Vertical Transistors (epo) Patents (Class 257/E29.189)
  • Patent number: 11965163
    Abstract: The invention relates to saRNA targeting an HNF4a transcript and therapeutic compositions comprising said saRNA. Methods of using the therapeutic compositions are also provided.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: April 23, 2024
    Assignee: MiNA Therapeutics Limited
    Inventors: Hans E. Huber, David Blakey, Jon Voutila, Monika Krampert, Markus Hossbach
  • Patent number: 11935940
    Abstract: A method for making a bipolar junction transistor (BJT) may include forming a first superlattice on a substrate defining a collector region therein. The first superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a base on the first superlattice, and forming a second superlattice on the base comprising a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may also include forming an emitter on the second superlattice.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: March 19, 2024
    Assignee: ATOMERA INCORPORATED
    Inventor: Richard Burton
  • Patent number: 11929427
    Abstract: Provided is a high ruggedness heterojunction bipolar transistor (HBT), including a collector layer. The collector layer includes a InGaP layer or a wide bandgap layer. The bandgap of the InGaP layer is greater than 1.86 eV.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: March 12, 2024
    Assignee: VISUAL PHOTONICS EPITAXY CO., LTD.
    Inventors: Chao-Hsing Huang, Yu-Chung Chin, Kai-Yu Chen
  • Patent number: 11923431
    Abstract: A bipolar junction transistor (BJT) may include a substrate defining a collector region therein. A first superlattice may be on the substrate including a plurality of stacked groups of first layers, with each group of first layers including a first plurality of stacked base semiconductor monolayers defining a first base semiconductor portion, and at least one first non-semiconductor monolayer constrained within a crystal lattice of adjacent first base semiconductor portions. Furthermore, a base may be on the first superlattice, and a second superlattice may be on the base including a second plurality of stacked groups of second layers, with each group of second layers including a plurality of stacked base semiconductor monolayers defining a second base semiconductor portion, and at least one second non-semiconductor monolayer constrained within a crystal lattice of adjacent second base semiconductor portions. An emitter may be on the second superlattice.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: March 5, 2024
    Assignee: ATOMERA INCORPORATED
    Inventor: Richard Burton
  • Patent number: 11848321
    Abstract: A semiconductor device is provided. The semiconductor device comprises an output circuit configured to be electrically connected between a driving circuit and an external load circuit, and a protection circuit electrically connected to the output circuit and the driving circuit. The protection circuit comprises a first transistor having a base electrode, a collector electrode and an emitter electrode and a second transistor having a base electrode, a collector electrode and an emitter electrode. The base electrode of the first transistor is electrically connected to the collector electrode of the second transistor.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hong-Shyang Wu, Kuo-Ming Wu
  • Patent number: 11817356
    Abstract: A collector layer, a base layer, an emitter layer, and an emitter mesa layer are placed above a substrate in this order. A base electrode and an emitter electrode are further placed above the substrate. The emitter mesa layer has a long shape in a first direction in plan view. The base electrode includes a base electrode pad portion spaced from the emitter mesa layer in the first direction. An emitter wiring line and a base wiring line are placed on the emitter electrode and the base electrode, respectively. The emitter wiring line is connected to the emitter electrode via an emitter contact hole. In the first direction, the spacing between the edges of the emitter mesa layer and the emitter contact hole on the side of the base wiring line is smaller than that between the emitter mesa layer and the base wiring line.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 14, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shigeki Koya, Isao Obu, Kaoru Ideno
  • Patent number: 11799011
    Abstract: Provided is a semiconductor epitaxial wafer, including a substrate, a first epitaxial structure, a first ohmic contact layer and a second epitaxial stack structure. It is characterized in that the ohmic contact layer includes a compound with low nitrogen content, and the ohmic contact layer does not induce significant stress during the crystal growth process. Accordingly, the second epitaxial stack structure formed on the ohmic contact layer can have good epitaxial quality, thereby providing a high-quality semiconductor epitaxial wafer for fabricating a GaAs integrated circuit or a InP integrated circuit. At the same time, the ohmic contact properties of ohmic contact layers are not affected, and the reactants generated during each dry etching process are reduced.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: October 24, 2023
    Assignee: VISUAL PHOTONICS EPITAXY CO., LTD.
    Inventors: Chao-Hsing Huang, Yu-Chung Chin, Van-Truong Dai
  • Patent number: 11798981
    Abstract: An electronic device includes a semiconductor body of silicon carbide, and a body region at a first surface of the semiconductor body. A source region is disposed in the body region. A drain region is disposed at a second surface of the semiconductor body. A doped region extends seamlessly at the entire first surface of the semiconductor body and includes one or more first sub-regions having a first doping concentration and one or more second sub-regions having a second doping concentration lower than the first doping concentration. Thus, the device has zones alternated to each other having different conduction threshold voltage and different saturation current.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: October 24, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Mario Giuseppe Saggio, Angelo Magri', Edoardo Zanetti, Alfio Guarnera
  • Patent number: 11735541
    Abstract: A target element to be protected and a protrusion are arranged on a substrate. An insulating film arranged on the substrate covers the target element and at least a side surface of the protrusion. An electrode pad for external connection is arranged on the insulating film. The electrode pad at least partially overlaps the target element and the protrusion as seen in plan view. A maximum distance between the upper surface of the protrusion and the electrode pad in the height direction is shorter than a maximum distance between the upper surface of the target element and the electrode pad in the height direction.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 22, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kazuya Kobayashi, Atsushi Kurokawa, Hiroaki Tokuya, Isao Obu, Yuichi Saito
  • Patent number: 11728385
    Abstract: A semiconductor device may include a semiconductor layer, and a superlattice adjacent the semiconductor layer and including stacked groups of layers. Each group of layers may include stacked base semiconductor monolayers defining a base semiconductor portion, and at least one oxygen monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one oxygen monolayer of a given group of layers may include an atomic percentage of 18O greater than 10 percent.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: August 15, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Marek Hytha, Nyles Wynn Cody, Keith Doran Weeks
  • Patent number: 11682712
    Abstract: A method for making a semiconductor device may include forming a semiconductor layer, and forming a superlattice adjacent the semiconductor layer and including stacked groups of layers. Each group of layers may include stacked base semiconductor monolayers defining a base semiconductor portion, and at least one oxygen monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one oxygen monolayer of a given group of layers may comprise an atomic percentage of 18O greater than 10 percent.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: June 20, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Marek Hytha, Nyles Wynn Cody, Keith Doran Weeks
  • Patent number: 11658180
    Abstract: A semiconductor device has a semiconductor substrate, and multiple first bipolar transistors on the first primary surface side of the semiconductor substrate. The first bipolar transistors have a first height between an emitter layer and an emitter electrode in the direction perpendicular to the first primary surface. The semiconductor device further has at least one second bipolar transistor on the first primary surface side of the semiconductor substrate. The second bipolar transistor have a second height, greater than the first height, between an emitter layer and an emitter electrode in the direction perpendicular to the first primary surface. Also, the semiconductor has a first bump stretching over the multiple first bipolar transistors and the at least one second bipolar transistor.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: May 23, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Isao Obu, Shigeki Koya, Yasunari Umemoto, Takayuki Tsutsui
  • Patent number: 11626512
    Abstract: An ESD protection device may include a substrate having first and second substrate layers, and first and second bridged regions. Each substrate layer may include first and second border regions and a middle region laterally therebetween. Each bridged region may be arranged within the middle region and a respective border region of the second substrate layer. The middle region of the second substrate layer may be laterally narrower than the middle region of the first substrate layer. Each border region of the second substrate layer may be partially arranged over the middle region of the first substrate layer and partially arranged over a respective border region of the first substrate layer. The border regions of the substrate layers, and the bridged regions may have a first conductivity type, and the middle regions of the substrate layers may have a second conductivity type different from the first conductivity type.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 11, 2023
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Jie Zeng, Milova Paul, Sagar Premnath Karalkar
  • Patent number: 11615954
    Abstract: A method for processing a substrate includes positioning a silicon substrate in a deposition chamber. One or more intermediate layers are deposited on a surface of the silicon. The one or more intermediate layers can include strontium, which combines with the silicon to form strontium silicide. Alternatively, the one or more intermediate layers comprise germanium. A layer of amorphous strontium titanate is deposited on the one or more intermediate layers in a transient environment in which oxygen pressure is reduced while temperature is increased. The substrate is then exposed to an oxidizing and annealing atmosphere that oxidizes the one or more intermediate layers and converts the layer of amorphous strontium titanate to crystalline strontium titanate.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: March 28, 2023
    Assignee: PSIQUANTUM, CORP.
    Inventor: Yong Liang
  • Patent number: 11616122
    Abstract: Provided herein are tapered nanowires that comprise germanium and gallium, as well as methods of forming the same. The described nanowires may also include one or more sections of a second semiconductor material. Methods of the disclosure may include vapor-liquid-solid epitaxy with a gallium catalyst. The described methods may also include depositing a gallium seed on a surface of a substrate by charging an area of the substrate using an electron beam, and directing a gallium ion beam across the surface of the substrate.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Martin Christopher Holland, Blandine Duriez
  • Patent number: 11610883
    Abstract: A semiconductor device includes a plurality of unit transistors that are arranged on a surface of a substrate in a first direction. Input capacitive elements are arranged so as to correspond to the unit transistors. An emitter common wiring line is connected to emitter layers of the unit transistors. A via-hole extending from the emitter common wiring line to a back surface of the substrate is disposed at a position overlapping the emitter common wiring line. A collector common wiring line is connected to collector layers of the unit transistors. The input capacitive elements, the emitter common wiring line, the unit transistors, and the collector common wiring line are arranged in this order in a second direction. Base wiring lines that connect the input capacitive elements to base layers of the corresponding unit transistors intersect the emitter common wiring line without physical contact.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: March 21, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shigeki Koya, Takayuki Tsutsui, Kazuhito Nakai, Yusuke Tanaka
  • Patent number: 11515845
    Abstract: Solder bumps are placed in direct contact with the silicon substrate of an amplifier integrated circuit having a flip chip configuration. A plurality of amplifier transistor arrays generate waste heat that promotes thermal run away of the amplifier if not directed out of the integrated circuit. The waste heat flows through the thermally conductive silicon substrate and out the solder bump to a heat-sinking plane of an interposer connected to the amplifier integrated circuit via the solder bumps.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 29, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Michael Joseph McPartlin, Bharatjeet Singh Gill, Stephen Joseph Kovacic
  • Patent number: 11437487
    Abstract: A bipolar junction transistor (BJT) may include a substrate defining a collector region therein. A first superlattice may be on the substrate including a plurality of stacked groups of first layers, with each group of first layers including a first plurality of stacked base semiconductor monolayers defining a first base semiconductor portion, and at least one first non-semiconductor monolayer constrained within a crystal lattice of adjacent first base semiconductor portions. Furthermore, a base may be on the first superlattice, and a second superlattice may be on the base including a second plurality of stacked groups of second layers, with each group of second layers including a plurality of stacked base semiconductor monolayers defining a second base semiconductor portion, and at least one second non-semiconductor monolayer constrained within a crystal lattice of adjacent second base semiconductor portions. An emitter may be on the second superlattice.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 6, 2022
    Assignee: ATOMERA INCORPORATED
    Inventor: Richard Burton
  • Patent number: 11411080
    Abstract: A heterojunction bipolar transistor includes a bottom sub-collector layer formed over a substrate. The heterojunction bipolar transistor also includes an upper sub-collector layer formed over the bottom sub-collector layer. The heterojunction bipolar transistor also includes a collector layer formed over the upper sub-collector layer. The heterojunction bipolar transistor also includes a base layer formed over the collector layer. The heterojunction bipolar transistor also includes an emitter layer formed over the base layer. The heterojunction bipolar transistor also includes a passivation layer covering the bottom sub-collector layer, the upper sub-collector layer, the collector layer, the base layer, and the emitter layer. The heterojunction bipolar transistor also includes a collector electrode that covers the portion of the passivation layer that is over the sidewall of the upper sub-collector layer.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: August 9, 2022
    Assignee: WIN SEMICONDUCTORS CORP.
    Inventors: Chien-Rong Yu, Shu-Hsiao Tsai, Jui-Pin Chiu, She-Hsin Hsiao
  • Patent number: 11404568
    Abstract: A semiconductor device, including: a substrate; a first source/drain layer, a channel layer, and a second source/drain layer sequentially stacked on the substrate and adjacent to each other, and a gate stack formed around an outer circumference of the channel layer; wherein at least one interface structure is formed in at least one of the first source/drain layer and the second source/drain layer, the conduction band energy levels at both sides of the interface structure are different and/or the valence band energy levels are different.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: August 2, 2022
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Zhenhua Wu
  • Patent number: 11329453
    Abstract: A surface emitting laser includes a substrate, a mesa of semiconductor layers including a lower reflector layer, an active layer, an upper reflector layer, and an upper contact layer that are successively laminated on the substrate, and an electrode provided on the upper contact layer. The upper contact layer includes GaAs. The electrode includes an alloy layer including Pt, in contact with the upper contact layer.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: May 10, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Masaki Yanagisawa
  • Patent number: 8952441
    Abstract: According to one embodiment, a device includes a first fin structure having first to n-th semiconductor layers (n is a natural number equal to or more than 2) stacked in a first direction perpendicular to a surface of a semiconductor substrate, and extending in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory cells provided on surfaces of the first to n-th semiconductor layers in a third direction perpendicular to the first and second directions respectively, and first to n-th select transistors connected in series to the first to n-th memory cells respectively.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiwamu Sakuma, Haruka Kusai, Yasuhito Yoshimizu, Masahiro Kiyotoshi
  • Patent number: 8779492
    Abstract: A semiconductor device includes a first island and a first electrode. The first island includes a first semiconductor region, a first insulation region, and a first insulating film. The first semiconductor region has first and second side surfaces adjacent to the first insulation region and the first insulating film, respectively. The first electrode is adjacent to the first insulation region and the first insulating film. The first insulating film is between the first electrode and the first semiconductor region.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: July 15, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Yoshihiro Takaishi, Kazuhiro Nojima
  • Patent number: 8772626
    Abstract: A solar cell may include an electrically conducting substrate, a plurality of nanowhiskers extending from the substrate and a transparent electrode extending over free ends of the nanowhiskers and making electrical contact with them. Each nanowhisker may have a column with a diameter of nanometer dimension. The column may include a first p-doped semiconductor lengthwise segment and a second n-doped semiconductor lengthwise segment. The first and second semiconductor segments may have an interface between them, which forms a p-n junction. The nanowhiskers may be encapsulated in a transparent material.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 8, 2014
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 8692295
    Abstract: A double heterojunction bipolar transistor on a substrate comprises a collector formed of InGaAsP, a base in contact with the collector, an emitter in contact with the base, and electrodes forming separate electrical contacts with each of the collector, base, and emitter, respectively. A device incorporates this transistor and an opto-electronic device optically coupled with the collector of the transistor to interact with light transmitted therethrough.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 8, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D. Rajavel, Stephen Thomas, III
  • Patent number: 8664697
    Abstract: To provide a transistor device, which is composed of a compound semiconductor, having a multilayer structure in which a high electron mobility transistor (HEMT) and a heterojunction bipolar transistor (HBT) are overlapped on the same substrate and epitaxial-grown thereon, wherein a band gap energy of an indium gallium phosphide layer (InGaP) included in an epitaxial layer, is set to 1.91 eV or more.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: March 4, 2014
    Assignee: Hitachi Cable, Ltd.
    Inventors: Takeshi Meguro, Jiro Wada, Yoshihiko Moriya
  • Patent number: 8546874
    Abstract: A semiconductor device includes a drift layer and a body region that forms a p-n junction with the drift layer. A contactor region is in the body region, and a shunt channel region extends through the body region from the contactor region to the drift layer. The shunt channel region has a length, thickness and doping concentration selected such that: 1) the shunt channel region is fully depleted when zero voltage is applied across the first and second terminals, 2) the shunt channel becomes conductive at a voltages less than the built-in potential of the drift layer to body region p-n junction, and/or 3) the shunt channel is not conductive for voltages that reverse bias the p-n junction between the drift region and the body region.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Cree, Inc.
    Inventors: Allen Hefner, Sei-Hyung Ryu, Anant Agarwal
  • Patent number: 8395237
    Abstract: A bipolar transistor includes: a substrate; a collector and a base layer with a p-conductive-type, an emitter layer with an n-conductive-type. The collector layer is formed above the substrate and includes a first nitride semiconductor. The base layer with the p-conductive-type is formed on the collector layer and includes a second nit ride semiconductor. The emitter layer with the n-conductive-type is formed on the base layer and includes a third nitride semiconductor. The collector layer, the base layer and the emitter layer are formed so that crystal growing directions with respect to a surface of the substrate are in parallel to a [0001] direction of the substrate. The first nitride semiconductor includes: InycAlxcGa1-xc-ycN (0?xc?1, 0?yc?1, 0<xc+yc?1). In the first nitride semiconductor, a length of an a-axis on a surface side is longer than a length of an a-axis on a substrate side.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 12, 2013
    Assignee: NEC Corporation
    Inventors: Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama, Yasuhiro Okamoto, Takashi Inoue, Kazuki Ota
  • Patent number: 8395225
    Abstract: A semiconductor device 1 includes: a base 2 mainly formed of a semiconductor material; a gate electrode 5; and a gate insulating film 3 provided between the base 2 and the gate electrode 5. The gate insulating film 3 is formed of an insulative inorganic material containing silicon, oxygen and element X other than silicon and oxygen as a main material. The gate insulating film 3 is provided in contact with the base 2, and contains hydrogen atoms. The gate insulating film 3 has a region where A and B satisfy the relation: B/A is 10 or less in the case where the total concentration of the element X in the region is defined as A and the total concentration of hydrogen in the region is defined as B. Further, the region is at least apart of the gate insulating film 3 in the thickness direction thereof.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 12, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Masayasu Miyata
  • Publication number: 20130001647
    Abstract: In an embodiment, a bipolar transistor structure is formed on a silicon-on-insulator (SOI) structure that includes a semiconductor substrate, a buried oxide layer formed on the semiconductor substrate and a top silicon layer formed on the buried oxide layer.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventor: Steven J. Adler
  • Patent number: 8338863
    Abstract: Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance, as well as fabrication methods for vertical heterojunction bipolar transistors and design structures for BiCMOS integrated circuits. The vertical heterojunction bipolar transistor includes a barrier layer between the intrinsic base and the extrinsic base that blocks or reduces diffusion of a dopant from the extrinsic base to the intrinsic base. The barrier layer has at least one opening that permits direct contact between the intrinsic base and a portion of the extrinsic base disposed in the opening.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Qizhi Liu
  • Patent number: 8309409
    Abstract: A semiconductor-device fabrication method includes forming a second semiconductor region of a second conductivity on a surface layer of a first semiconductor region of a first conductivity, the second semiconductor region having an impurity concentration higher than the first semiconductor region; forming a trench penetrating the second semiconductor region, to the first semiconductor region; embedding a first electrode inside the trench via an insulating film, at a height lower than a surface of the second semiconductor region; forming an interlayer insulating film inside the trench, covering the first electrode; leaving the interlayer insulating film on only a surface of the first electrode; removing the second semiconductor region such that the surface thereof is positioned lower than an interface between the first electrode and the interlayer insulating film; and forming a second electrode contacting the second semiconductor region and adjacent to the first electrode via the insulating film in the trench.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: November 13, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Seiji Momota
  • Patent number: 8309990
    Abstract: A III-V compound semiconductor structure comprises epitaxial structures that include an integrated pair of different types of active devices. The semiconductor structure includes a semi-insulating substrate of a compound semiconductor III-V material and a first compound semiconductor III-V epitaxial structure disposed on the substrate. A concentration profile of dopant material in the semiconductor structure decreases substantially smoothly across an interface between the substrate and the first epitaxial structure in a direction from the first epitaxial structure toward the substrate, and continues to decrease substantially smoothly from the interface with increasing depth into the substrate despite the presence of silicon or oxygen contaminant at the interface. The interface is substantially free of a second contaminant that was present, during formation of the first epitaxial structure, in a chamber in which the first epitaxial structure was formed.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: November 13, 2012
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Jr., Victor Labyuk, Sherry Qianwen Ye
  • Patent number: 8288797
    Abstract: A method of fabricating an integrated circuit on a compound semiconductor III-V wafer including at least two different types of active devices by providing a substrate; growing a first epitaxial structure on the substrate; growing a second epitaxial structure on the first epitaxial structure; and processing the epitaxial structures to form different types of active devices, such as HBTs and FETs.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 16, 2012
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Victor Labyuk, Sherry Qianwen Ye
  • Publication number: 20120181579
    Abstract: A vertical parasitic PNP device in a SiGe HBT process is disclosed which comprises a collector region, a base region, an emitter region, P-type pseudo buried layers and N-type polysilicons. The pseudo buried layers are formed at bottom of shallow trench field oxide regions around the collector region and contact with the collector region; deep hole contacts are formed on top of the pseudo buried layers to pick up collector electrodes. The N-type polysilicons are formed on top of the base region and are used to pick up base electrodes. The emitter region comprises a P-type SiGe epitaxial layer and a P-type polysilicon both of which are formed on top of the base region. A manufacturing method of a vertical parasitic PNP device in a SiGe HBT process is also disclosed.
    Type: Application
    Filed: December 19, 2011
    Publication date: July 19, 2012
    Inventors: Fan Chen, Xiongbin Chen
  • Publication number: 20120112244
    Abstract: Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance, as well as fabrication methods for vertical heterojunction bipolar transistors and design structures for BiCMOS integrated circuits. The vertical heterojunction bipolar transistor includes a barrier layer between the intrinsic base and the extrinsic base that blocks or reduces diffusion of a dopant from the extrinsic base to the intrinsic base. The barrier layer has at least one opening that permits direct contact between the intrinsic base and a portion of the extrinsic base disposed in the opening.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Qizhi Liu
  • Patent number: 8101973
    Abstract: A heterojunction bipolar transistor comprising a substrate; a collector on the substrate; a base layer on the collector; an emitter layer on the base layer; the emitter layer comprising an upper emitter layer and a lower emitter layer between the upper emitter layer and base; the collector, base and emitter layers being npn or pnp doped respectively; characterized in that the lower emitter layer has a larger bandgap than the base layer and is AlxIn1-xP or GaxAl1-xP, x being in the range 0+ to 1.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 24, 2012
    Assignee: RFMD (UK) Limited
    Inventors: Matthew Francis O'Keefe, Robert Grey, Michael Charles Clausen, Richard Alun Davies
  • Patent number: 8034688
    Abstract: A semiconductor device includes a drift layer having a first conductivity type and a body region adjacent the drift layer. The body region has a second conductivity type opposite the first conductivity type and forms a p-n junction with the drift layer. The device further includes a contactor region in the body region and having the first conductivity type, and a shunt channel region extending through the body region from the contactor region to the drift layer. The shunt channel region has the first conductivity type. The device further includes a first terminal in electrical contact with the body region and the contactor region, and a second terminal in electrical contact with the drift layer.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Cree, Inc.
    Inventors: Allen Hefner, Sei-Hyung Ryu, Anant Agarwal
  • Publication number: 20110241076
    Abstract: An n-layer is arranged above a substrate, which can be GaAs, and a p-layer (4) is arranged on the n-layer. The p-layer is separated by a gate electrode into two separate portions forming source and drain. The gate electrode is insulated from the semiconductor material by a gate dielectric. Source/drain contacts are electrically conductively connected with the portions of the p-layer.
    Type: Application
    Filed: November 12, 2009
    Publication date: October 6, 2011
    Applicant: EPCOS AG
    Inventor: LĂ©on C. M. van den Oever
  • Patent number: 7989844
    Abstract: The invention relates to a semiconductor device with a substrate (11) and a semiconductor body (12) with a heterojunction bipolar, in particular npn, transistor with an emitter region (1), a base region (2) and a collector region (3), which are provided with, respectively, a first, a second and a third connection conductor (4, 5, 6), and wherein the bandgap of the base region (2) is smaller than that of the collector region (3) or of the emitter region (1), for example by the use of a silicon-germanium mixed crystal instead of pure silicon in the base region (2). Such a device is characterized by a very high speed, but its transistor shows a relatively low BVeeo. In a device (10) according to the invention the doping flux of the emitter region (1) is locally reduced by a further semiconductor region (20) of the second conductivity type which is embedded in the emitter region (1).
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: August 2, 2011
    Assignee: NXP B.V.
    Inventors: Rob Van Dalen, Prabhat Agarwal, Jan Willem Slotboom, Gerrit Elbert Johannes Koops
  • Patent number: 7910984
    Abstract: A semiconductor device includes: a semiconductor substrate; a lateral MOSFET formed in an upper portion of a first region of the semiconductor substrate; a vertical MOSFET formed in a second region of the semiconductor substrate; a backside electrode formed on a lower surface of the semiconductor substrate and connected to a lower region of source/drain regions of the vertical MOSFET; and a connecting member penetrating the semiconductor substrate and connecting one of source/drain regions of the lateral MOSFET to the backside electrode.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Yamaguchi, Yusuke Kawaguchi, Miwako Akiyama
  • Patent number: 7893463
    Abstract: An integrated pair of HBT and FET transistors shares a common compound semiconductor III-V epitaxial layer. The integrated pair of transistors includes a semi-insulating substrate of a compound semiconductor III-V material, a first epitaxial structure disposed on top of the substrate, a second epitaxial structure on top of the first epitaxial structure, and a third epitaxial structure disposed on top of the second epitaxial structure. The first epitaxial structure forms a portion of the HBT transistor. A concentration profile of a first contaminant, which contributes electrical charge, decreases substantially smoothly across an interface between the semi-insulating substrate and the first epitaxial structure. In some cases, the interface is free of a second contaminant that was present, during formation of the epitaxial structures, in a chamber in which the epitaxial structures were formed.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 22, 2011
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Jr., Victor Labyuk, Sherry Qianwen Ye
  • Patent number: 7868335
    Abstract: A bipolar junction transistor having an emitter, a base, and a collector includes a stack of one or more layer sets adjacent the collector. Each layer set includes a first material having a first band gap, wherein the first material is highly doped, and a second material having a second band gap narrower than the first band gap, wherein the second material is at most lightly doped.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 11, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Patent number: 7863174
    Abstract: A vertical pillar transistor may include a plurality of lower pillars, a plurality of upper pillars, a first insulation part, a second insulation part and a word line. The plurality of lower pillars protrudes substantially perpendicular to a substrate and is defined by a plurality of trenches. The plurality of lower pillars extends along a second direction and may be separated from each other along a first direction substantially perpendicular to the second direction. The plurality of upper pillars may be formed on the plurality of lower pillars. The plurality of upper pillars has a width substantially smaller than that of the plurality of lower pillars. The first insulation part has a substantially uniform thickness on a sidewall of each of the plurality of lower pillars. The second insulation part may be formed on the first insulation part to fill a gap between the adjacent upper pillars.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hui-Jung Kim, Yong-Chul Oh, Jae-Man Yoon, Hyun-Woo Chung, Hyun-Gi Kim, Kang-Uk Kim
  • Patent number: 7842591
    Abstract: A method of fabricating short-gate-length electrodes for integrated III-V compound semiconductor devices, particularly for integrated HBT/HEMT devices on a common substrate is disclosed. The method is based on dual-resist processes, wherein a first thin photo-resist layer is utilized for defining the gate dimension, while a second thicker photo-resist layer is used to obtain a better coverage on the surface for facilitating gate metal lift-off. The dual-resist method not only reduces the final gate length, but also mitigates the gate recess undercuts, as compared with those fabricated by the conventional single-resist processes. Furthermore, the dual-resist method of the present invention is also beneficial for the fabrication of multi-gate device with good gate-length uniformity.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 30, 2010
    Assignee: WIN Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Chia-Liang Chao, Ming-Chang Tu, Tsung-Chi Tsai, Yu-Chi Wang
  • Patent number: 7842973
    Abstract: A semiconductor device capable of avoiding generation of a barrier in a conduction band while maintaining high withstanding voltage and enabling high speed transistor operation at high current in a double hetero bipolar transistor, as well as a manufacturing method thereof, wherein a portion of the base and the collector is formed of a material with a forbidden band width narrower than that of a semiconductor substrate, a region where the forbidden band increases stepwise and continuously from the emitter side to the collector side is disposed in the inside of the base and the forbidden band width at the base-collector interface is designed so as to be larger than the minimum forbidden band width in the base, whereby the forbidden band width at the base layer edge on the collector side can be made closer to the forbidden band width of the semiconductor substrate than usual while sufficiently maintaining the hetero effect near the emitter-base thereby capable of decreasing the height of the energy barrier gene
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 30, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miura, Katsuyoshi Washio, Hiromi Shimamoto
  • Patent number: 7843004
    Abstract: A trench MOSFET contains a recessed field plate (RFP) trench adjacent the gate trench. The RFP trench contains an RFP electrode insulated from the die by a dielectric layer along the walls of the RFP trench. The gate trench has a thick bottom oxide layer, and the gate and RFP trenches are preferably formed in the same processing step and are of substantially the same depth. When the MOSFET operates in the third quadrant (with the source/body-to-drain junction forward-biased), the combined effect of the RFP and gate electrodes significantly reduces in the minority carrier diffusion current and reverse-recovery charge. The RFP electrode also functions as a recessed field plates to reduce the electric field in the channel regions when the MOSFET source/body to-drain junction reverse-biased.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: November 30, 2010
    Assignee: MaxPower Semiconductor Inc.
    Inventor: Mohamed N. Darwish
  • Patent number: 7821037
    Abstract: A heterojunction bipolar transistor includes a first conductivity type subcollector layer, a first collector layer containing a first conductivity type impurity, a third collector layer containing a higher concentration of the first conductivity type impurity than the first collector layer, a second collector layer containing a lower concentration of the first conductivity type impurity than the first collector layer, a second conductivity type base layer, a first conductivity type emitter layer containing a semiconductor with a wider bandgap than the base layer, and a first conductivity type emitter cap layer.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 26, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Takaki Niwa, Naoto Kurosawa
  • Patent number: 7709889
    Abstract: The present invention provides a semiconductor device (20) comprising a trench (5) formed in a semiconductor substrate formed of a stack (4) of layers (1,2,3), a layer (6) of a first, grown dielectric material covering sidewalls and bottom of the trench (5), the layer (6) including one or more notches (13) at the bottom of the trench (5) and one or more spacers (14) formed of a second, deposited dielectric material to fill the one or more notches (13) in the layer (6) formed of the first, grown dielectric material. The semiconductor device (20) according to the present invention shows improved breakdown voltage and on-resistance. The present invention furthermore provides a method for the manufacturing of such semiconductor devices (20).
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 4, 2010
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peter Moens, Filip Bauwens, Joris Baele, Marnix Tack
  • Patent number: 7670911
    Abstract: A method for manufacturing a vertical MOS transistor comprising forming a protrusion-like region, forming a silicon oxide film on an exposed surface of the protrusion-like region and a surface of the silicon semiconductor substrate, increasing a film thickness of at least the silicon oxide film on the silicon semiconductor substrate by thermal oxidation to form a first insulating film, forming a lower impurity diffusion region, removing the silicon oxide film to expose a silicon side of the protrusion-like region, thermally oxidizing the silicon side to form a second insulating film having a thinner film thickness than a film thickness of the first insulating film, forming a gate electrode over a side of the protrusion-like region, and forming an upper impurity diffusion region.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 2, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Kiyonori Oyu