Vertical Transistor (epo) Patents (Class 257/E29.183)
  • Patent number: 11894433
    Abstract: A stacked semiconductor device comprising a lower source/drain epi located on top of a bottom dielectric layer. An isolation layer located on top of the lower source/drain epi and an upper source/drain epi located on top of the isolation layer. A lower electrical contact that is connected to the lower source/drain epi, wherein the lower electrical contact is in direct contact with multiple side surfaces of the lower source/drain epi.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Ruilong Xie, Chen Zhang, Kangguo Cheng
  • Patent number: 11855195
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to transistor with wrap-around extrinsic base and methods of manufacture. The structure includes: a substrate; a collector region within the substrate; an emitter region over the substrate and which comprises mono-crystal silicon based material; an intrinsic base under the emitter region and comprising semiconductor material; and an extrinsic base surrounding the emitter and over the intrinsic base.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: December 26, 2023
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Xinshu Cai, Shyue Seng Tan, Vibhor Jain, John J. Pekarik, Kien Seen Daniel Chong, Yung Fu Chong, Judson R. Holt, Qizhi Liu, Kenneth J. Stein
  • Patent number: 11804521
    Abstract: A device including a transistor is fabricated by forming a first part of a first region of the transistor through the implantation of dopants through a first opening. The second region of the transistor is then formed in the first opening by epitaxy.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: October 31, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Alexis Gauthier, Pascal Chevalier, Gregory Avenier
  • Patent number: 11699745
    Abstract: A thyristor includes a first transistor and a second transistor. The first transistor has a first end serving as an anode end. The second transistor has a control end coupled to a second end of the first transistor, a first end coupled to a control end of the first transistor, and a second end coupled to the first end of the second transistor and serving as a cathode end.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: July 11, 2023
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Shih-Yu Wang, Wen-Tsung Huang, Chih-Wei Hsu
  • Patent number: 11621324
    Abstract: A bipolar junction transistor includes an extrinsic collector region buried in a semiconductor substrate under an intrinsic collector region. Carbon-containing passivating regions are provided to delimit the intrinsic collector region. An insulating layer on the intrinsic collector region includes an opening within which an extrinsic base region is provided. A semiconductor layer overlies the insulating layer, is in contact with the extrinsic base region, and includes an opening with insulated sidewalls. The collector region of the transistor is provided between the insulated sidewalls.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 4, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Alexis Gauthier, Julien Borrel
  • Patent number: 11508834
    Abstract: A compound semiconductor device comprises a heterojunction bipolar transistor including a plurality of unit transistors, a capacitor electrically connected between a RF input wire and a base wire for each unit transistor of the unit transistors, and a bump electrically connected to emitters of the unit transistors. The unit transistors are arranged in a first direction. The bump is disposed above the emitters of the unit transistors while extending in the first direction. The transistors include first and second unit transistors, the respective emitters of the first and second unit transistors being disposed on first and second sides, respectively, of a second direction, perpendicular to the first direction, with respect to a center line of the bump extending in the first direction. The capacitor is not covered by the bump, and respective lengths of the respective base wires connected respectively to the first and second unit transistors are different.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: November 22, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Sasaki, Kingo Kurotani, Takashi Kitahara, Shigeki Koya
  • Patent number: 11502096
    Abstract: A memory device includes a first well, a second well, a first active area, a second active area, a third active area, a first poly layer and a second poly layer. The first well is of a first conductivity type. The second well is of a second conductivity type different from the first conductivity type. The first active area is of the second conductivity type and is formed on the first well. The second active area is of the first conductivity type and is formed on the first well and between the first active area and the second well. The third active area is of the first conductivity type and is formed on the second well. The first poly layer is formed above the first well and the second well. The second poly layer is formed above the first well.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: November 15, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Patent number: 10546948
    Abstract: An electronic device can include a semiconductor substrate having a front side and a back side; an emitter region closer to the front side than to the back side; a trench extending from a back side surface into the semiconductor substrate, wherein the trench has a sidewall and a bottom; a collector region along the back side surface and spaced apart from the bottom of the trench; a field-stop region lying along the bottom and at least a portion of the sidewall of the trench, wherein the emitter and field-stop regions have one conductivity type, and the collector region has the opposite conductivity type; and a collector terminal along the back side and including a metal-containing material, wherein the collector terminal contacts the collector region and is isolated from the field-stop region. A process of forming the electronic device does not require complex or marginal processing operations.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: January 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall
  • Patent number: 9018681
    Abstract: Consistent with an example embodiment, there is method of manufacturing a bipolar transistor comprising providing a substrate including an active region; depositing a layer stack; forming a base window over the active region in said layer stack; forming at least one pillar in the base window, wherein a part of the pillar is resistant to polishing; depositing an emitter material over the resultant structure, thereby filling said base window; and planarizing the deposited emitter material by polishing. Consistent with another example embodiment, a bipolar transistor may be manufactured according to the afore-mentioned method.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 28, 2015
    Assignee: NXP B.V.
    Inventors: Evelyne Gridelet, Tony Vanhoucke, Johannes Josephus Theodorus Marinus Donkers, Hans Mertens, Blandine Duriez
  • Patent number: 9006782
    Abstract: Protection circuit architectures with integrated supply clamps and methods of forming the same are provided herein. In certain implementation, an integrated circuit interface protection device includes a first diode protection structure and a first thyristor protection structure electrically connected in parallel between a signal pin a power high supply. Additionally, the protection device includes a second diode protection structure and a second thyristor protection structure electrically connected in parallel between the signal pin and a power low supply. Furthermore, the protection device includes a third diode protection structure and a third thyristor protection structure electrically connected in parallel between the power high supply and the power low supply.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: April 14, 2015
    Assignee: Analog Devices, Inc.
    Inventor: Javier Alejandro Salcedo
  • Patent number: 8952441
    Abstract: According to one embodiment, a device includes a first fin structure having first to n-th semiconductor layers (n is a natural number equal to or more than 2) stacked in a first direction perpendicular to a surface of a semiconductor substrate, and extending in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory cells provided on surfaces of the first to n-th semiconductor layers in a third direction perpendicular to the first and second directions respectively, and first to n-th select transistors connected in series to the first to n-th memory cells respectively.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiwamu Sakuma, Haruka Kusai, Yasuhito Yoshimizu, Masahiro Kiyotoshi
  • Patent number: 8927379
    Abstract: A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Kevin K. Chan, David L. Harame, Qizhi Liu, John J. Pekarik
  • Patent number: 8907420
    Abstract: A power semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type formed on the first semiconductor layer and alternately arranged along at least one direction parallel to a surface of the first semiconductor layer; a first main electrode; a fourth semiconductor layer of the second conductivity type selectively formed in a surface of the second semiconductor layer and a surface of the third semiconductor layer; a fifth semiconductor layer of the first conductivity type selectively formed in a surface of the fourth semiconductor layer; a second main electrode; and a control electrode. At least one of the second and the third semiconductor layers has a dopant concentration profile along the one direction, the dopant concentration profile having a local minimum at a position except both ends thereof.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Masakatsu Takashita, Yasuto Sumi, Masaru Izumisawa, Hiroshi Ohta
  • Patent number: 8860080
    Abstract: Protection circuit architectures with integrated supply clamps and methods of forming the same are provided herein. In certain implementation, an integrated circuit interface protection device includes a first diode protection structure and a first thyristor protection structure electrically connected in parallel between a signal pin a power high supply. Additionally, the protection device includes a second diode protection structure and a second thyristor protection structure electrically connected in parallel between the signal pin and a power low supply. Furthermore, the protection device includes a third diode protection structure and a third thyristor protection structure electrically connected in parallel between the power high supply and the power low supply.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Javier Alejandro Salcedo
  • Patent number: 8853827
    Abstract: In at least one aspect, an apparatus can include a silicon carbide material, a base contact disposed on a first portion of the silicon carbide material, and an emitter contact disposed on a second portion of the silicon carbide material. The apparatus can also include a dielectric layer disposed on the silicon carbide material and disposed between the base contact and the emitter contact, and a surface electrode disposed on the dielectric layer and separate from the base contact and the emitter contact.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 7, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Martin Domeij
  • Patent number: 8779492
    Abstract: A semiconductor device includes a first island and a first electrode. The first island includes a first semiconductor region, a first insulation region, and a first insulating film. The first semiconductor region has first and second side surfaces adjacent to the first insulation region and the first insulating film, respectively. The first electrode is adjacent to the first insulation region and the first insulating film. The first insulating film is between the first electrode and the first semiconductor region.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: July 15, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Yoshihiro Takaishi, Kazuhiro Nojima
  • Publication number: 20140117493
    Abstract: Methods for fabricating a device structure, as well as device structures and design structures for a bipolar junction transistor. The device structure includes a collector region in a substrate, a plurality of isolation structures extending into the substrate and comprised of an electrical insulator, and an isolation region in the substrate. The isolation structures have a length and are arranged with a pitch transverse to the length such that each adjacent pair of the isolation structures is separated by a respective section of the substrate. The isolation region is laterally separated from at least one of the isolation structures by a first portion of the collector region. The isolation region laterally separates a second portion of the collector region from the first portion of the collector region. The device structure further includes an intrinsic base on the second portion of the collector region and an emitter on the intrinsic base.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Cheng, Peter B. Gray, Vibhor Jain, Robert K. Leidy, Qizhi Liu
  • Publication number: 20140084420
    Abstract: A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Kevin K. Chan, David L. Harame, Qizhi Liu, John J. Pekarik
  • Patent number: 8680607
    Abstract: Power devices, and related process, where both gate and field plate trenches have multiple stepped widths, using self-aligned process steps.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 25, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Jun Zeng, Mohamed N. Darwish
  • Patent number: 8674402
    Abstract: A power semiconductor device includes: a drain region of a first conductive type; a drift region of a first conductive type formed on the drain region; a first body region of a second conductive type formed below an upper surface of the drift region; a second body region of a second conductive type formed below the upper surface of the drift region and in the first body region; a third body region of a second conductive type formed by protruding downwards from a lower end of the first body region; a source region of a first conductive type formed below the upper surface of the drift region and in the first body region; and a gate insulating layer formed on channel regions of the first body region and on the drift region between the first body regions.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: March 18, 2014
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Jin-myung Kim, Se-woong Oh, Jae-gil Lee, Young-chul Choi, Ho-cheol Jang
  • Patent number: 8637959
    Abstract: The invention discloses a vertical parasitic PNP transistor in a BiCMOS process and manufacturing method of the same, wherein an active region is isolated by STIs. The transistor includes a collector region, a base region, an emitter region, pseudo buried layers, and N-type polysilicon. The pseudo buried layers, formed at the bottom of the STIs located on both sides of the collector region, extend laterally into the active region and contact with the collector region, whose electrodes are picked up through making deep-hole contacts in the STIs. The N-type polysilicon is formed on the base region and contacts with it, whose electrodes are picked up through making metal contacts on the N-type polysilicon. The transistors can be used as output devices in high-speed and high-gain circuits, efficiently reducing the transistors area, diminishing the collector resistance, and improving the transistors performance. The method can reduce the cost without additional technological conditions.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Shanghai Hua Hong NEC Electronics
    Inventors: Wensheng Qian, Donghua Liu, Jun Hu
  • Publication number: 20130285120
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at least one grading in the collector. One aspect of this disclosure is a bipolar transistor that includes a collector having a high doping concentration at a junction with the base and at least one grading in which doping concentration increases away from the base. In some embodiments, the high doping concentration can be at least about 3×1016 cm?3. According to certain embodiments, the collector includes two gradings. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: Skyworks Solutions, Inc.
    Inventor: Peter J. Zampardi, JR.
  • Publication number: 20130277804
    Abstract: Methods for fabricating a device structure such as a bipolar junction transistor, device structures for a bipolar junction transistor, and design structures for a bipolar junction transistor. The device structure includes a collector region formed in a substrate, an intrinsic base coextensive with the collector region, an emitter coupled with the intrinsic base, a first isolation region surrounding the collector region, and a second isolation region formed at least partially within the collector region. The first isolation region has a first sidewall and the second isolation region having a second sidewall peripherally inside the first sidewall. A portion of the collector region is disposed between the first sidewall of the first isolation region and the second sidewall of the second isolation region.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Cheng, David L. Harame, Robert K. Leidy, Qizhi Liu
  • Patent number: 8536642
    Abstract: A vertical transistor comprises a semiconductor region, a pillar region formed on the semiconductor region, a gate insulating film formed so as to cover a side surface of the pillar region, a gate electrode formed on the gate insulating film, a first impurity diffusion region formed in an upper portion of the pillar region, and a second impurity diffusion region formed in the semiconductor region so as to surround the pillar region. The first impurity diffusion region is formed so as to be spaced from the side surface of the pillar region.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: September 17, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Kazuo Ogawa
  • Publication number: 20130181253
    Abstract: The present invention discloses a semiconductor structure and a manufacturing method thereof. The semiconductor structure is formed in a first conductive type substrate, which has an upper surface. The semiconductor structure includes: a protected device, at least a buried trench, and at least a doped region. The protected device is formed in the substrate. The buried trench is formed below the upper surface with a first depth, and the buried trench surrounds the protected device from top view. The doped region is formed below the upper surface with a second depth, and the doped region surrounds the buried trench from top view. The second depth is not less than the first depth.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Patent number: 8487362
    Abstract: A semiconductor device includes a semiconductor substrate having first and second regions, a first pillar transistor, and a second pillar transistor, wherein the first pillar transistor comprises a first semiconductor pillar disposed in the first region, and a first gate electrode covering a side surface of the first semiconductor pillar, wherein the second pillar transistor comprises a second semiconductor pillar disposed in the second region, and a second gate electrode covering a side surface of the second semiconductor pillar, wherein the first gate electrode is different in height from the second gate electrode, and the first and second pillar transistors form a CMOS device.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Hiro Nishi, Eiichirou Kakehashi
  • Publication number: 20130168822
    Abstract: Vertical bipolar junction structures, methods of manufacture and design structures. The method includes forming one or more sacrificial structures for a bipolar junction transistor (BJT) in a first region of a chip. The method includes forming a mask over the one or more sacrificial structures. The method further includes etching an opening in the mask, aligned with the one or more sacrificial structures. The method includes forming a trench through the opening and extending into diffusion regions below the one or more sacrificial structures. The method includes forming a base region of the BJT by depositing an epitaxial material in the trench, in contact with the diffusion regions. The method includes forming an emitter contact by depositing a second epitaxial material on the base region within the trench. The epitaxial material for the emitter region is of an opposite dopant type than the epitaxial material of the base region.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William F. CLARK, JR., John J. PEKARIK, Yun SHI, Yanli ZHANG
  • Publication number: 20130075730
    Abstract: A vertical PNP device in a silicon-germanium (SiGe) BiCMOS process is disclosed. The device is formed in a deep N-well and includes a collector region, a base region and an emitter region. The collector region has a two-dimensional L-shaped structure composed of a lightly doped first P-type ion implantation region and a heavily doped second P-type ion implantation region. The collector region is picked up by P-type pseudo buried layers formed at bottom of the shallow trench field oxide regions. A manufacturing method of vertical PNP device in a SiGe BiCMOS process is also disclosed. The method is compatible with the manufacturing processes of a SiGe heterojunction bipolar transistor in the SiGe BiCMOS process.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 28, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Wensheng Qian
  • Patent number: 8395237
    Abstract: A bipolar transistor includes: a substrate; a collector and a base layer with a p-conductive-type, an emitter layer with an n-conductive-type. The collector layer is formed above the substrate and includes a first nitride semiconductor. The base layer with the p-conductive-type is formed on the collector layer and includes a second nit ride semiconductor. The emitter layer with the n-conductive-type is formed on the base layer and includes a third nitride semiconductor. The collector layer, the base layer and the emitter layer are formed so that crystal growing directions with respect to a surface of the substrate are in parallel to a [0001] direction of the substrate. The first nitride semiconductor includes: InycAlxcGa1-xc-ycN (0?xc?1, 0?yc?1, 0<xc+yc?1). In the first nitride semiconductor, a length of an a-axis on a surface side is longer than a length of an a-axis on a substrate side.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 12, 2013
    Assignee: NEC Corporation
    Inventors: Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama, Yasuhiro Okamoto, Takashi Inoue, Kazuki Ota
  • Patent number: 8378417
    Abstract: A semiconductor device includes a semiconductor substrate; a well of a first conductivity type in the semiconductor substrate; a first element; and a first vertical transistor. The first element supplies potential to the well, the first element being in the well. The first element may include, but is not limited to, a first pillar body of the first conductivity type. The first pillar body has an upper portion that includes a first diffusion layer of the first conductivity type. The first diffusion layer is greater in impurity concentration than the well. The first vertical transistor is in the well. The first vertical transistor may include a second pillar body of the first conductivity type. The second pillar body has an upper portion that includes a second diffusion layer of a second conductivity type.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 19, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kazuo Ogawa, Yoshihiro Takaishi
  • Patent number: 8357952
    Abstract: A power semiconductor structure with a field effect rectifier having a drain region, a body region, a source region, a gate channel, and a current channel is provided. The body region is substantially located above the drain region. The source region is located in the body region. The gate channel is located in the body region and adjacent to a gate structure. The current channel is located in the body region and is extended from the source region downward to the drain region. The current channel is adjacent to a conductive structure coupled to the source region.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 22, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Kao-Way Tu
  • Publication number: 20130009169
    Abstract: Methods of making semiconductor devices such as vertical junction field effect transistors (VJFETs) or bipolar junction transistors (BJTs) are described. The methods do not require ion implantation. The VJFET device has an epitaxially regrown n-type channel layer and an epitaxially regrown p-type gate layer as well as an epitaxially grown buried gate layer. Devices made by the methods are also described.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: SS SC IP, LLC
    Inventor: Lin Cheng
  • Patent number: 8338873
    Abstract: Provided are a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a plurality of active pillars projecting from a semiconductor substrate, a gate pattern disposed on at least a portion of each of the active pillars with a gate insulator interposed therebetween, and a conductive line disposed on each of the active pillars and below the corresponding gate pattern, the conductive line may be insulated from the semiconductor substrate and the gate pattern, wherein each of the active pillars may include a drain region above the corresponding gate pattern, a body region adjacent to the corresponding gate pattern, and a source region that is in contact with the conductive line below the gate pattern.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jongwook Lee, Jung Ho Kim, SungWoo Hyun
  • Patent number: 8334564
    Abstract: A field plate trench transistor having a semiconductor body. In one embodiment the semiconductor has a trench structure and an electrode structure embedded in the trench structure. The electrode structure being electrically insulated from the semiconductor body by an insulation structure and having a gate electrode structure and a field electrode structure. The field plate trench transistor has a voltage divider configured such that the field electrode structure is set to a potential lying between source and drain potentials.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 18, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Walter Rieger, Thorsten Meyer, Wolfgang Klein, Frank Pfirsch
  • Publication number: 20120305994
    Abstract: Junction field-effect transistors with vertical channels and self-aligned regrown gates and methods of making these devices are described. The methods use techniques to selectively grow and/or selectively remove semiconductor material to form a p-n junction gate along the sides of the channel and on the bottom of trenches separating source fingers. Methods of making bipolar junction transistors with self-aligned regrown base contact regions and methods of making these devices are also described. The semiconductor devices can be made in silicon carbide.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Applicant: SS SC IP, LLC
    Inventors: Joseph Neil MERRETT, Igor SANKIN
  • Publication number: 20120299056
    Abstract: Techniques capable of improving the yield of IGBTs capable of reducing steady loss, turn-off time, and turn-off loss are provided. Upon formation of openings in an interlayer insulting film formed on a main surface of a substrate, etching of a laminated insulating film of a PSG film and an SOG film and a silicon oxide film is once stopped at a silicon nitride film. Then, the silicon nitride film and the silicon oxide film are sequentially etched to form the openings. As a result, the openings are prevented from penetrating through an n-type source layer and a p+-type emitter layer having a thickness of 20 to 100 nm and reaching the substrate.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 29, 2012
    Inventors: Daisuke ARAI, Yoshito NAKAZAWA, Ikuo HARA, Tsuyoshi KACHI, Yoshinori HOSHINO, Tsuyoshi TABATA
  • Publication number: 20120261715
    Abstract: A power semiconductor device includes: a drain region of a first conductive type; a drift region of a first conductive type formed on the drain region; a first body region of a second conductive type formed below an upper surface of the drift region; a second body region of a second conductive type formed below the upper surface of the drift region and in the first body region; a third body region of a second conductive type formed by protruding downwards from a lower end of the first body region; a source region of a first conductive type formed below the upper surface of the drift region and in the first body region; and a gate insulating layer formed on channel regions of the first body region and on the drift region between the first body regions.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 18, 2012
    Inventors: Jin-myung KIM, Se-woong OH, Jae-gil LEE, Young-chul CHOI, Ho-cheol JANG
  • Patent number: 8283705
    Abstract: A switching power supply has a start-up circuit that includes a field effect transistor (JFET), which has a gate region (a p-type well region) formed in a surface layer of a p-type substrate and a drift region (a first n-type well region). A plurality of source regions (second n-type well regions) are formed circumferentially around the drift region. A drain region (a third n-type well region) is formed centrally of the source region. The drain region and the source regions can be formed at the same time. A metal wiring of the source electrode wiring connected to source regions is divided into at least two groups to form at least two junction field effect transistors.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 9, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Masaru Saito, Koji Sonobe
  • Publication number: 20120223336
    Abstract: A semiconductor device includes a semiconductor substrate including a collector layer of a first conductivity type and a drift layer of a second conductivity type in contact with said collector layer, said drift layer receiving a supply of carriers from said collector layer. The semiconductor device further includes a lattice defect formed to penetrate through said semiconductor substrate and enclose a predetermined portion of said semiconductor substrate, a sense emitter electrode formed on the top surface of said predetermined portion, and a collector electrode formed on the bottom surface of said predetermined portion.
    Type: Application
    Filed: November 22, 2011
    Publication date: September 6, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Shunsuke SAKAMOTO
  • Patent number: 8232623
    Abstract: A conventional semiconductor device has a problem that, when a vertical PNP transistor as a power semiconductor element is used in a saturation region, a leakage current into a substrate is generated. In a semiconductor device of the present invention, two P type diffusion layers as a collector region are formed around an N type diffusion layer as a base region. One of the P type diffusion layers is formed to have a lower impurity concentration and a narrower diffusion width than the other P type diffusion layer. In this structure, when a vertical PNP transistor is turned on, a region where the former P type diffusion layer is formed mainly serves as a parasite current path. Thus, a parasitic transistor constituted of a substrate, an N type buried layer and a P type buried layer is prevented from turning on, and a leakage current into the substrate is prevented.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: July 31, 2012
    Inventors: Keiji Mita, Masao Takahashi, Takao Arai
  • Publication number: 20120132999
    Abstract: Consistent with an example embodiment, there is method of manufacturing a bipolar transistor comprising providing a substrate including an active region; depositing a layer stack; forming a base window over the active region in said layer stack; forming at least one pillar in the base window, wherein a part of the pillar is resistant to polishing; depositing an emitter material over the resultant structure, thereby filling said base window; and planarizing the deposited emitter material by polishing. Consistent with another example embodiment, a bipolar transistor may be manufactured according to the afore-mentioned method.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicant: NXP B.V.
    Inventors: Evelyne Gridelet, Tony Vanhoucke, Johannes Josephus Theodorus Marinus Donkers, Hans Mertens, Blandine Duriez
  • Patent number: 8174070
    Abstract: A dual channel trench LDMOS transistor includes a substrate of a first conductivity type; a semiconductor layer of a second conductivity type formed on the substrate; a first trench formed in the semiconductor layer where a trench gate is formed in an upper portion of the first trench; a body region of the first conductivity type formed in the semiconductor layer adjacent the first trench; a source region of the second conductivity type formed in the body region and adjacent the first trench; a planar gate overlying the body region; a drain region of the second conductivity type spaced apart from the body region by a drain drift region. The planar gate forms a lateral channel in the body region, and the trench gate in the first trench forms a vertical channel in the body region of the LDMOS transistor.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 8, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Shekar Mallikarjunaswamy
  • Publication number: 20120086045
    Abstract: A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 12, 2012
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Stuart B. Molin, Michael A. Stuber
  • Publication number: 20120049327
    Abstract: The invention discloses a vertical parasitic PNP transistor in a BiCMOS process and manufacturing method of the same, wherein an active region is isolated by STIs. The transistor includes a collector region, a base region, an emitter region, pseudo buried layers, and N-type polysilicon. The pseudo buried layers, formed at the bottom of the STIs located on both sides of the collector region, extend laterally into the active region and contact with the collector region, whose electrodes are picked up through making deep-hole contacts in the STIs. The N-type polysilicon is formed on the base region and contacts with it, whose electrodes are picked up through making metal contacts on the N-type polysilicon. The transistors can be used as output devices in high-speed and high-gain circuits, efficiently reducing the transistors area, diminishing the collector resistance, and improving the transistors performance. The method can reduce the cost without additional technological conditions.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 1, 2012
    Inventors: Wensheng Qian, Donghua Liu, Jun Hua
  • Patent number: 8101993
    Abstract: A trench MOSFET device with embedded Schottky rectifier, gate-drain and gate-source diodes on single chip is formed with shallow trench structure to achieve device shrinkage and performance improvement. The present semiconductor devices achieve low Vf and reverse leakage current for embedded Schottky rectifier, have overvoltage protection for GS clamp diodes and avalanche protection for GD clamp diodes. More particularly, gate charge of the present semiconductor device is reduced due to the shallow trench surrounded by an additional N doped area around the bottom while keeping Rds low enough and at the same time, maintaining BV at a certain level.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 24, 2012
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8039322
    Abstract: A manufacturing method of a semiconductor device 10 includes forming a plurality of second conductive second semiconductor regions at specific intervals on one main surface of a first conductive first semiconductor region, the plurality of second conductive second semiconductor regions being opposite to the first conductive first semiconductor region, forming a plurality of the first conductive third semiconductor regions on a main surface of the second semiconductor region, the plurality of the first conductive third regions being separated from each other, forming a plurality of holes at specific intervals on an another main surface which faces the one main surface of the first semiconductor region, the plurality of holes being separated from each other, forming a pair of adjacent second conductive fourth semiconductor regions which are alternately connected at a bottom part of the hole within the first semiconductor region, and burying an electrode within the hole.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Akio Iwabuchi, Shuichi Kaneko
  • Patent number: 7982248
    Abstract: A switching power supply has a start-up circuit that includes a field effect transistor (JFET), which has a gate region (a p-type well region) formed in a surface layer of a p-type substrate and a drift region (a first n-type well region). A plurality of source regions (second n-type well regions) are formed circumferentially around the drift region. A drain region (a third n-type well region) is formed centrally of the source region. The drain region and the source regions can be formed at the same time. A metal wiring of the source electrode wiring connected to source regions is divided into at least two groups to form at least two junction field effect transistors.
    Type: Grant
    Filed: March 24, 2007
    Date of Patent: July 19, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Masaru Saito, Koji Sonobe
  • Patent number: 7968940
    Abstract: Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n? drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Anpec Electronics Corporation
    Inventor: Florin Udrea
  • Publication number: 20110095362
    Abstract: A field plate trench transistor having a semiconductor body. In one embodiment the semiconductor has a trench structure and an electrode structure embedded in the trench structure. The electrode structure being electrically insulated from the semiconductor body by an insulation structure and having a gate electrode structure and a field electrode structure. The field plate trench transistor has a voltage divider configured such that the field electrode structure is set to a potential lying between source and drain potentials.
    Type: Application
    Filed: January 4, 2011
    Publication date: April 28, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Walter Rieger, Thorsten Meyer, Wolfgang Klein, Frank Pfirsch
  • Patent number: 7911024
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt