each having photoelectric conversion portions arrayed in the first and second directions for third and fourth numbers of divisions, respectively. The photoelectric conversion portions comprising the first pixel and the second pixel have a function of photoelectrically converting a plurality of images formed by divided light fluxes of a light flux from an imaging optical system and outputting a focus detection signal for phase difference detection. The first and third numbers of division are coprime natural numbers, and the second and fourth numbers of divisions are coprime natural numbers.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: November 8, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koichi Fukuda, Ryo Yamasaki, Makoto Oikawa, Ichiro Onuki, Hideaki Yamamoto, Akihiro Nishio
  • Patent number: 9473688
    Abstract: The image pickup apparatus includes: a first imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally; a second imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally, each pixel including one micro lens, and a first and a second photoelectric conversion units; a light beam splitting unit for splitting a flux of light entering an optical system into fluxes of light entering the first and the second imaging sensors separately; a first image processing unit for processing signals from the first imaging sensor, the first image processing unit generating a still image based on signals from the first imaging sensor; and a second image processing unit for processing signals from the second imaging sensor, the second image processing unit generating signals usable for focal point detection of a phase difference method and generating a moving image based on signals from the second imaging sensor.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 18, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Sambonsugi, Kento Inai
  • Patent number: 9357148
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: May 31, 2016
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 9041071
    Abstract: A unit pixel of an image sensor includes a photoelectric conversion region, an isolation region, a floating diffusion region and a transfer gate. The photoelectric conversion region is formed in a semiconductor substrate. The isolation region surrounds the photoelectric conversion region, extends substantially vertically with respect to a first surface of the semiconductor substrate, and crosses the incident side of the photoelectric conversion region so as to block leakage light and diffusion carriers. The floating diffusion region is disposed in the semiconductor substrate above the photoelectric conversion region. The transfer gate is disposed adjacent to the photoelectric conversion region and the floating diffusion region, extends substantially vertically with respect to the first surface of the semiconductor substrate, and transmits the photo-charges from the photoelectric conversion region to the floating diffusion region.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jung-Chak Ahn
  • Patent number: 8975638
    Abstract: The active matrix substrate is provided with: first and second scan lines (20a, 20b) that extend in a first direction; first and second signal lines (30a, 30b) that extend in a second direction; first and second pixels (10a, 10b) that are arranged adjacent to each other along the second direction; an auxiliary capacitor line (40); first and second pixel electrodes (60a, 60b); a first TFT (50a); a second TFT (50b); an auxiliary capacitor electrode (42) that is connected to the auxiliary capacitor line (40) and extends below the first and second pixel electrodes (60a, 60b); a first auxiliary capacitor counter electrode (62a) that is connected to the first pixel electrode (60a); and a second auxiliary capacitor counter electrode (62b) that is connected to the second pixel electrode (60b).
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuyori Mitsumoto, Masahiro Yoshida, Satoshi Horiuchi
  • Patent number: 8933530
    Abstract: An image sensor includes a substrate having a front side and a back side, an insulating structure containing circuits on the front side of the substrate, contact holes extending through the substrate to the circuits, respectively, and a plurality of pads disposed on the backside of the substrate, electrically connected to the circuits along conductive paths extending through the contact holes, and located directly over the circuits, respectively. The image sensor is fabricated by a process in which a conductive layer is formed on the back side of the substrate and patterned to form the pads directly over the circuits.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Kim, Young-Hoon Park
  • Patent number: 8912544
    Abstract: Provided is a method to manufacture a light-emitting display device in which a contact hole for the electrical connection of the pixel electrode and one of the source and drain electrode of a transistor and a contact hole for the processing of a semiconductor layer are formed simultaneously. The method contributes to the reduction of a photography step. The transistor includes an oxide semiconductor layer where a channel formation region is formed.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: December 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kaoru Hatano
  • Patent number: 8896039
    Abstract: A method for manufacturing a solid-state imaging device includes: forming pixels that receive incident light in a pixel array area of a substrate; forming pad electrodes in a peripheral area located around the pixel array area of the substrate; forming a carbon-based inorganic film on an upper surface of each of the pad electrodes including a connection surface electrically connected to an external component; forming a coated film that covers upper surfaces of the carbon-based inorganic films; and forming an opening above the connection surface of each of the pad electrodes to expose the connection surface.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 25, 2014
    Assignee: Sony Corporation
    Inventor: Hiroshi Horikoshi
  • Patent number: 8890166
    Abstract: An object of the present invention is to provide a light-emitting device in which plural kinds of circuits are formed over the same substrate, and plural kinds of thin film transistors are provided in accordance with characteristics of the plural kinds of circuits. An inverted-coplanar thin film transistor, an oxide semiconductor layer of which overlaps with a source and drain electrode layers, and a channel-etched thin film transistor are used as a thin film transistor for a pixel and a thin film transistor for a driver circuit, respectively. Between the thin film transistor for a pixel and a light-emitting element, a color filter layer is provided so as to overlap with the light-emitting element which is electrically connected to the thin film transistor for a pixel.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Yoshiaki Oikawa, Shunpei Yamazaki, Junichiro Sakata, Masashi Tsubuku, Kengo Akimoto, Miyuki Hosoba
  • Patent number: 8878264
    Abstract: A global shutter pixel cell includes a serially connected anti-blooming (AB) transistor, storage gate (SG) transistor and transfer (TX) transistor. The serially connected transistors are coupled between a voltage supply and a floating diffusion (FD) region. A terminal of a photodiode (PD) is connected between respective terminals of the AB and the SG transistors; and a terminal of a storage node (SN) diode is connected between respective terminals of the SG and the TX transistors. A portion of the PD region is extended under the SN region, so that the PD region shields the SN region from stray photons. Furthermore, a metallic layer, disposed above the SN region, is extended downwardly toward the SN region, so that the metallic layer shields the SN region from stray photons. Moreover, a top surface of the metallic layer is coated with an anti-reflective layer.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 4, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Sergey Velichko, Jingyi Bai
  • Patent number: 8872184
    Abstract: An array structure, which includes a TFT, a passivation layer, a pixel electrode, a first connecting layer and a first spacer is provided. The TFT includes a gate, a source and a drain. The passivation layer overlays the TFT. The pixel electrode is located on the passivation layer. The first connecting layer is located on the pixel electrode and electrically connected to the pixel electrode and the drain. The first spacer is located on the first connecting layer.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 28, 2014
    Assignee: Au Optronics Corporation
    Inventors: Yu-Cheng Chen, Chih-Hung Lin, Yi-Hui Li
  • Patent number: 8871542
    Abstract: A method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured using the method, which are suitable for manufacturing large-sized display devices on a mass scale and can be used for high-definition patterning. The method includes consecutively forming organic layers on a substrate on which a plurality of panels are arranged parallel to each other; forming a second electrode on the organic layers, for each of the panels; forming a passivation layer on the second electrode on each of the panels to cover the second electrode; and removing a part of the organic layers that exists between the passivation layer on the second electrode of one of the panels and the passivation layer on the second electrode of an adjacent one of the panels.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Dong-Seob Jeong
  • Patent number: 8866137
    Abstract: A thin film transistor array panel includes: a gate electrode disposed on an insulation substrate; a gate insulating layer disposed on the gate electrode; a first electrode and an oxide semiconductor disposed directly on the gate insulating layer; a source electrode and a drain electrode formed on the oxide semiconductor; a passivation layer disposed on the first electrode, the source electrode, and the drain electrode; and a second electrode disposed on the passivation layer.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: October 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Won Lee, Woo Geun Lee, Kap Soo Yoon, Ki-Won Kim, Hyun-Jung Lee, Hee-Jun Byeon, Ji-Soo Oh
  • Patent number: 8860100
    Abstract: A solid-state imaging device includes: a first photodiode receiving light of a first color; a second photodiode that is arranged next to the first photodiode in a first direction and receives light of a second color; a third photodiode that is arranged next to the second photodiode in a second direction and receives light of the first color; a fourth photodiode that is arranged next to the third photodiode in the first direction and receives light of a third color; a first reset transistor for discharging a charge generated in the first photodiode and the second photodiode; and a second reset transistor for discharging a charge generated in the third photodiode and the fourth photodiode. The first photodiode and the third photodiode have a small difference in area.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 14, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Kazunobu Kuwazawa
  • Patent number: 8860167
    Abstract: An image sensor may include a semiconductor substrate, a plurality of light receiving devices formed within the semiconductor substrate, and a plurality of device isolation films for isolating the light receiving devices from each other. When an arrangement direction of a pixel array may be formed by arranging the light receiving devices is a horizontal direction, the pixel array may be formed by alternately arranging a first type light receiving device and a second type light receiving device having different horizontal lengths.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 14, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hoon Jang
  • Patent number: 8841714
    Abstract: A solid state imaging device 1 is provided with a photoelectric conversion portion 2 having a plurality of photosensitive regions 7, and a potential gradient forming portion 3 having an electroconductive member 8 arranged opposite to the photosensitive regions 7. A planar shape of each photosensitive region 7 is a substantially rectangular shape. The photosensitive regions 7 are juxtaposed in a first direction intersecting with the long sides. The potential gradient forming portion 3 forms a potential gradient becoming higher along a second direction from one of the short sides to the other of the short sides of the photosensitive regions 7. The electroconductive member 8 includes a first region 8a extending in the second direction and having a first electric resistivity, and a second region 8b extending in the second direction and having a second electric resistivity smaller than the first electric resistivity.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 23, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tomohiro Ikeya, Yasuhito Yoneta, Hisanori Suzuki, Masaharu Muramatsu
  • Patent number: 8835929
    Abstract: A pixel structure including a first thin film transistor (TFT), a second TFT and a storage capacitor is provided. The source electrode of the first TFT is connected to the gate electrode of the second TFT, and the semiconductor layer of the second TFT protrudes out two opposite side of the gate electrode of the second TFT. A thin film transistor including a gate electrode, a capacitance compensation structure, a semiconductor layer, a dielectric layer, a drain electrode and a source electrode is also provided. The capacitance compensation structure is electrically connected to the gate electrode. The semiconductor layer partially overlaps the gate electrode, and extends to overlap the capacitance compensation structure.
    Type: Grant
    Filed: April 7, 2013
    Date of Patent: September 16, 2014
    Assignee: AU Optronics Corp.
    Inventors: Peng-Bo Xi, Yu-Chi Chen
  • Patent number: 8829578
    Abstract: According to one embodiment, a solid-state imaging device includes a unit cell forming region in a pixel array of a semiconductor substrate, a pixel which is provided in the unit cell forming region and generates a signal charge based on a light signal, and an amplification transistor which is provided in the unit cell forming region and amplifies a potential associated with the signal charge transferred from the pixel to a floating diffusion. The amplification transistor includes a gate electrode having one or more first embedded portions embedded in one or more trenches in the semiconductor substrate through a first gate insulating film.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Motohiro Maeda
  • Patent number: 8823069
    Abstract: A solid-state imaging device that includes: a pixel array section configured by an array of a unit pixel, including an optoelectronic conversion section that subjects an incoming light to optoelectronic conversion and stores therein a signal charge, a transfer transistor that transfers the signal charge stored in the optoelectronic conversion section, a charge-voltage conversion section that converts the signal charge provided by the transfer transistor into a signal voltage, and a reset transistor that resets a potential of the charge-voltage conversion section; and voltage setting means for setting a voltage of a well of the charge-voltage conversion section to be negative.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 2, 2014
    Assignee: Sony Corporation
    Inventor: Fumihiko Koga