With Channel Containing Layer Contacting Drain Drift Region (e.g., Dmos Transistor) (epo) Patents (Class 257/E29.256)
  • Patent number: 8350327
    Abstract: A semiconductor device is provided which includes a semiconductor substrate, a gate structure formed on the substrate, sidewall spacers formed on each side of the gate structure, a source and a drain formed in the substrate on either side of the gate structure, the source and drain having a first type of conductivity, a lightly doped region formed in the substrate and aligned with a side of the gate structure, the lightly doped region having the first type of conductivity, and a barrier region formed in the substrate and adjacent the drain. The barrier region is formed by doping a dopant of a second type of conductivity different from the first type of conductivity.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Wei Vanessa Chung, Kuo-Feng Yu
  • Publication number: 20130001686
    Abstract: An Electro-Static Discharge (ESD) protection device is provided. The ESD protection device includes a metal-oxide semiconductor (MOS) transistor, including a source area having a surface on which a first silicide is formed, the source area including a source connecting area including a first connecting portion formed on the first silicide, and a source extension area, a gate arranged in parallel with the source area, and a drain area arranged in parallel with the source area and the gate, the drain area having a surface on which a second silicide is formed, the drain area including a drain connecting area formed opposite the source extension area, the drain connecting area including second connection portion formed on the second silicide, and a drain extension area formed opposite the source connecting area.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 3, 2013
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventor: Tae-hoon Kim
  • Publication number: 20130001685
    Abstract: The present invention relates to an integrated circuit (semiconductor device) for which consolidation of a fine CMOS and a medium/high-voltage MOSFET is assumed to be carried out. A feature of the present invention is a small width (channel length) of a channel region CH. Specifically, when the width of the channel region planarly overlapped with a gate electrode is “L” and the thickness of the gate electrode is “t”, the channel region is formed to have the width of the channel region being larger than or equal to ? times the thickness t of the gate electrode and smaller than or equal to the thickness t. Thus, the width L of the channel region can be reduced, and variations in the threshold voltage can be reduced.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Shinji SHIRAKAWA, Junichi SAKANO
  • Publication number: 20130001687
    Abstract: According to an exemplary embodiment, a method for fabricating a MOS transistor, such as an LDMOS transistor, includes forming a self-aligned lightly doped region in a first well underlying a first sidewall of a gate. The method further includes forming a self-aligned extension region under a second sidewall of the gate, where the self-aligned extension region extends into the first well from a second well. The method further includes forming a drain region spaced apart from the second sidewall of the gate. The method further includes forming a source region in the self-aligned lightly doped region and the first well. The self-aligned lightly doped region and the self-aligned extension region define a channel length of the MOS transistor, such as an LDMOS transistor.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: Broadcom Corporation
    Inventors: Xiangdong Chen, Wei Xia, Henry Kuo-Shun Chen
  • Publication number: 20130001589
    Abstract: A lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) with a high drain-to-body breakdown voltage (Vb) incorporates gate structure extensions on opposing sides of a drain drift region. The extensions are tapered such that a distance between each extension and the drift region increases linearly from one end adjacent to the channel region to another end adjacent to the drain region. In one embodiment, these extensions can extend vertically through the isolation region that surrounds the LEDMOSFET. In another embodiment, the extensions can sit atop the isolation region. In either case, the extensions create a strong essentially uniform horizontal electric field profile within the drain drift. Also disclosed are a method for forming the LEDMOSFET with a specific Vb by defining the dimensions of the extensions and a program storage device for designing the LEDMOSFET to have a specific Vb.
    Type: Application
    Filed: September 6, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman
  • Publication number: 20130001688
    Abstract: A device having a self-aligned body on a first side of a gate is disclosed. The self-aligned body helps to achieve very low channel length for low Rdson. The self-aligned body is isolated, enabling to bias the body at different bias potentials. The device may be configured into a finger architecture having a plurality of transistors with commonly coupled, sources, commonly coupled gates, and commonly coupled drains to achieve high drive current outputs.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 3, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventor: Purakh Raj VERMA
  • Publication number: 20120319202
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device includes: a first conductive type substrate having a device region; a gate, which is located on a surface of the substrate; a second conductive type source and a second conductive type drain in the device region at different sides of the gate respectively; and a second conductive type drift region, which is located in the device region, between the source and the drain. The gate includes: a conductive layer for receiving a gate voltage; and multiple dielectric layers with different thicknesses, located at different horizontal positions. From cross-section view, each dielectric layer is between the conductive layer and the substrate, and the multiple dielectric layers are arranged in an order from thinner to thicker from a side closer to the source to a side closer to the drain.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Tsung-Yi Huang, Huan-Ping Chu
  • Patent number: 8334567
    Abstract: First example embodiments comprise forming a stress layer over a MOS transistor (such as a LDMOS Tx) comprised of a channel and first, second and third junction regions. The stress layer creates a stress in the channel and the second junction region of the Tx. Second example embodiments comprise forming a MOS FET and at least a dummy gate over a substrate. The MOS is comprised of a gate, channel, source, drain and offset drain. At least one dummy gate is over the offset drain. A stress layer is formed over the MOS and the dummy gate. The stress layer and the dummy gate improve the stress in the channel and offset drain region.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 18, 2012
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Sanford Chu, Yisuo Li, Guowei Zhang, Purakh Raj Verma
  • Publication number: 20120313166
    Abstract: An apparatus is disclosed to increase a breakdown voltage of a semiconductor device. The semiconductor device can include a modified breakdown shallow trench isolation (STI) region to effectively reduce its drain to source resistance when compared to a conventional semiconductor device. This reduction in the drain to source resistance increases the breakdown voltage of the semiconductor device when compared to the conventional semiconductor device by allowing more current to pass from a source region to a drain region of the semiconductor device. The semiconductor device can include a modified well region to reduce its drain to source resistance. The modified well region allows more current to pass from a source region to a drain region of the semiconductor device, thereby further increasing the break down voltage of the semiconductor device from that of the conventional semiconductor device.
    Type: Application
    Filed: August 6, 2012
    Publication date: December 13, 2012
    Applicant: Broadcom Corporation
    Inventor: Akira ITO
  • Publication number: 20120313165
    Abstract: A semiconductor device and its manufacturing method are disclosed. The semiconductor device comprises a gate, and source and drain regions on opposite sides of the gate, wherein a portion of a gate dielectric layer located above the channel region is thinner than a portion of the gate dielectric layer located at the overlap region of the drain and the gate. The thicker first thickness portion may ensure that the device can endure a higher voltage at the drain to gate region, while the thinner second thickness portion may ensure excellent performance of the device.
    Type: Application
    Filed: November 28, 2011
    Publication date: December 13, 2012
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: JINHUA LIU
  • Patent number: 8330217
    Abstract: A DMOS transistor is fabricated with its source/body/deep body regions formed on the walls of a first set of trenches, and its drain regions formed on the walls of a different set of trenches. A gate region that is formed in a yet another set of trenches can be biased to allow carriers to flow from the source to the drain. Lateral current low from source/body regions on trench walls increases the active channel perimeter to a value well above the amount that would be present if the device was fabricated on just the surface of the wafer. Masking is avoided while open trenches are present. A transistor with a very low on-resistance per unit area is obtained.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 11, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Richard A. Blanchard
  • Patent number: 8330220
    Abstract: A laterally double diffused metal oxide semiconductor device includes a well region having a first conductivity, a first carrier redistribution region having the first conductivity type, wherein the second well region is under the well region, and a highly doped buried layer under the second well region. The highly doped buried layer has the first conductivity type and has a dopant concentration less than that of the well region and less than that of the first carrier redistribution region, and the buried layer is tied to the first well region. In addition, a method for forming the laterally double diffused metal oxide semiconductor device, which may use epitaxial growth, is disclosed.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: December 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tahir A. Khan, Vishnu K. Khemka, Ronghua Zhu
  • Publication number: 20120306013
    Abstract: Metal oxide semiconductor (MOS) protection circuits and methods of forming the same are disclosed. In one embodiment, an integrated circuit includes a pad, a p-type MOS (PMOS) transistor, and first and second n-type MOS (NMOS) transistors. The first NMOS transistor includes a drain, a source and a gate electrically connected to the pad, a first supply voltage, and a drain of the PMOS transistor, respectively. The second NMOS transistor includes a gate, a drain, and a source electrically connected to a bias node, a second supply voltage, and a source of the PMOS transistor, respectively. The source of the second NMOS transistor is further electrically connected to a body of the PMOS transistor so as to prevent a current flowing from the drain of the PMOS transistor to the second supply voltage through the body of PMOS transistor when a transient signal event is received on the pad.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Colm Donovan, Javier A. Salcedo
  • Publication number: 20120306014
    Abstract: A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Erik Mattias Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Jed Hickory Rankin, Yun Shi
  • Publication number: 20120306010
    Abstract: A depletion type DMOS transistor comprises a gap in electrode material allowing incorporation of a well dopant species into the underlying semiconductor material. During subsequent dopant diffusion a continuous well region is obtained having an extended lateral extension without having an increased depth. The source dopant species is implanted after masking the gap. Additional channel implantation is performed prior to forming the gate dielectric material.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 6, 2012
    Inventors: Ralf Lerner, Phil Hower, Gabriel Kittler, Klaus Schottmann
  • Publication number: 20120306011
    Abstract: An integrated circuit with a transistor advantageously embodied in a laterally diffused metal oxide semiconductor device having a gate located over a channel region recessed into a semiconductor substrate and a method of forming the same. In one embodiment, the transistor includes a source/drain including a lightly or heavily doped region adjacent the channel region, and an oppositely doped well extending under the channel region and a portion of the lightly or heavily doped region of the source/drain. The transistor also includes a channel extension, within the oppositely doped well, under the channel region and extending under a portion of the lightly or heavily doped region of the source/drain.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 6, 2012
    Applicant: ENPIRION, INC.
    Inventors: Ashraf W. Lotfi, William W. Troutman, Douglas Dean Lopata, Tanya Nigam
  • Publication number: 20120299094
    Abstract: A semiconductor device having a super junction and a method of manufacturing the semiconductor device capable of obtaining a high breakdown voltage are provided, whereby charge balance of the super junction is further accurately controlled in the semiconductor device that is implemented by an N-type pillar and a P-type pillar. The semiconductor device includes a semiconductor substrate; and a blocking layer including a first conductive type pillar and a second conductive type pillar that extend in a vertical direction on the semiconductor substrate and that are alternately arrayed in a horizontal direction, wherein, in the blocking layer, a density profile of a first conductive type dopant may be uniform in the horizontal direction, and the density profile of the first conductive type dopant may vary in the vertical direction.
    Type: Application
    Filed: January 19, 2012
    Publication date: November 29, 2012
    Inventors: Jae-gil LEE, Jin-myung KIM, Kwang-won LEE, Kyoung-deok KIM, Ho-cheol JANG
  • Publication number: 20120299095
    Abstract: The invention is directed to realizing a power MOS transistor of high efficiency by enhancing the switching performance of a power MOS transistor having a low on-resistance characteristic more than conventional. A semiconductor chip which includes a gate electrode extending between a source electrode and a drain electrode which include finger form electrodes from one end portion to another end portion of the finger form electrodes, gate drawing electrodes connected to the end portions of the gate electrode through contact holes formed in an interlayer insulation film, a passivation film covering the interlayer insulation film, gate connection electrodes which are portions of the gate drawing electrodes and exposed in openings of the passivation film, and protrusion electrodes formed on the gate connection electrodes, is connected to a low resistance substrate wiring for shunting the gate electrode formed on the front surface of a BGA substrate by the protrusion electrodes.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: Semiconductor Components Industries, LLC
    Inventor: Fuminori HASHIMOTO
  • Patent number: 8319289
    Abstract: A technique for suppressing lowering of withstand voltage and lowering of breakdown resistance and reducing a feedback capacitance of a power MISFET is provided. A lateral power MISFET that comprises a trench region whose insulating layer is formed shallower than an HV-Nwell layer is provided in the HV-Nwell layer (drift region) formed on a main surface of a semiconductor substrate in a direction from the main surface to the inside. The lateral power MISFET has an arrangement on a plane of the main surface including a source layer (source region) and a drain layer (drain region) arranged at opposite sides to each other across a gate electrode (first conducting layer), and a dummy gate electrode (second conducting layer) that is different from the gate electrode is arranged between the gate electrode and the drain layer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Masaki Shiraishi, Noboru Akiyama, Takayuki Hashimoto
  • Patent number: 8319283
    Abstract: A semiconductor device includes a source region within a semiconductor substrate, a drain region within the semiconductor substrate, a control gate over the semiconductor substrate and between the source region and the drain region, a first gate between the control gate and the drain region, and a first doped region within the semiconductor region and between the control gate and the first gate. The method of forming the semiconductor device may include depositing an electrode material over the semiconductor substrate, patterning the electrode material to form a control gate and a first gate, implanting a first doped region within the semiconductor substrate between the control gate and the first gate while using the control gate and the first gate as a mask, and implanting a source region within the semiconductor substrate.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: November 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, John L. Huber, Jiang-Kai Zuo
  • Publication number: 20120292697
    Abstract: A semiconductor device includes a substrate having first and second regions, a device isolation layer on the substrate defining an active region in each of the first and second regions, a gate pattern on the active region of each of the first and second regions, and a first dopant region and a second dopant region in each of the first and second regions of the substrate, the gate pattern in each of the first and second regions being between respective first and second dopant regions. At least one of upper surfaces of the first and second dopant regions in the second region is lower in level than an upper surface of the substrate under the gate pattern in the second region, the first and second dopant regions in the second region having an asymmetric recessed structure with respect to the gate pattern in the second region.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 22, 2012
    Inventor: Sangeun LEE
  • Patent number: 8314458
    Abstract: In the semiconductor device according to the present invention, a P type diffusion layer and an N type diffusion layer as a drain lead region are formed on an N type diffusion layer as a drain region. The P type diffusion layer is disposed between a source region and the drain region of the MOS transistor. When a positive ESD surge is applied to a drain electrode, causing an on-current of a parasite transistor to flow, this structure allows the on-current of the parasite transistor to take a path flowing through a deep portion of an epitaxial layer. Thus, the heat breakdown of the MOS transistor is prevented.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: November 20, 2012
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventor: Seiji Otake
  • Patent number: 8314462
    Abstract: A semiconductor device may include an insulating layer and a semiconductor electrode on the insulating layer. An area of increased electrical resistance may separate a contact area of the semiconductor electrode from an active area of the semiconductor electrode. In addition, a metal contact may be provided on the contact area of the semiconductor electrode opposite the insulating layer.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Cree, Inc.
    Inventors: Brett Adam Hull, Sei-Hyung Ryu, James Theodore Richmond
  • Publication number: 20120286360
    Abstract: A field effect transistor device includes a substrate including a source region, a drain region, and a channel region disposed between the source region and the drain region, wherein the source region is connected to the channel region with a source extension portion, and the drain region is connected to the channel region with a drain extension portion, a first spacer portion disposed on the source region, the drain region and a first portion of the source extension portion, and a first portion of the drain extension portion, a second spacer portion disposed on a second portion of the source extension portion, and a second portion of the drain extension portion, a gate stack portion disposed on the channel region.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Pranita Kulkarni, Ramachandran Muralidhar, Chun-Chen Yeh
  • Publication number: 20120286359
    Abstract: A lateral-diffused metal oxide semiconductor device (LDMOS) includes a substrate, a first deep well, at least a field oxide layer, a gate, a second deep well, a first dopant region, a drain and a common source. The substrate has the first deep well which is of a first conductive type. The gate is disposed on the substrate and covers a portion of the field oxide layer. The second deep well having a second conductive type is disposed in the substrate and next to the first deep well. The first dopant region having a second conductive type is disposed in the second deep well. The doping concentration of the first dopant region is higher than the doping concentration of the second deep well.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Inventors: An-Hung Lin, Hong-Ze Lin, Bo-Jui Huang, Wei-Shan Liao, Ting-Zhou Yan, Kun-Yi Chou, Chun-Wei Chen
  • Publication number: 20120286361
    Abstract: The present invention discloses a high voltage device which includes: a substrate having a first isolation structure to define a device region; a source and a drain in the device region; a gate on the substrate and between the source and the drain; and a second isolation structure including: a first isolation region on the substrate and between the source and the drain, wherein from top view, the first isolation region is partially or totally covered by the gate; and a second isolation region in the substrate and below the gate, wherein the second isolation region has a depth in the substrate which is deeper than the depth of the first isolation region in the substrate, and the length of the second isolation region in a direction along an imaginary line connecting the source and the drain does not exceed one-third length of the first isolation region.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Inventor: Tsung-Yi Huang
  • Publication number: 20120286326
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 15, 2012
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Koh YOSHIKAWA
  • Publication number: 20120280318
    Abstract: A device is disclosed. The device includes s substrate prepared with an active device region. The active device region includes a gate. The device also includes a doped channel well disposed in the substrate adjacent to a first edge of the gate. The first edge of the gate overlaps the channel well with a channel edge of the channel well beneath the gate. The first edge of the gate and channel edge defines an effective channel length of the device. The effective channel length is self-aligned to the gate. A doped drift well adjacent to a second edge of the gate is also included.
    Type: Application
    Filed: July 16, 2012
    Publication date: November 8, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Guo Wei ZHANG, Purakh Raj VERMA
  • Publication number: 20120280321
    Abstract: A field-effect transistor (142) includes a lowly p-doped region 110 formed on a surface of a substrate (102), an n-doped drain region 112 and n-doped source region 114 arranged on a surface of the lowly p-doped region 110, and a device isolation insulating film 132 and device isolation insulating film 134. Here, the device isolation insulating film 132 is formed greater in film thickness than the device isolation insulating film 134; and in the n-doped source region 114, the peak concentration section having a highest dopant concentration is formed in a deeper position than in the n-doped drain region 112.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Hiroki FUJII
  • Publication number: 20120280319
    Abstract: On a doped well (2) for a drift section, at least two additional dielectric regions (7,9) having different thicknesses are present between a first contact region (4) for a drain and a second contact region (5) for source on the upper face (10) of the substrate (1), and the gate electrode (11) or an electric conductor, which is electrically conductively connected to the gate electrode, covers each of said additional dielectric regions at least partially.
    Type: Application
    Filed: October 20, 2010
    Publication date: November 8, 2012
    Inventor: Georg Roehrer
  • Publication number: 20120280316
    Abstract: A semiconductor structure and a manufacturing method for the same are provided. The semiconductor structure includes a first doped well, a first doped electrode, a second doped electrode, doped strips and a doped top region. The doped strips are on the first doped well between the first doped electrode and the second doped electrode. The doped strips are separated from each other. The doped top region is on the doped strips and extended on the first doped well between the doped strips. The first doped well and the doped top region have a first conductivity type. The doped strips have a second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chen-Yuan Lin, Cheng-Chi Lin, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20120280320
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate includes isolation regions defining a device region. The high voltage device includes: a drift region, located in the device region, doped with second conductive type impurities; a gate in the device region and on the surface of the substrate; and a second conductive type source and drain in the device region, at different sides of the gate respectively. From top view, the concentration of the second conductive type impurities of the drift region is distributed substantially periodically along horizontal and vertical directions.
    Type: Application
    Filed: October 17, 2011
    Publication date: November 8, 2012
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Publication number: 20120273885
    Abstract: In one embodiment, a high voltage field-effect transistor (HVFET) includes a field oxide layer that covers a first well region, the field oxide layer having a first thickness and extending in a second lateral direction from a drain region to near a second well region. A gate oxide covers a channel region and has a second dimension in a first lateral direction. A gate extends in the second lateral direction from the source region to over a portion of the field oxide layer, the gate being insulated from the channel region by the gate oxide, the gate extending in the first lateral dimension over an inactive area of the HVFET beyond the second dimension of the gate oxide, the gate being insulated from the first and second well regions over the inactive area by the field oxide layer.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 1, 2012
    Applicant: POWER INTEGRATIONS, INC.
    Inventors: Sujit Banerjee, Vijay Parthasarathy
  • Publication number: 20120273882
    Abstract: A novel lateral super junction device compatible with standard CMOS processing techniques using shallow trench isolation is provided for low- and medium-voltage power management applications. The concept is similar to other lateral super junction devices having N- and P-type implants to deplete laterally to sustain the voltage. However, the use of shallow trench structures provides the additional advantage of reducing the Rdson without the loss of the super junction concept and, in addition, increasing the effective channel width of the device to form a “FINFET” type structure, in which the conducting channel is wrapped around a thin silicon “fin” that forms the body of the device. The device is manufactured using standard CMOS processing techniques with the addition of super junction implantation steps, and the addition of polysilicon within the shallow trench structures to form fin structures.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Inventor: PERUMAL RATNAM
  • Publication number: 20120273879
    Abstract: In an embodiment, this invention discloses a top-drain lateral diffusion metal oxide field effect semiconductor (TD-LDMOS) device supported on a semiconductor substrate. The TD-LDMOS includes a source electrode disposed on a bottom surface of the semiconductor substrate. The TD-LDMOS further includes a source region and a drain region disposed on two opposite sides of a planar gate disposed on a top surface of the semiconductor substrate wherein the source region is encompassed in a body region constituting a drift region as a lateral current channel between the source region and drain region under the planar gate. The TD-LDMOS further includes at least a trench filled with a conductive material and extending vertically from the body region near the top surface downwardly to electrically contact the source electrode disposed on the bottom surface of the semiconductor substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: November 1, 2012
    Inventors: Shekar Mallikarjunaswamy, John Chen, YongZhong Hu
  • Publication number: 20120273878
    Abstract: The present invention features a field effect transistor forming on a semiconductor substrate having formed thereon gate, source and drain regions, with said gate region having a lateral gate channel. A plurality of spaced-apart trenches each having an electrically conductive plug formed therein in electrical communication with said gate, source and drain regions, with said trenches extend from a back surface of said semiconductor substrate to a controlled depth. A trench contact shorts the source region and a body region. A source contact is in electrical communication with said source region and a drain contact in electrical communication with said drain region, with said source and drain contacts being disposed on opposite sides of said gate channel.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 8298889
    Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
  • Publication number: 20120267715
    Abstract: A high voltage semiconductor device is provided. The device includes a semiconductor substrate having a high voltage well with a first conductivity type therein. A gate structure is disposed on the semiconductor substrate of the high voltage well. A source doped region and a drain doped region are in the high voltage well on both sides of the gate structure, respectively. A lightly doped region with the first conductivity type is between the source and drain doped regions and relatively near to the source doped region. The disclosure also presents a method for fabricating a high voltage semiconductor device.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Inventors: Wei-Chun CHOU, Yi-Hung CHIU, Chu-Feng CHEN, Cheng-Yi HSIEH, Chung-Ren LAO
  • Publication number: 20120267717
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicants: LAAS-CNRS, ATMEL ROUSSET SAS
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron
  • Publication number: 20120267704
    Abstract: A semiconductor arrangement includes a MOSFET having a source region, a drift region and a drain region of a first conductivity type, a body region of a second conductivity type arranged between the source region and the drift region, a gate electrode arranged adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a source electrode contacting the source region and the body region. The semiconductor arrangement further includes a normally-off JFET having a channel region of the first conductivity type that is coupled between the source electrode and the drift region and extends adjacent the body region so that a p-n junction is formed between the body region and the channel region.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 25, 2012
    Applicant: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Hans-Joachim Schulze
  • Publication number: 20120261749
    Abstract: The semiconductor device according to one embodiment of the present invention includes: a semiconductor substrate; and a first area and a second area which are respectively provided on the semiconductor substrate. The first area includes: a first metal wiring formed in a first wiring layer above the semiconductor substrate and having a certain first width; a second metal wiring formed in a second wiring layer located in an upper layer of the first wiring layer and having the first width; and a first contact connecting the first metal wiring and the second metal wiring and having a second width equal to or less than the first width. The second area includes a third metal wiring having a film thickness from the first wiring layer to the second wiring layer and having a certain third width.
    Type: Application
    Filed: September 19, 2011
    Publication date: October 18, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Masaki YAMADA
  • Publication number: 20120261751
    Abstract: A method for manufacturing a rectifier with a vertical MOS structure is provided. A first trench structure and a first mask layer are formed at a first side of the semiconductor substrate. A second trench structure is formed in the second side of the semiconductor substrate. A gate oxide layer, a polysilicon structure and a metal sputtering layer are sequentially formed on the second trench structure. The rectifier further includes a wet oxide layer and a plurality of doped regions. The wet oxide layer is formed on a surface of the first multi-trench structure and in the semiconductor substrate. The doping regions are formed on a region between the semiconductor substrate and the second trench structure, and located beside the mask layer. The metal sputtering layer is formed on the first mask layer corresponding to the first trench structure.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Applicant: PFC DEVICE CORP.
    Inventors: Kou-Liang Chao, Mei-Ling Chen, Hung-Hsin Kuo
  • Publication number: 20120261750
    Abstract: A semiconductor device includes a drift diffusion region of a first conductivity type, a body diffusion region of a second conductivity type, a source diffusion region of the first conductivity type, an insulating film buried in a trench formed in an upper portion of the drift diffusion region and spaced apart from the body diffusion region, a drain diffusion region of the first conductivity type formed in an upper portion of the drift diffusion region and adjacent to the insulating film on the opposite side of the insulating film from the source diffusion region, and a gate electrode formed on a portion of the body diffusion region, the drift diffusion region, and a portion of the insulating film. The drift diffusion region includes a substrate inner region, and a surface region containing an impurity of the first conductivity type at a higher concentration than that of the substrate inner region.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Applicant: Panasonic Corporation
    Inventors: Daigo YAMASHINA, Masaki INOUE
  • Patent number: 8288830
    Abstract: A semiconductor device includes: an active region defined by a device isolation layer on and/or over a substrate; a second conductive well on and/or over the active region; an extended drain formed at one side of the second conductive well; a gate electrode on and/or over the second conductive well and the extended drain; and a source and a drain formed at both sides of the gate electrode, in which extended regions are formed at the corners of the second conductive well under the gate electrode.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 16, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Jong-Min Kim, Jae-Hyun Yoo, Chan-Ho Park
  • Patent number: 8288220
    Abstract: A method of forming a semiconductor device may include forming a terminal region of a first conductivity type within a semiconductor layer of the first conductivity type. A well region of a second conductivity type may be formed within the semiconductor layer wherein the well region is adjacent at least portions of the terminal region within the semiconductor layer, a depth of the well region into the semiconductor layer may be greater than a depth of the terminal region into the semiconductor layer, and the first and second conductivity types may be different. An epitaxial semiconductor layer may be formed on the semiconductor layer, and a terminal contact region of the first conductivity type may be formed in the epitaxial semiconductor layer with the terminal contact region providing electrical contact with the terminal region. In addition, an ohmic contact may be formed on the terminal contact region. Related structures are also discussed.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 16, 2012
    Assignee: Cree, Inc.
    Inventors: Brett Adam Hull, Qingchun Zhang
  • Publication number: 20120248533
    Abstract: A circuit having a field plate is provided. In accordance with one or more embodiments, an electronic device includes a substrate having an active region, and a contiguous field plate separated from the active region by a dielectric material on the substrate. The field plate has first and second end regions (e.g., opposing one another along a length of the field plate), with the second end region being patterned. The patterned end region has at least one opening therein as defined by edges of the field plate (e.g., along an outer perimeter and/or as an internal opening), and couples a field to the active region in response to a voltage applied to the field plate. This field is greater in strength near the first end region, relative to the patterned end region.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Inventors: Rob Van Dalen, Anco Heringa
  • Patent number: 8278710
    Abstract: An LDMOSFET transistor (100) is provided which includes a substrate (101), an epitaxial drift region (104) in which a drain region (116) is formed, a first well region (107) in which a source region (112) is formed, a gate electrode (120) formed adjacent to the source region (112) to define a first channel region (14), and a grounded substrate injection suppression guard structure that includes a patterned buried layer (102) in ohmic contact with an isolation well region (103) formed in a predetermined upper region of the substrate so as to be spaced apart from the first well region (107) and from the drain region (116), where the buried layer (102) is disposed below the first well region (107) but not below the drain region (116).
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: October 2, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishnu K. Khemka, Stephen J. Cosentino, Tahir A. Khan, Adolfo C. Reyes, Ronghua Zhu
  • Patent number: 8278709
    Abstract: A high voltage metal-oxide-semiconductor (HVMOS) transistor includes a gate poly, wherein a channel is formed in an area projected from the gate poly in a thickness direction when the HVMOS is activated; two carrier drain drift regions, adjacent to the area projected from the gate poly, wherein at least one of the carrier drain drift regions has a gradient doping concentration; and two carrier plus regions, respectively locate within the two carrier drain drift regions, wherein the two carrier plus regions and the two carrier drain drift regions are communicating with each other through the channel when the HVMOS is activated.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: October 2, 2012
    Assignee: Himax Technologies Limited
    Inventors: Chun-Yu Chou, Chien-Liang Tung, Chi-Wei Lin
  • Publication number: 20120241858
    Abstract: A first semiconductor layer extends from the element region to the element-termination region, and functions as a drain of the MOS transistor. A second semiconductor layer extends, below the first semiconductor layer, from the element region to the element-termination region. A third semiconductor layer extends from the element region to the element-termination region, and is in contact with the second semiconductor layer to function as a drift layer of the MOS transistor. A distance between a boundary between the first semiconductor layer and the field oxide film, and the end portion of the third semiconductor layer on the fifth semiconductor layer side in the element region is smaller than that between a boundary between the first semiconductor layer and the field oxide layer and an end portion of the third semiconductor layer on the fifth semiconductor layer side in the element-termination region.
    Type: Application
    Filed: September 22, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kanako Komatsu, Jun Morioka, Koji Shirai, Keita Takahashi, Tsubasa Yamada, Mariko Shimizu
  • Patent number: 8274129
    Abstract: A method includes forming a transistor device on a first side of a semiconductor-on-insulator structure. The semiconductor-on-insulator structure includes a substrate, a dielectric layer, and a buried layer between the substrate and the dielectric layer. The method also includes forming a conductive plug through the semiconductor-on-insulator structure. The conductive plug is in electrical connection with the transistor device. The method further includes forming a field plate on a second side of the semiconductor-on-insulator structure, where the field plate is in electrical connection with the conductive plug. The transistor device could have a breakdown voltage of at least 600V, and the field plate could extend along at least 40% of a length of the transistor device.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventors: William French, Peter Smeys, Peter J. Hopper, Peter Johnson