Memory Effect Devices (epo) Patents (Class 257/E29.17)
  • Patent number: 8044442
    Abstract: A gated nano-electro-mechanical (NEM) switch employing metal-insulator-metal (MIM) technology and related devices and methods which can facilitate implementation of low-power, radiation-hardened, high-temperature electronic devices and circuits. In one example embodiment a gate electrode is configured as a cantilever beam whose free end is coupled to a MIM stack. The stack moves into bridging contact across a source and drain region when the applied gate voltage generates a sufficient electrostatic force to overcome the mechanical biasing of the cantilever beam. A second set of contacts can be added on the cantilever beam to form a complementary switching structure, or to a separate cantilever beam. The switching can be configured as non-volatile in response to stiction forces. NEM circuits provide a number of advantages within a variety of circuit types, including but not limited to: logic, memory, sleep circuits, pass circuits, and so forth.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 25, 2011
    Assignee: The Regents of the University of California
    Inventors: Hei Kam, Tsu-Jae King
  • Patent number: 8030637
    Abstract: An information storage element has a carbon storage material including hexagonally bonded carbon and tetrahedrally bonded carbon. The information is formed by a changeable ratio of hexagonally bonded carbon and tetrahedrally bonded carbon.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: October 4, 2011
    Assignee: Qimonda AG
    Inventor: Klaus-Dieter Ufert
  • Patent number: 8030643
    Abstract: A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Tamae Takano, Masayuki Sakakura, Ryoji Nomura, Shunpei Yamazaki
  • Patent number: 8021897
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: September 20, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Patent number: 8017986
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 13, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 8009454
    Abstract: Provided is a resistance random access memory (RRAM) device and a method of manufacturing the same. A resistance random access memory (RRAM) device may include a lower electrode, a first oxide layer on the lower electrode and storing information using two resistance states, a current control layer made of a second oxide on the first oxide layer and an upper electrode on the current control layer.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung-jae Lee, Yoon-dong Park, Hyun-sang Hwang, Dong-soo Lee
  • Patent number: 8008213
    Abstract: A method of making a device includes forming at least one anodizable metal layer over at least one of an electrode or a semiconductor device, forming a plurality of pores in the anodizable metal layer by anodization of the anodizable metal layer to expose a portion of the electrode or semiconductor device, and filling at least one pore with a rewritable material such that at least some of the rewritable material is in electrical contact with the electrode or semiconductor device.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 30, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Li Xiao, Jingyan Zhang, Huicai Zhong
  • Patent number: 7995369
    Abstract: This disclosure concerns a semiconductor memory device including bit lines; word lines; semiconductor layers arranged to correspond to crosspoints of the bit lines and the word lines; bit line contacts connecting between a first surface region and the bit lines, the first surface region being a part of a surface region of the semiconductor layers directed to the word lines and the bit lines; and a word-line insulating film formed on a second surface region adjacent to the first surface region, the second surface region being a part of out of the surface region, the word-line insulating film electrically insulating the semiconductor layer and the word line, wherein the semiconductor layer, the word line and the word-line insulating film form a capacitor, and when a potential difference is given between the word line and the bit line, the word-line insulating film is broken in order to store data.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 9, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Minami, Ryo Fukuda, Takeshi Hamamoto
  • Patent number: 7989268
    Abstract: A shape-molding structure of a memory card comprises a circuit substrate, at least one chip, and an encapsulant covering. The upper and lower surfaces of the circuit substrate have a circuit layer and a plurality of electric contacts, respectively. The chip is located on the upper surface of the circuit substrate and electrically connected with the circuit layer. The encapsulant covering is formed by using a mold to press encapsulant entering at least one encapsulant inlet provided on at least one side surface of the circuit substrate. The encapsulant covering encapsulates all the above components with only the electric contacts exposed. A trace mark of the encapsulant inlet remaining on the encapsulant covering is then cut to obtain a shape-molding structure of memory card with an smooth and intact outer appearance.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: August 2, 2011
    Assignee: Kingston Technology Corporation
    Inventors: Ben Wei Chen, Jin S. Wang, David Hong-Dien Chen
  • Publication number: 20110180861
    Abstract: A magnetic random access memory includes the following structure. A first magnetoresistive effect element is formed on a semiconductor substrate. The first magnetoresistive effect element includes a first fixed layer, a first nonmagnetic layer and a first free layer. The first fixed layer has an invariable magnetization direction. The first nonmagnetic layer is formed on the first fixed layer. The first free layer is formed on the first nonmagnetic layer and has a variable magnetization direction. An active region is formed on the substrate. A first select transistor includes a first diffusion region and a second diffusion region which are formed in the active region. The first diffusion region is electrically connected to the first free layer. A second select transistor includes the first diffusion region and a third diffusion region which are formed in the active region. A first interconnect layer is electrically connected to the first fixed layer.
    Type: Application
    Filed: April 28, 2010
    Publication date: July 28, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masayoshi IWAYAMA
  • Patent number: 7982244
    Abstract: A semiconductor memory device includes a first block having first memory cells and first select transistors, a second block having second memory cells and second select transistors, and arranged adjacent to the first block in a first direction, the second select transistor being arranged to face the first select transistor and commonly having a diffusion region with the first select transistor, a first interconnection layer provided on the diffusion region between the first and second blocks and extending in a second direction, and a second interconnection layer having a first portion provided in contact with an upper portion of the first interconnection layer and extending to a portion outside the first interconnection layer, and a second portion extending in the second direction and connected to the first portion in a portion outside a portion on the first interconnection layer.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Sato, Hiroyuki Nitta, Fumitaka Arai
  • Publication number: 20110169126
    Abstract: A nonvolatile memory cell including a storage element in series with a diode steering element. At least one interface of the diode steering element is passivated.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 14, 2011
    Inventors: Xiying Chen, Kun Hou, Chuanbin Pan, Abhijit Bandyopadhyay, Yung-Tin Chen
  • Patent number: 7977662
    Abstract: A non-volatile memory array includes an array of phase-changeable memory elements that are electrically insulated from each other by at least a first electrically insulating region extending between the array of phase-changeable memory elements. The first electrically insulating region includes a plurality of voids therein. Each of these voids extends between a corresponding pair of phase-changeable memory cells in the non-volatile memory array and, collectively, the voids form an array of voids in the first electrically insulating region.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: July 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Chang Ryoo, Jong-Woo Ko, Yoon-Jong Song
  • Patent number: 7964437
    Abstract: A memory cell device of the type that includes a memory material switchable between electrical property states by application of energy, situated between first and second (“bottom” and “top”) electrodes has a top electrode including a larger body portion and a stem portion. The memory material is disposed as a layer over a bottom electrode layer, and a base of the stem portion of the top electrode is in electrical contact with a small area of the surface of the memory material. Methods for making the memory cell are described.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: June 21, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Publication number: 20110140191
    Abstract: A method for manufacturing a twin bit cell structure with a silicon nitride material includes forming a gate dielectric layer overlying a semiconductor substrate and a polysilicon gate structure overlying the gate dielectric layer. An undercut region is formed in each side of the gate dielectric layer underneath the polysilicon gate structure. Thereafter, an oxidation process is performed to form a first silicon oxide layer on a peripheral surface of the polysilicon gate structure and a second silicon oxide layer on an exposed surface of the semiconductor substrate. Then, a silicon nitride material is deposited over the first and second silicon oxide layers including the undercut region and the gate dielectric layer. The silicon nitride material is selectively etched to form an insert region in a portion of the undercut region. A sidewall spacer is formed to isolate and protect the exposed silicon nitride material and the polysilicon gate structure.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 16, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: MIENO FUMITAKE
  • Patent number: 7960719
    Abstract: The invention provides a semiconductor device where data can be written after the production and forgery caused by rewriting of data can be prevented, and which can be manufactured at a low cost using a simple structure and an inexpensive material. Further, the invention provides a semiconductor device having the aforementioned functions, where wireless communication is not blocked by the internal structure. The semiconductor device of the invention has an organic memory provided with a memory cell array including a plurality of memory cells, a control circuit for controlling the organic memory, and a wire for connecting an antenna. Each of the plurality of memory cells has a transistor and a memory element. The memory element has a structure where an organic compound layer is provided between a first conductive layer and a second conductive layer. The second conductive layer is formed in a linear shape.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: June 14, 2011
    Assignee: Semiconductor Energy Laboratotry Co., Ltd.
    Inventor: Kiyoshi Kato
  • Patent number: 7943917
    Abstract: A non-volatile memory cell and the fabrication method thereof are provided. The non-volatile memory cell comprises a top electrode, a bottom electrode and an oxide layer disposed between the top electrode and the bottom electrode. The oxide layer comprises a relatively low oxygen content layer adjacent to the bottom electrode, a relatively high oxygen content layer adjacent to the top electrode, and a transition layer disposed between the relatively high and the relatively low oxygen content layers. The transition layer has an oxygen concentration within a range between those of the relatively high and the relatively low oxygen content layers.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: May 17, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Chun-I Hsieh, Chang-Rong Wu
  • Patent number: 7943920
    Abstract: A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 ?, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 17, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Wei-Chih Chien, Kuo-Pin Chang, Erh-Kun Lai, Kuang Yeu Hsieh
  • Publication number: 20110108899
    Abstract: A method of manufacturing a patterned ferroelectric polymer memory medium is disclosed, which includes forming an electrode on a substrate; forming a ferroelectric polymer thin film on the electrode; and patterning and orienting the polymer thin film into a plurality of nanostructures by embossing techniques. Also disclosed are two methods which include forming nanofeatures in an interlayer dielectric (ILD) layer deposited on a substrate; forming a ferroelectric polymer thin film on the ILD layer in the nanofeatures; and patterning and orienting the polymer thin film into a plurality of nanostructures by pressing. The patterning process followed by an annealing process promotes specific crystal orientation, which significantly reduces the operation voltage, and increases the signal-to-noise ratio. The invention also covers devices made of a ferroelectric polymer layer oriented by such an embossing method and the use of such devices at a coercive field of 10 MV/m or less.
    Type: Application
    Filed: May 29, 2009
    Publication date: May 12, 2011
    Inventors: Alain Jonas, Zhijun Hu
  • Patent number: 7939398
    Abstract: A method of manufacturing a single-electron transistor device is provided. The method includes forming a thinned region in a silicon substrate, the thinned region offset by a non-selected region. The method also includes forming at least one quantum island from the thinned region by subjecting the thinned region to an annealing process. The non-selected region is aligned with the quantum island and tunnel junctions are formed between the quantum island and the non-selected region. The present invention also includes a single-electron device, and a method of manufacturing an integrated circuit that includes a single-electron device.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 10, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Christoph Wasshuber, Gabriel G. Barna, Olivier A. Faynot
  • Patent number: 7932543
    Abstract: Provided are a wire structure and a semiconductor device having the wire structure. The wire structure includes a first wire that has a first region having a width of several to tens of nanometers and a second region having a width wider than that of the first region.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jun Choi, Jung-hyun Lee, Hyung-jin Bae, Chang-soo Lee
  • Patent number: 7928501
    Abstract: Provided are a semiconductor device and a methods of forming and operating the semiconductor device. The semiconductor device may include active pillars extending from a semiconductor substrate and disposed two dimensionally disposed on the semiconductor substrate, upper interconnections connecting the active pillars along one direction, lower interconnections crossing the upper interconnections and disposed between the active pillars, word lines crossing the upper interconnections and disposed between the active pillars, and data storage patterns disposed between the word lines and the active pillars.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 19, 2011
    Assignees: Samsung Electronics Co., Ltd., Seoul National University Industry Foundation
    Inventors: Wook-Hyun Kwon, Byung-Gook Park, Yun-Heub Song, Yoon Kim
  • Patent number: 7928500
    Abstract: A semiconductor device includes a tunnel insulating film formed on a semiconductor substrate, a floating gate electrode formed on the tunnel insulating film, an inter-electrode insulating film formed on the floating gate electrode, and a control gate electrode formed on the inter-electrode insulating film, wherein the inter-electrode insulating film includes a main insulating film and a plurality of nano-particles in the main insulating film.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Yoshio Ozawa, Hiroaki Tsunoda
  • Patent number: 7928421
    Abstract: A memory device. The device includes first and second electrode members, in spaced relation on a substrate. A phase change element lies in electrical contact with the first and second electrode elements and spans the space separating them. The phase change element includes two segments, each in contact with one of the electrode elements. The segments are fused together at a location between the two electrodes such that the fused area has a smaller cross-sectional area than does the remainder of the phase change element. The electrodes, the substrate and the phase change element define a chamber containing a vacuum.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 19, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang Lan Lung
  • Publication number: 20110068313
    Abstract: Memory cells of a memory device including a variable resistance material have a cavity between the memory cells. Electronic systems include such memory devices. Methods of forming a memory device include providing a cavity between memory cells of the memory device.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jun Liu
  • Patent number: 7910913
    Abstract: A phase change memory device includes a switching device and a storage node connected to the switching device. The storage node includes a bottom stack, a phase change layer disposed on the bottom stack and a top stack disposed on the phase change layer. The phase change layer includes a unit for increasing a path of current flowing through the phase change layer and reducing a volume of a phase change memory region. The area of a surface of the unit disposed opposite to the bottom stack is greater than or equal to the area of a surface of the bottom stack in contact with the phase change layer.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuk-soon Choi, Ji-hyun Hur, Yoon-ho Kang, Hyo-sug Lee, Jai-kwang Shin, Jae-joon Oh
  • Publication number: 20110048534
    Abstract: A photovoltaic device includes a built-in electric field generated by electric dipoles of nanoparticles embedded in a photoconducting host.
    Type: Application
    Filed: January 21, 2009
    Publication date: March 3, 2011
    Applicant: UNIVERSITY OF TOLEDO
    Inventors: Diana Shvydka, Victor Karpov
  • Publication number: 20110037109
    Abstract: In some embodiments, a semiconductor substrate includes trenches defining active regions. The semiconductor device further includes lower and upper device isolation patterns disposed in the trenches. An intergate insulation pattern and a control gate electrode are disposed on the semiconductor substrate to cross over the active regions. A charge storage electrode is between the control gate electrode and the active regions. A gate insulation pattern is between the charge storage electrode and the active regions, and the intergate insulation pattern directly contacts the upper device isolation pattern between the active regions.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Inventors: Hong-Gun KIM, Ju-Seon GOO, Mun-Jun KIM, Yong-Soon CHOI, Sung-Tae KIM, Eun-Kyung BAEK
  • Patent number: 7888240
    Abstract: A phase change memory including an ovonic threshold switch is formed using a pulsed direct current (DC) deposition chamber using pulsed DC. Pulsed DC is used to deposit a chalcogenide film. Pulsed DC may be also used to deposit a carbon film.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 15, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Roger Hamamjy, Kuo-Wei Chang, Sean Jong Lee, Chong W. Lim
  • Publication number: 20110031464
    Abstract: A phase change material including a high adhesion phase change material formed on a dielectric material and a low adhesion phase change material formed on the high adhesion phase change material. The high adhesion phase change material includes a greater amount of at least one of nitrogen and oxygen than the low adhesion phase change material. The phase change material is produced by forming a first chalcogenide compound material including an amount of at least one of nitrogen and oxygen on the dielectric material and forming a second chalcogenide compound including a lower percentage of at least one of nitrogen and oxygen on the first chalcogenide compound material. A phase change random access memory device, and a semiconductor structure are also disclosed.
    Type: Application
    Filed: October 21, 2010
    Publication date: February 10, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Keith R. Hampton
  • Publication number: 20110024821
    Abstract: A flash memory cell includes a p-channel flash transistor having a source, a drain, a floating gate, and a control gate, an n-channel flash transistor having a source, a drain coupled to the drain of the p-channel flash transistor, a floating gate, and a control gate, a switch transistor having a gate coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source, and a drain, and an n-channel assist transistor having a drain coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source coupled to a fixed potential, and a gate.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Zhigang Wang, Fethi Dhaoui, Michael Sadd, John McCollum, Frank Hawley
  • Patent number: 7880221
    Abstract: A method of forming an electronic device is provided that includes selectively implanting ions into a workpiece, wherein ions are implanted into a first region of the workpiece that includes a semiconductor material, while substantially none of the ions are implanted into a second region of the workpiece that also includes a semiconductor material. The method further includes depositing a metal-containing film over the first region and the second region after selectively implanting, and then reacting the metal-containing film with the semiconductor material to form a first metal-semiconductor film within the first region and a second metal-semiconductor film within the second region. The first metal-semiconductor film has a first thickness and the second metal-semiconductor film has a second thickness that is different from the first thickness.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 1, 2011
    Assignee: Spansion LLC
    Inventors: Eunha Kim, Wen Yu, Minh-Van Ngo, Kyunghoon Min, Hiu-Yung Wong
  • Patent number: 7879727
    Abstract: A method of fabricating a semiconductor device including depositing a hardmask layer on a layer of the semiconductor device, selectively etching a pattern of continuous lines in the hardmask layer, depositing an antireflective coating over remaining portions of the hardmask layer, depositing a photoresist layer on the antireflective coating, patterning the photoresist layer with a plurality of isolation trenches via a lithography process, each of the isolation trenches extending perpendicular to and crossing portions of at least one of the continuous lines of the underlying hardmask layer, and with each isolation trench having an initial width.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventors: Sergei Postnikov, Thomas Schulz, Hans-Joachim Barth, Klaus von Arnim
  • Publication number: 20110018046
    Abstract: A method of manufacturing a semiconductor device including forming two first gate electrodes along a first direction on a first surface of a semiconductor substrate and source/drain areas sandwiching a channel region under each of the first gate electrodes, forming a first interlayer insulating layer to fill a region between the first gate electrodes, lowering a top of the first interlayer insulating layer, depositing a second interlayer insulating layer on the first interlayer insulating layer and the first gate electrodes, planarizing a surface of the second interlayer insulating layer, and forming an interconnect layer in the second interlayer insulating layer and a contact plug in the first interlayer insulating layer and the second interlayer insulating layer so that the contact plug is in contact with the interconnect layer and one of the source/drain areas.
    Type: Application
    Filed: October 7, 2010
    Publication date: January 27, 2011
    Inventors: Hiroyuki KUTSUKAKE, Yasuhiko MATSUNAGA, Shoichi MIYAZAKI
  • Publication number: 20110012190
    Abstract: A semiconductor device includes a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, the second insulating film including a lower silicon nitride film, a lower silicon oxide film formed on the lower silicon nitride film, an intermediate insulating film formed on the lower silicon oxide film and containing a metal element, the intermediate insulating film having a relative dielectric constant of greater than 7, an upper silicon oxide film formed on the intermediate insulating film, and an upper silicon nitride film formed on the upper silicon oxide film.
    Type: Application
    Filed: September 22, 2010
    Publication date: January 20, 2011
    Inventors: Masayuki Tanaka, Daisuke Nishida, Ryota Fujitsuka, Katsuyuki Sekine, Akihito Yamamoto, Katsuaki Natori, Yoshio Ozawa
  • Publication number: 20110012182
    Abstract: The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Applicant: Micron Technology Inc.
    Inventors: Sanh D. TANG, Gordon HALLER, Kris K. BROWN, Tuman Earl ALLEN, III
  • Patent number: 7847325
    Abstract: A discrete trap memory, comprising a silicon substrate layer, a bottom oxide layer on the silicon substrate layer, a Fullerene layer on the bottom oxide layer, a top oxide layer on the Fullerene layer, and a gate layer on the top oxide layer; wherein the Fullerene layer comprises spherical, elliptical or endohedral Fullerenes that act as charge traps.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: December 7, 2010
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Poeppel, Georg Tempel
  • Publication number: 20100301330
    Abstract: Memory devices based on tungsten-oxide memory regions are described, along with methods for manufacturing and methods for programming such devices. The tungsten-oxide memory region can be formed by oxidation of tungsten material using a non-critical mask, or even no mask at all in some embodiments. A memory device described herein includes a bottom electrode and a memory element on the bottom electrode. The memory element comprises at least one tungsten-oxygen compound and is programmable to at least two resistance states. A top electrode comprising a barrier material is on the memory element, the barrier material preventing movement of metal-ions from the top electrode into the memory element.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 2, 2010
    Applicant: MACTRONIC INTERNATIONAL CO., LTD.
    Inventors: ChiaHua Ho, Erh-Kun Lai
  • Patent number: 7834342
    Abstract: A phase change material including a high adhesion phase change material formed on a dielectric material and a low adhesion phase change material formed on the high adhesion phase change material. The high adhesion phase change material includes a greater amount of at least one of nitrogen and oxygen than the low adhesion phase change material. The phase change material is produced by forming a first chalcogenide compound material including an amount of at least one of nitrogen and oxygen on the dielectric material and forming a second chalcogenide compound including a lower percentage of at least one of nitrogen and oxygen on the first chalcogenide compound material. A phase change random access memory device, and a semiconductor structure are also disclosed.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 16, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Keith R. Hampton
  • Patent number: 7825439
    Abstract: A semiconductor memory according to an example of the invention includes active areas, and element isolation areas which isolate the active areas. The active areas and the element isolation areas are arranged alternately in a first direction. An n-th (n is odd number) active area from an endmost portion in the first direction and an (n+1)-th active area are coupled to each other at an endmost portion in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Izumi, Takeshi Kamigaichi, Shinya Takahashi
  • Patent number: 7816245
    Abstract: A semiconductor device is formed by providing a semiconductor substrate comprising a cell region, a peripheral circuit region, and a resistor region, forming a device isolation layer on the semiconductor substrate so as to define an active region, forming a first insulating layer and a polysilicon pattern on the active region of the peripheral circuit region, forming a second insulating layer, a charge storage layer, and a third insulating layer on the active region of the cell region, forming a conductive layer on the semiconductor substrate, and patterning the conductive layer to form conductive patterns on the third insulating layer of the cell region, the polysilicon pattern of the active region of peripheral circuit region, and the semiconductor substrate of the resistor region, respectively.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi
  • Patent number: 7811879
    Abstract: Techniques for forming a memory cell. An aspect of the invention includes forming FET gate stacks and sacrificial cell gate stacks over the substrate. Spacer layers are then formed around the FET gate stacks and around the sacrificial cell gate stacks. The sacrificial cell gate stacks are then removed such that the spacer layers around the sacrificial cell gate stacks are still intact. BJT cell stacks are then formed in the space between the spacer layers where the sacrificial cell gate stacks were formed and removed, the BJT cell stacks including an emitter layer. A phase change layer above the emitter contacts and an electrode above the phase change layer are then formed.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chung Hon Lam, Bipin Rajendran
  • Patent number: 7807995
    Abstract: A nonvolatile semiconductor memory apparatus 25 comprises a semiconductor substrate 11, a lower-layer wire 12 formed on the semiconductor substrate 11, an upper-layer wire 20 formed above the lower-layer wire 12 to cross the lower-layer wire 12, an interlayer insulating film 13 provided between the lower-layer wire 12 and the upper-layer wire 20, and a resistance variable layer 15 which is embedded in a contact hole 14 formed in the interlayer insulating film 13 and is electrically connected to the lower-layer wire 12 and the upper-layer wire 20. The upper-layer wire 20 includes at least two layers which are a lowermost layer 21 made of an electrically-conductive material having a hydrogen barrier property and an electric conductor layer 22 having a specific resistance which is lower than a specific resistance of the lowermost layer 21.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: October 5, 2010
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Takesi Takagi
  • Patent number: 7800091
    Abstract: A nonvolatile semiconductor memory device includes a first stacked structure in which a plurality of electrode layers are stacked on a substrate via insulating layers, a first resistance changing layer provided on a side surface of the first stacked structure and in contact with the first electrode layers, the first resistance changing layer having a resistance value changing on the basis of an applied voltage, a second electrode layer provided on a side surface of the first resistance changing layer, and a bit line provided on the first stacked structure and electrically connected to the second electrode layer.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Kamigaichi, Hirofumi Inoue
  • Patent number: 7791057
    Abstract: Memory cells are described along with methods for manufacturing. A memory cell as described herein includes a bottom electrode comprising a base portion and a pillar portion on the base portion, the pillar portion having a width less than that of the base portion. A dielectric surrounds the bottom electrode and has a top surface. A memory element is overlying the bottom electrode and includes a recess portion extending from the top surface of the dielectric to contact the pillar portion of the bottom electrode, wherein the recess portion of the memory element has a width substantially equal to the width of the pillar portion of the bottom electrode. A top electrode is on the memory element.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: September 7, 2010
    Assignees: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Chung Hon Lam, Min Yang, Alejandro G. Schrott
  • Patent number: 7777215
    Abstract: A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 ?, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 17, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Wei-Chih Chien, Kuo-Pin Chang, Erh-Kun Lai, Kuang Yeu Hsieh
  • Publication number: 20100200852
    Abstract: A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 12, 2010
    Applicant: Panasonic Corporation
    Inventors: Yoshio Kawashima, Takeshi Takagi, Takumi Mikawa, Zhiqiang Wei
  • Publication number: 20100176479
    Abstract: A method of fabricating a semiconductor device including depositing a hardmask layer on a layer of the semiconductor device, selectively etching a pattern of continuous lines in the hardmask layer, depositing an antireflective coating over remaining portions of the hardmask layer, depositing a photoresist layer on the antireflective coating, patterning the photoresist layer with a plurality of isolation trenches via a lithography process, each of the isolation trenches extending perpendicular to and crossing portions of at least one of the continuous lines of the underlying hardmask layer, and with each isolation trench having an initial width.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Sergei Postnikov, Thomas Schulz, Hans-Joachim Barth, Klaus von Arnim
  • Publication number: 20100155815
    Abstract: A method of manufacturing a memory cell 200. The method comprises forming a memory stack 215. Forming the memory stack includes pre-treating an insulating layer 210 in a substantially ammonia atmosphere for a period of more than 5 minutes to thereby form a pre-treated insulating layer 310. Forming the memory stack also includes depositing a silicon nitride layer on the pre-treated insulating layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: Texas Instruments Incorporated
    Inventor: Bernard John Fischer
  • Publication number: 20100155803
    Abstract: Methods for fabricating integrated circuits include fabricating a logic device on a substrate, forming an intermediate semiconductor substrate on a surface of the logic device, and fabricating a capacitor-less memory cell on the intermediate semiconductor substrate. Integrated circuits with capacitor-less memory cells formed on a surface of a logic device are also disclosed, as are multi-core microprocessors including such integrated circuits.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu