With Nonplanar Surface (e.g., With Nonplanar Gate Or With Trench Or Recess Or Pillar In Surface Of Emitter, Base, Or Collector Region For Improving Current Density Or Short-circuiting Emitter And Base Regions) (epo) Patents (Class 257/E29.2)
  • Patent number: 11757001
    Abstract: A high voltage superjunction MOSFET includes a semiconductor substrate and a semiconductor layer having columns of first and second conductivity. A buffer layer of the first conductivity is between the semiconductor substrate and semiconductor layer. A plug region of the second conductivity is formed at a semiconductor layer surface and extends to the columns. A source/drain region is formed at the semiconductor layer surface and is connected to the plug region. The source/drain region has a concentration of the first conductivity between about 1×1019 cm?3 and 1.5×1020 cm?3. A body region of the second conductivity is between the source/drain region and the first column and is connected to the plug region. A gate trench is formed in the semiconductor layer surface and extends toward the first column and has a trench gate electrode disposed therein. A dielectric layer separates the trench gate electrode from the first column.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: September 12, 2023
    Inventors: Kiraneswar Muthuseenu, Samuel Anderson, Takeshi Ishiguro
  • Patent number: 9531186
    Abstract: In a current detection circuit, a first circuit is connected between a first terminal and a second terminal, and a second circuit is connected between a third terminal and a fourth terminal. The second terminal and the fourth terminal are commonly connected. When a first current flows between the first and second terminals, voltage drop occurs in the first circuit. A current control circuit controls the first current to make an application voltage between the first and second terminals substantially same as an application voltage between the third and fourth terminals. When the first circuit has voltage drop same as the second circuit, the first current has the amount proportional to the second current. A detection circuit detects a current flowing between the first terminal and the third terminal by detecting the first current controlled by the current control circuit or the second current.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: December 27, 2016
    Assignee: DENSO CORPORATION
    Inventors: Keisuke Yagyu, Kazuhiro Umetani
  • Patent number: 9012982
    Abstract: A recessed transistor and a method of manufacturing the same are provided. The recessed transistor may include a substrate, an active pin, a gate pattern and source and drain regions. The substrate may include an isolation layer that establishes an active region and a field region of the substrate. The substrate may include a recessed structure having an upper recess formed in the active region and a lower recess in communication with the upper recess. An active pin may be formed in a region between side surfaces of the isolation layer and the lower recess and an interface between the active region and the field region. The gate pattern may include a gate insulation layer formed on an inner surface of the recessed structure and a gate electrode formed on the gate insulation layer in the recessed structure. The source/drain regions may be formed adjacent to the active region and the gate electrode.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Makoto Yoshida, Chul Lee, Dong-Gun Park, Woun-Suck Yang
  • Patent number: 8889532
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a shield electrode formed in trench structure within a semiconductor material. A gate electrode is isolated from the semiconductor material using gate insulating layers. Before the shield electrode is formed, spacer layers can be used form shield insulating layers along portions of the trench structure. The shield insulating layers are thicker than the gate insulating layers. In another embodiment, the shield insulating layers have variable thickness.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter A. Burke, Gordon M. Grivna, Balaji Padmanabhan, Prasad Venkatraman
  • Patent number: 8883645
    Abstract: Methods for fabrication of nanopillar field effect transistors are described. These transistors can have high height-to-width aspect ratios and be CMOS compatible. Silicon nitride may be used as a masking material. These transistors have a variety of applications, for example they can be used for molecular sensing if the nanopillar has a functionalized layer contacted to the gate electrode. The functional layer can bind molecules, causing an electrical signal in the transistor.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: November 11, 2014
    Assignee: California Institute of Technology
    Inventors: Chieh-Feng Chang, Aditya Rajagopal, Axel Scherer
  • Patent number: 8823086
    Abstract: A semiconductor device having a buried gate is provided. The semiconductor device is formed in a structure in which a plurality of contacts having small step differences are stacked without forming a metal contact applying an operation voltage to the buried gate in a single contact and a contact pad is formed between the contacts so that failure due to misalignment can be prevented without a separate additional process for forming the contacts.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: September 2, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chul Hwan Cho
  • Patent number: 8809911
    Abstract: Plural gate trenches are formed in the surface of an n-type drift region. A gate electrode is formed across a gate oxide film on the inner walls of the gate trenches. P-type base regions are selectively formed so as to neighbor each other in the gate trench longitudinal direction between neighboring gate trenches. An n-type emitter region is formed in contact with the gate trench in a surface layer of the p-type base regions. Also, a p-type contact region with a concentration higher than that of the p-type base region is formed in the surface layer of the p-type base region so as to be in contact with the gate trench side of the n-type emitter region. An edge portion on the gate trench side of the n-type emitter region terminates inside the p-type contact region.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 8803229
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment of the method, a pillar of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The pillar has a sublithographic thickness. A transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc
    Inventor: Leonard Forbes
  • Patent number: 8748979
    Abstract: Disclosed is a semiconductor device whose breakdown voltage is made high by controlling local concentration of an electric field. A source region faces a second plane, one of side faces of a groove part, and a part thereof extends in a direction in parallel to a nodal line of first and second planes. A drift region faces a third plane being the other side face of the groove part opposite to the second plane with a part thereof extending in a direction parallel to the nodal line of the first plane and the third plane, and is formed at a lower concentration than the source region. The drain region is provided so as to be placed on the other side of the drift region opposite to the groove part and so as to touch the drift region, and is formed at a higher concentration than the drift region.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: June 10, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Takeda
  • Patent number: 8680610
    Abstract: A trench MOSFET comprising source regions having a doping profile of a Gaussian-distribution along the top surface of epitaxial layer and floating dummy cells formed between edge trench and active area is disclosed. A SBR of n region existing at cell corners renders the parasitic bipolar transistor difficult to turn on, and the floating dummy cells having no parasitic bipolar transistor act as buffer cells to absorb avalanche energy when gate bias is increasing for turning on channel, therefore, the UIS failure issue is avoided and the avalanche capability of the trench MOSFET is enhanced.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 25, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8643090
    Abstract: In various embodiments, a semiconductor device is provided. The semiconductor device may include a first source/drain region, a second source/drain region, an active region electrically coupled between the first source/drain region and the second source/drain region, a trench disposed between the second source/drain region and at least a portion of the active region, a first isolation layer disposed over the bottom and the sidewalls of the trench, electrically conductive material disposed over the isolation layer in the trench, a second isolation layer disposed over the active region, and a gate region disposed over the second isolation layer. The electrically conductive material may be coupled to an electrical contact.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Patent number: 8610210
    Abstract: According to one embodiment, a power semiconductor device includes a first semiconductor layer, and first, second and third semiconductor regions. The first semiconductor layer has a first conductivity type. The first semiconductor regions have a second conductivity type, and are formed with periodicity in a lateral direction in a second semiconductor layer of the first conductivity type. The second semiconductor layer is provided on a major surface of the first semiconductor layer in a device portion with a main current path formed in a vertical direction generally perpendicular to the major surface and in a terminal portion provided around the device portion. The second semiconductor region has the first conductivity type and is a portion of the second semiconductor layer sandwiched between adjacent ones of the first semiconductor regions. The third semiconductor regions have the second conductivity type and are provided below the first semiconductor regions in the terminal portion.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Wataru Sekine, Wataru Saito, Syotaro Ono, Munehisa Yabuzaki, Nana Hatano, Miho Watanabe
  • Patent number: 8525187
    Abstract: An IGBT, which is capable of reducing on resistance by reducing channel mobility, includes: an n type substrate made of SiC and having a main surface with an off angle of not less than 50° and not more than 65° relative to a plane orientation of {0001}; a p type reverse breakdown voltage holding layer made of SiC and formed on the main surface of the substrate; an n type well region formed to include a second main surface of the reverse breakdown voltage holding layer; an emitter region formed in the well region to include the second main surface and including a p type impurity at a concentration higher than that of the reverse breakdown voltage holding layer; a gate oxide film formed on the reverse breakdown voltage holding layer; and a gate electrode formed on the gate oxide film. In a region including an interface between the well region and the gate oxide film, a high-concentration nitrogen region is formed to have a nitrogen concentration higher than those of the well region and the gate oxide film.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 3, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Keiji Wada, Toru Hiyoshi
  • Patent number: 8502236
    Abstract: A MOSFET, which is capable of reducing on resistance by reducing channel mobility even when a gate voltage is high, includes: an n type substrate made of SiC and having a main surface with an off angle of 50°-65° relative to a {0001} plane; an n type reverse breakdown voltage holding layer made of SiC and formed on the main surface of the substrate; a p type well region formed in the reverse breakdown voltage holding layer distant away from a first main surface thereof; a gate oxide film formed on the well region; an n type contact region disposed between the well region and the gate oxide film; a channel region connecting the n type contact region and the reverse breakdown voltage holding layer; and a gate electrode disposed on the gate oxide film. In a region including an interface between the channel region and the gate oxide film, a high-concentration nitrogen region is formed.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Keiji Wada, Toru Hiyoshi
  • Patent number: 8384194
    Abstract: A power semiconductor device with improved avalanche capability structures is disclosed. By forming at least an avalanche capability enhancement doped regions with opposite conductivity type to epitaxial layer underneath an ohmic contact doped region which surrounds at least bottom of trenched contact filled with metal plug between two adjacent gate trenches, avalanche current is enhanced with the disclosed structures.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: February 26, 2013
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20120098030
    Abstract: A trench IGBT is disclosed. One embodiment includes an embedded structure arranged above a collector region and selected from a group consisting of a porous semiconductor region, a cavity, and a semiconductor region including additional scattering centers for holes, the embedded structure being arranged below the body contact region such that the embedded structure and the body contact region overlap in a horizontal projection.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 26, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Patent number: 8134197
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment of the method, a pillar of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The pillar has a sublithographic thickness. A transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8097917
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a silicon carbide substrate, a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; a trench penetrating the second and the third semiconductor layers to reach the first semiconductor layer; a channel layer on a sidewall and a bottom of the trench; an oxide film on the channel layer; a gate electrode on the oxide film; a first electrode connecting to the third semiconductor layer; and a second electrode connecting to the silicon carbide substrate. A position of a boundary between the first semiconductor layer and the second semiconductor layer is disposed lower than an utmost lowest position of the oxide film.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 17, 2012
    Assignee: DENSO CORPORATION
    Inventors: Malhan Rajesh Kumar, Yuichi Takeuchi
  • Patent number: 8072022
    Abstract: Embodiments of an apparatus and methods for providing improved flash memory cell characteristics are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: December 6, 2011
    Assignee: Intel Corporation
    Inventors: Pranav Kalavade, Krishna Parat, Ervin Hill, Kiran Pangal
  • Publication number: 20110215374
    Abstract: A power semiconductor device having adjustable output capacitance includes a semiconductor substrate having a first device region and a second device region defined thereon, at lest one power transistor device disposed in the first device region, a heavily doped region disposed in the semiconductor substrate of the second device region, a capacitor dielectric layer disposed on the heavily doped region, a source metal layer disposed on a top surface of the semiconductor substrate and electrically connected to the power transistor device, and a drain metal layer disposed on a bottom surface of the semiconductor substrate. The source metal layer in the second device, the capacitor dielectric layer and the heavily doped region form a snubber capacitor.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 8, 2011
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Shian-Hau Liao
  • Patent number: 7986003
    Abstract: A carrier storage layer is located in a region of a predetermined depth from a surface of an N? substrate, a base region is located in a shallower region than the predetermined depth and an emitter region is located in a surface of the N? substrate. The carrier storage layer is formed by phosphorus injected to have a maximum impurity concentration at the predetermined depth, the base region is formed by boron injected to have the maximum impurity concentration at a shallower position than the predetermined depth and the emitter region is formed by arsenic injected to have the maximum impurity concentration at the surface of the N? substrate. An opening is formed to extend through the emitter region, base region and the carrier storage layer. On the inner wall of the opening, a gate electrode is formed with a gate insulating film therebetween.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 26, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinji Aono, Hideki Takahashi, Yoshifumi Tomomatsu, Junichi Moritani
  • Patent number: 7982247
    Abstract: A semiconductor device and method of making comprises providing an active device region and an isolation region, the isolation region forming a boundary with the active device region. A patterned gate material overlies the active device region between first and second portions of the boundary. The patterned gate material defines a channel within the active device region, the gate material having a gate length dimension perpendicular to a centerline along a principal dimension of the gate material which is larger proximate the first and second portions of the boundary than in-between the first and second portions of the boundary. The channel includes a first end proximate the first portion of the boundary and a second end proximate the second portion of the boundary, further being characterized by gate length dimension tapering on both ends of the channel.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Lionel J. Riviere-Cazaux
  • Patent number: 7936009
    Abstract: A shielded gate trench field effect transistor (FET) comprises trenches extending into a semiconductor region. A shield electrode is disposed in a bottom portion of each trench. The shield electrode is insulated from the semiconductor region by a shield dielectric. A gate electrode is disposed in each trench over the shield electrode, and an inter-electrode dielectric (IED) comprising a low-k dielectric extends between the shield electrode and the gate electrode.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 3, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: James Pan, James J. Murphy
  • Patent number: 7898025
    Abstract: A semiconductor device having a recess gate includes a semiconductor substrate having a recess, a conductive pattern for a gate electrode filled into the recess, and having an extension portion protruding higher than a surface of the semiconductor substrate, an epitaxial semiconductor layer having a top surface disposed over the semiconductor substrate, and a gate insulating layer disposed between the epitaxial semiconductor layer and the conductive pattern, and between the semiconductor substrate and the conductive pattern. Further, a method of fabricating the same is disclosed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7880227
    Abstract: A trench IGBT is disclosed which includes a semiconductor substrate having formed therein a set of cell trenches formed centrally and a set of annular guard trenches concentrically surrounding the cell trenches. The cell trenches receive cell trench conductors via cell trench insulators for providing IGBT cells. The guard trenches receive guard trench conductors via guard trench insulators for enabling the IGBT to withstand higher voltages through mitigation of field concentrations. Capacitive coupling conductors overlie the guard trench conductors via a dielectric layer, each for capacitively coupling together two neighboring ones of the guard trench conductors. The capacitive coupling conductors are easily adjustably variable in shape, size and placement relative to the guard trench conductors for causing the individual guard trench conductors to possess potentials for an optimal contour of the depletion layer.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Tetsuya Takahashi
  • Patent number: 7872297
    Abstract: The present invention relates to a flash memory device and its fabrication method. The device comprises a structure for improving a scaling-down characteristic/performance and increasing memory capacity of the MOS-based flash memory device. A new device structure according to the present invention is based on a recessed channel capable of implementing highly-integrated/high-performance and 2-bit/cell. The proposed device suppresses the short channel effect, reduces the cell area, and enables 2-bit/cell by forming the charge storage node as a spacer inside the recessed channel. Moreover, if selectively removing the dielectric films around the recessed silicon surface, the sides as well as the surface of the recessed channel is exposed. A spacer can be used as a storage node, thereby improving the channel controllability of the control electrode and the on-off characteristic of a device. The proposed structure also resolves the threshold voltage problem and improves the write/erase speeds.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: January 18, 2011
    Assignee: SNU R&DB Foundation
    Inventor: Jong-Ho Lee
  • Patent number: 7855415
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: December 21, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Ashok Challa, Jaegil Lee, Jinyoung Jung, Hocheol Jang
  • Patent number: 7816720
    Abstract: A trench MOSFET structure having improved avalanche capability is disclosed, wherein the source region is formed by performing source Ion Implantation through contact open region of a thick contact interlayer, and further diffused to optimize a trade-off between Rds and the avalanche capability. Thus, only three masks are needed in fabrication process, which are trench mask, contact mask and metal mask. Furthermore, said source region has a doping concentration along channel region lower than along contact trench region, and source junction depth along channel region shallower than along contact trench, and source doping profile along surface of epitaxial layer has Gaussian-distribution from trenched source-body contact to channel region.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: October 19, 2010
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 7808029
    Abstract: A mask structure and process for forming trenches in a silicon carbide or other wafer, and for implanting impurities into the walls of the trenches using the same mask where the mask includes a thin aluminum layer and a patterned hard photoresist mask. A thin LTO oxide may be placed between the metal layer and the hard photoresist mask.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 5, 2010
    Assignee: Siliconix Technology C.V.
    Inventors: Luigi Merlin, Giovanni Richieri, Rossano Carta
  • Patent number: 7800187
    Abstract: In a semiconductor device including a gate electrode buried in a trench of the device, the trench is constructed by a first opening with a uniform width the same as that of an upper portion of the first opening and a second opening beneath the first opening with a width larger than the uniform width. A bottom of a base region adjacent to the trench is adjacent to the second opening.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 21, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Naoki Matsuura
  • Patent number: 7800183
    Abstract: A semiconductor device includes a substrate of a first conductivity type, a base region of a second conductivity type, a source region of the first conductivity type, a collector region of the second conductivity type, a trench gate, which is formed in a trench via a gate insulation film, an electrically conductive layer, which is formed within a contact trench that is formed through the source region, a source electrode, which is in contact with the electrically conductive layer and the source region, and a latch-up suppression region of the second conductivity type, which is formed within the base region, in contact with the electrically conductive layer, and higher in impurity concentration than the base region. The distance between the gate insulation film and the latch-up suppression region is not less than the maximum width of a depletion layer that is formed in the base layer by the trench gate.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: September 21, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takahiro Okuno, Shigeru Kusunoki
  • Patent number: 7741223
    Abstract: A method for fabricating a semiconductor device includes etching a substrate to form a first recess having a micro trench, etching the substrate disposed under the first recess to form a second recess having a profile substantially vertical and a width greater than a portion of the first recess where no micro trench is formed, etching the substrate disposed under the second recess to form a third recess having a profile substantially spherical, and forming a gate pattern over a resultant recess including the first to third recesses.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyun-Sik Park, Ky-Hyun Han
  • Patent number: 7709931
    Abstract: An IGBT is disclosed which has a set of inside trenches and an outside trench formed in its semiconductor substrate. The substrate has emitter regions adjacent the trenches, a p-type base region adjacent the emitter regions and trenches, and an n-type base region comprising a first and a second subregion contiguous to each other. The first subregion of the n-type base region is contiguous to the inside trenches whereas the second subregion, less in impurity concentration than the first, is disposed adjacent the outside trench. Breakdown is easier to occur than heretofore adjacent the inside trenches, saving the device from destruction through mitigation of a concentrated current flow adjacent the outside trench.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 4, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Katsuyuki Torii
  • Patent number: 7652308
    Abstract: Semiconductor devices having a gate-all-around (GAA) structure capable of higher operating performance may be provided. A semiconductor device may include a semiconductor substrate, at least one gate electrode, and at least one gate insulating layer. The semiconductor substrate may have a body, at least one supporting post protruding from the body, and at least one pair of fins separated from the body, wherein both ends of each fin of the at least one pair of fins are connected to and supported by the at least one supporting post. The at least one gate electrode may enclose a portion of at least one fin of the at least one pair of fins of the semiconductor substrate, and may be insulated from the semiconductor substrate. The at least one gate insulating layer may be interposed between the at least one gate electrode and the at least one pair of fins of the semiconductor substrate.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Dong Park, Suk-Pil Kim
  • Patent number: 7608878
    Abstract: A method for manufacturing a semiconductor device includes forming a device isolation film by a double Shallow Trench Isolation (STI) process, forming a first active region having a negative slope and a second active region having a positive slope. Additionally, the method includes applying a recess region and a bulb-type recess region to the above-extended active region so as to prevent generation of horns in the active regions. This structure results in improvement in effective channel length and area.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 27, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Joo Baek
  • Patent number: 7521755
    Abstract: A trench IGBT is disclosed which includes a semiconductor substrate having formed therein a set of cell trenches formed centrally and a set of annular guard trenches concentrically surrounding the cell trenches. The cell trenches receive cell trench conductors via cell trench insulators for providing IGBT cells. The guard trenches receive guard trench conductors via guard trench insulators for enabling the IGBT to withstand higher voltages through mitigation of field concentrations. Capacitive coupling conductors overlie the guard trench conductors via a dielectric layer, each for capacitively coupling together two neighboring ones of the guard trench conductors. The capacitive coupling conductors are easily adjustably variable in shape, size and placement relative to the guard trench conductors for causing the individual guard trench conductors to possess potentials for an optimal contour of the depletion layer.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: April 21, 2009
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Tetsuya Takahashi
  • Patent number: 7439579
    Abstract: A trench transistor is described. In one aspect, the trench transistor has a cell array having a plurality of cell array trenches and a plurality of mesa zones arranged between the cell array trenches, and a semiconductor functional element formed in one of the mesa zones. A current flow guiding structure is provided in the mesa zone in which the semiconductor functional element is formed, said structure being formed at least partly below the semiconductor functional element and being configured such that vertically oriented current flows out of the semiconductor functional element or into the semiconductor functional element are made more difficult and horizontally oriented current flows through the semiconductor functional element are promoted.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: October 21, 2008
    Assignee: Infineon Technologies AG
    Inventors: Rainald Sander, Markus Zundel
  • Patent number: 7385248
    Abstract: A field effect transistor (FET) includes a trench extending into a silicon region of a first conductive type. A shield insulated from the silicon region by a shield dielectric extends in a lower portion of the trench. A gate electrode is in the trench over but insulated from the shield electrode by an inter-poly dielectric (IPD). The IPD comprises a conformal layer of dielectric and a thermal oxide layer.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 10, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Herrick, Dean Probst, Fred Session
  • Publication number: 20080054409
    Abstract: A method of fabricating semiconductor device that includes at least one of: Forming a first oxide film on and/or over a semiconductor substrate to partially fill at least one trench formed in the semiconductor substrate. Removing a portion of the first oxide film that is over the semiconductor substrate (e.g. by a CMP process). Forming a second oxide film over the first oxide film in the at least one trench to substantially completely fill the at least one trench.
    Type: Application
    Filed: August 24, 2007
    Publication date: March 6, 2008
    Inventor: Cheon-Man Shim
  • Patent number: 7285455
    Abstract: A method of producing a semiconductor device includes the steps of: preparing a double SOI substrate, forming a deep trench, filling the deep trench, forming an opening, forming a cavity, depositing a polycrystalline silicon layer, and forming a bipolar transistor.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 23, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hirokazu Fujimaki
  • Patent number: 7183600
    Abstract: A semiconductor device includes a plurality of gate trenches, each of which has first inner walls, which face each other in a first direction which is perpendicular to a second direction in which active regions extend, and second inner walls, which face each other in the second direction in which the active regions extends. An isolation layer contacts a gate insulating layer throughout the entire length of the first inner walls of the gate trenches including from entrance portions of the gate trenches to bottom portions of the gate trenches, and a plurality of channel regions are disposed adjacent to the gate insulating layers in the semiconductor substrate along the second inner walls and the bottom portions of the gate trenches.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Jin Kim, Kyeong-Koo Chi, Chang-Jin Kang, Hyoung-Sub Kim, Myeong-Cheol Kim, Tae-Rin Chung, Sung-Hoon Chung, Ji-Young Kim
  • Patent number: 7180159
    Abstract: A bipolar transistor in a monocrystalline semiconductor substrate (101), which has a first conductivity type and includes a surface layer (102) of the opposite conductivity type. The transistor comprises an emitter contact (110) on the surface layer; a base contact (130 and 131) extending through a substantial portion (141) of the surface layer, spaced apart (140a) from the emitter; an insulator region (150/151) buried under the base contact; a collector contact (120); and a first polycrystalline semiconductor region (152/153) selectively located under the insulator region, and a second polycrystalline semiconductor region (154) selectively located under the collector contact. These polycrystalline regions exhibit heavy dopant concentrations of the first conductivity type; consequently, they lower the collector resistance.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Gregory E. Howard
  • Patent number: 7118971
    Abstract: Embodiments of the invention relate to a fabrication method of an electronic device, more particularly to a fabrication method of a power device in which an oxide layer at the bottom of the trench is provided to reduce Miller capacitance and further reduce RC delay. In one embodiment, a method for forming an oxide layer at the bottom of a trench comprises providing a first substrate with at least one trench therein; forming a first oxide layer on the bottom and sidewalls of the trench; removing the first oxide layer at the bottom of the trench; and forming a second oxide layer at the bottom of the trench.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 10, 2006
    Assignee: Mosel Vitelic, Inc.
    Inventors: Jen-Chieh Chang, Yi-Fu Chung, Tun-Fu Hung