Photothyristor (epo) Patents (Class 257/E31.071)
  • Patent number: 8866125
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8680640
    Abstract: A solid-state imaging device includes semiconductor substrate; a plurality of photoelectric conversion sections of n-type that are formed at an upper part of semiconductor substrate and arranged in a matrix; output circuit that is formed on a charge detection surface that is one surface of semiconductor substrate and detects charges stored in photoelectric conversion sections; a plurality of isolating diffusion layers of a p-type that are formed under output circuit and include high concentration p-type layers adjacent to respective photoelectric conversion sections; and color filters formed on a light incident surface that is the other surface opposing the one surface of semiconductor substrate and transmit light with different wavelengths. Shapes of respective photoelectric conversion sections correspond to color filters and differ depending on the high concentration p-type layer configuring isolating diffusion layer.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Mitsuyoshi Mori, Toru Okino, Yutaka Hirose, Yoshihisa Kato
  • Publication number: 20120319133
    Abstract: A thyristor includes a first conductivity type semiconductor layer, a first conductivity type carrier injection layer on the semiconductor layer, a second conductivity type drift layer on the carrier injection layer, a first conductivity type base layer on the drift layer, and a second conductivity type anode region on the base layer. The thickness and doping concentration of the carrier injection layer are selected to reduce minority carrier injection by the carrier injection layer in response to an increase in operating temperature of the thyristor. A cross-over current density at which the thyristor shifts from a negative temperature coefficient of forward voltage to a positive temperature coefficient of forward voltage is thereby reduced.
    Type: Application
    Filed: May 1, 2012
    Publication date: December 20, 2012
    Inventor: Qingchun Zhang
  • Patent number: 8174031
    Abstract: The light-emitting element chip includes: a substrate; a light-emitting portion including plural light-emitting elements each having a first semiconductor layer that has a first conductivity type and that is stacked on the substrate, a second semiconductor layer that has a second conductivity type and that is stacked on the first semiconductor layer, the second conductivity type being a conductivity type different from the first conductivity type, a third semiconductor layer that has the first conductivity type and that is stacked on the second semiconductor layer, and a fourth semiconductor layer that has the second conductivity type and that is stacked on the third semiconductor layer; and a controller including a logical operation element that performs logical operation for causing the plural light-emitting elements to perform a light-emitting operation, the logical operation element being formed by combining some sequential layers of the first, second, third and fourth semiconductor layers.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: May 8, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Yoshinao Kondoh
  • Patent number: 8124987
    Abstract: The light-emitting element chip includes: a substrate; a light-emitting portion including plural light-emitting elements each having a first semiconductor layer that has a first conductivity type and that is stacked on the substrate, a second semiconductor layer that has a second conductivity type and that is stacked on the first semiconductor layer, the second conductivity type being a conductivity type different from the first conductivity type, a third semiconductor layer that has the first conductivity type and that is stacked on the second semiconductor layer, and a fourth semiconductor layer that has the second conductivity type and that is stacked on the third semiconductor layer; and a controller including a logical operation element that performs logical operation for causing the plural light-emitting elements to perform a light-emitting operation, the logical operation element being formed by combining some sequential layers of the first, second, third and fourth semiconductor layers.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Yoshinao Kondoh
  • Patent number: 8076741
    Abstract: A photo sensing element array substrate is provided. The photo sensing element array substrate includes a flexible substrate and a plurality of photo sensing elements. The photo sensing elements are disposed in array on the flexible substrate. Each of the photo sensing elements includes a photo sensing thin film transistor (TFT), an oxide semiconductor TFT and a capacitor. The photo sensing TFT is disposed on the flexible substrate. The oxide semiconductor TFT is disposed on the flexible substrate. The oxide semiconductor TFT is electrically connected to the photo sensing TFT. The capacitor is disposed on the flexible substrate and electrically connected between the photo sensing TFT and the oxide semiconductor TFT. When the photo sensing element array substrate is bent, it remains unaffected from normal operation.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: December 13, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Ming Lai, Yung-Hui Yeh
  • Publication number: 20110233380
    Abstract: A monolithically integrated light-activated thyristor in an n-p-n-p-n-p sequence consists of a four-layered thyristor structure and an embedded back-biased PN junction structure as a turn-off switching diode. The turn-off switching diode is formed through structured doping processes and/or depositions on a single semiconductor wafer so that it is integrated monolithically without any external device or semiconducter materials. The thyristor can be switching on and off optically by two discrete light beams illuminated on separated openings of electrodes on the top surface of a semiconductor body. The carrier injection of the turning on process is achieved by illuminating the bulk of the thyristor with a high level light through the first aperture over the cathode to create high density charge carriers serving as the gate current injection and to electrically short the emitter and drift layer.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 29, 2011
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Yeuan-Ming SHEU
  • Patent number: 7989841
    Abstract: A fast injection optical switch is disclosed. The optical switch includes a thyristor having a plurality of layers including an outer doped layer and a switching layer. An area of the thyristor is configured to receive a light beam to be directed through at least one of the plurality of layers and exit the thyristor at a predetermined angle. At least two electrodes are coupled to the thyristor and configured to enable a voltage to be applied to facilitate carriers from the outer doped layer to be directed to the switching layer. Sufficient carriers can be directed to the switching layer to provide a change in refractive index of the switching layer to redirect at least a portion of the light beam to exit the thyristor at a deflection angle different from the predetermined angle.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 2, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Shih-Yuan Wang, Theodore I. Kamins
  • Patent number: 7816755
    Abstract: A pixel space is narrowed without increasing PN junction capacitance. A photoelectric conversion device includes a plurality of pixels arranged therein, each including a first impurity region of a first conductivity type forming a photoelectric conversion region, a second impurity region of a second conductivity type forming a signal acquisition region arranged in the first impurity region, a third impurity region of the first conductivity type and a fourth impurity region of the first conductivity type are arranged in a periphery of each pixel for isolating the each pixel, the fourth impurity region is disposed between adjacent pixels, and an impurity concentration of the fourth impurity region is smaller than an impurity concentration of the third impurity region.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: October 19, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuo Yamazaki, Tetsunobu Kochi
  • Patent number: 7687875
    Abstract: An image sensor includes a semiconductor layer, and first and second photoelectric converting units including first and second impurity regions in the semiconductor layer that are spaced apart from each other and that are at about an equal depth in the semiconductor layer, each of the impurity regions including an upper region and a lower region. A width of the lower region of the first impurity region may be larger than a width of the lower region of the second impurity region, and widths of upper regions of the first and second impurity regions are equal.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yun-ki Lee
  • Patent number: 7378687
    Abstract: In order to provide a photothyristor having high breakdown voltage and less-varying light sensitivity by improving the sensitivity and the breakdown voltage of the device while maintaining the device small, the device includes a silicon substrate, a transistor portion including an anode region, a gate region and a cathode region and placed on a first main surface of the silicon substrate, a light-receiving portion for receiving light from the outside, and an electrode for establishing an ohmic contact between the anode region and the cathode region. The light receiving portion includes an oxygen-doped polysilicon film overlaid on the silicon substrate through a transparent insulating film and is disposed to surround the transistor portion. The electrode is placed above the transistor portion and has a double-structure consisting of a center portion and an outer portion surrounding the center portion, and the center portion and the outer portion are electrically connected.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 27, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoshi Nakajima, Seigo Okada
  • Patent number: 7157747
    Abstract: A channel isolation region 42 is formed over the entire width of an N-type silicon substrate 41, and photothyristors, in each of which an anode diffusion region 43, a P-gate diffusion region 44, a cathode diffusion region 45 are formed parallel to the channel isolation region 42 over almost the entire width of the N-type silicon substrate 41, are formed in a left-hand portion 40a and in a right-hand portion 40b and are wired inversely parallel. Thus, the inter-channel movement of residual holes during commutation is restrained by the channel isolation region 42, by which commutation failure is suppressed to improve a commutation characteristic. Further, an operating current large enough for controlling a load current of approx. 0.2 A is obtained although a chip is divided by the channel isolation region 42. Therefore, using this bidirectional photothyristor chip makes it possible to implement an inexpensive SSR with a main thyristor eliminated.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: January 2, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mitsuru Mariyama, Masaru Kubo
  • Patent number: 7132677
    Abstract: An GaN light emitting diode (LED) having a nanorod (or, nanowire) structure is disclosed. The GaN LED employs GaN nanorods in which a n-type GaN nanorod, an InGaN quantum well and a p-type GaN nanorod are subsequently formed in a longitudinal direction by inserting the InGaN quantum well into a p-n junction interface of the p-n junction GaN nanorod. In addition, a plurality of such GaN nanorods are arranged in an array so as to provide an LED having much greater brightness and higher light emission efficiency than a conventional laminated-film GaN LED.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: November 7, 2006
    Assignee: Dongguk University
    Inventors: Hwa-Mok Kim, Tae-Won Kang, Kwan-Soo Chung