Discharge Devices Having A Thermionic Or Emissive Cathode Patents (Class 313/310)
  • Publication number: 20140191650
    Abstract: An electric field emitting source is equipped with an electron emitting film which comprises a nano-sized electron emitting substance and has a first surface and a second surface constituting the surface opposite thereto, and a cathode which secures one end of the electron emitting film and comprises a first block and a second block respectively corresponding to the first surface and the second surface of the electron emitting film.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 10, 2014
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Cheol Jin Lee, Dong Hoon Shin, Ji Hong Shin
  • Patent number: 8749127
    Abstract: A device for lighting a room is described. The device has an envelope with a transparent face, the face having an interior surface coated with a cathodoluminescent screen and a thin, reflective, conductive, anode layer. There is a broad-beam electron gun mounted directly to feedthroughs in a base of the envelope with a heated, button-on-hairpin, cathode for emitting electrons in a broad beam towards the anode, and a power supply mounted on the feedthroughs at the base of the envelope that drives the cathode to a multi-kilovolt negative voltage. A two-prong snubber serves as an anode contact to permit the power supply to drive the anode to a voltage near ground. A method of manufacture of the anode uses a single step deposition and lacquering process followed by a metallization using a conical-spiral tungsten filament coated with aluminum by a thermal spray coating process.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 10, 2014
    Assignee: Vu1 Corporation
    Inventors: Richard Herring, Charles E. Hunt, Bernard K. Vanch, Tomas Hasilik, Viktor Jelinek
  • Publication number: 20140153698
    Abstract: A flat filament includes a first electron emission surface, a first current supply leg, a second current supply leg, a second electron emission surface disposed laterally of the first electron emission surface and connected to a first end region of the first electron emission surface, a third current supply leg, a third electron emission surface disposed laterally of the first electron emission surface, opposite from the second electron emission surface, and connected to a second end region of the first electron emission surface, and a fourth current supply leg.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Applicant: SHIMADZU CORPORATION
    Inventor: Tatsuya YOSHIZAWA
  • Publication number: 20140141619
    Abstract: Techniques disclosed herein include apparatus and processes for generating a plasma having a uniform electron density across an electrode used to generate the plasma. An upper electrode (hot electrode), of a capacitively coupled plasma system can include structural features configured to assist in generating the uniform plasma. Such structural features define a surface shape, on a surface that faces the plasma. Such structural features can include a set of concentric rings having an approximately rectangular cross section, and protruding from the surface of the upper electrode. Such structural features can also include nested elongated protrusions having a cross-sectional size and shape, with spacing of the protrusions selected to result in a system that generates a uniform density plasma.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Ikuo Sawada
  • Patent number: 8710729
    Abstract: A field emission cathode device includes a cathode substrate, a gate electrode, a first dielectric layer, a cathode electrode, and an electron emission layer. The gate electrode is located on a surface of the cathode substrate. The first dielectric layer is located on a surface of the gate electrode and defines a first opening to expose part of the gate electrode. The cathode electrode is spaced from the gate electrode through the first dielectric layer defining a second opening in alignment with the first opening. A field emission display using the field emission cathode device is also related.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 29, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jie Tang, Bing-Chu Du, Shou-Shan Fan
  • Publication number: 20140097741
    Abstract: A field emission electron source includes a linear carbon nanotube structure, an insulating layer and at least one conductive ring. The linear carbon nanotube structure has a first end and a second end. The insulating layer is located on outer surface of the linear carbon nanotube structure. The first conductive ring includes a first ring face 1301 and a second ring face, an end surface of the linear carbon nanotube structure, and the first ring face are coplanar.
    Type: Application
    Filed: December 18, 2012
    Publication date: April 10, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CAI-LIN GUO, JIE TANG, PENG LIU, SHOU-SHAN FAN
  • Publication number: 20140077684
    Abstract: The present disclosure provides a method for manufacturing a particle source comprising: placing a metal wire in vacuum, introducing active gas, adjusting a temperature of the metal wire and applying a positive high voltage V to the metal wire to generate at a side of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than a field evaporation electric field of material for the metal wire, so that metal atoms at the top of the metal wire are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.
    Type: Application
    Filed: May 4, 2012
    Publication date: March 20, 2014
    Applicant: 38th RESEARCH INSTITUTE, CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Huarong Liu, Ping Chen
  • Patent number: 8669535
    Abstract: The present invention has an object to provide a cold cathode field-emission electron gun with low aberration, to thereby provide a high-brightness electron gun even in the case of a large current. The present invention provides a field-emission electron gun which extracts an electron beam from a cathode and converges the extracted electron beam, the field-emission electron gun including: a magnetic field lens which is provided such that the cathode is disposed inside of a magnetic field of the lens; and an extraction electrode for extracting electrons from the cathode, the extraction electrode being formed into a cylindrical shape without an aperture structure. The present invention can provide an electron gun having a function of converging an electron beam using a magnetic field, the electron gun which is capable of reducing an incidental electrostatic lens action and has small aberration and high brightness.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: March 11, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Mikio Ichihashi, Takashi Onishi, Shunichi Watanabe, Keiji Tamura
  • Publication number: 20140027655
    Abstract: A tubular or spherical nanostructure composed of a plurality of peptides, wherein each of the plurality of peptides includes no more than 4 amino acids and whereas at least one of the 4 amino acids is an aromatic amino acid.
    Type: Application
    Filed: November 8, 2012
    Publication date: January 30, 2014
    Applicant: Ramot at Tel-Aviv University Ltd.
    Inventor: Ramot at Tel-Aviv University Ltd.
  • Publication number: 20140010347
    Abstract: A mesh electrode adhesion structure includes: a substrate, and an opening defined in the substrate; a mesh electrode on the substrate, and a first combination groove defined in the mesh electrode; and an adhesion layer between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
    Type: Application
    Filed: May 14, 2013
    Publication date: January 9, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Do-yoon KIM, Yong-chul KIM, Il-hwan KIM, Shang-hyeun PARK, Tae-won JEONG
  • Patent number: 8623696
    Abstract: A method of forming an emission layer by using droplets and an emission part on which charges with opposite polarities are induced, a method of manufacturing an organic light emitting display device including the emission layer, and the organic light emitting display device thereof, the method includes inducing charges having a first charge polarity on emission portions by facing a surface of a mask and a surface of a substrate, contacting the charge inducing units of the mask to the emission portions of the substrate, and then separating the mask from the substrate, supplying droplets exhibiting a second and opposite charge polarity to the substrate and forming the emission layer by allowing droplets exhibiting the second charge polarity to be attracted to and move to the emission portions exhibiting the first charge polarity.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: January 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-Hwan Cho, Hyo-Seok Kim
  • Publication number: 20130342098
    Abstract: Micro-fabricated charge-emission devices comprise an electrically conductive gate electrode with an aperture, an electrically conductive base electrode, a charge-emitting microstructure extending from a surface in electrical contact with the base electrode and terminating near the aperture of the gate electrode, and a dielectric layer stack disposed between the base electrode and the gate electrode. The dielectric layer stack comprises a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed between the second dielectric layer and the base electrode. The first dielectric layer is of a different selectively etchable dielectric material than the second dielectric layer. The dielectric layer stack h formed therein a cavity within which the charge-emitting emitting microstructure is disposed. The cavity has a corrugated wall shaped by the first dielectric layer undercutting the second dielectric layer.
    Type: Application
    Filed: March 13, 2012
    Publication date: December 26, 2013
    Applicant: SRI INTERNATIONAL
    Inventors: Christopher E. Holland, Charles A. Spindt
  • Patent number: 8604681
    Abstract: Described herein are improved ion thruster components and ion thrusters made from such components. Further described are methods of making and using the improved ion thruster components and ion thrusters made therefrom. An improved cathode includes an emitter formed from a plurality of vertically aligned carbon nanotubes. An ion thruster can include the improved cathode.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: William Judson Ready, Mitchell L. R. Walker, II
  • Patent number: 8604680
    Abstract: A pixel element includes a substrate layer, a reflector layer, and an emitter layer, electrically isolated from the reflector layer. A first potential is applied to the reflector layer, wherein a potential difference between the emitter layer and the corresponding one reflector layer is operable to draw electrons from the emitter layer to the corresponding reflector layer. The pixel element also includes a transparent layer oppositely positioned a predetermined distance from the emitter layer. The transparent layer has a conductive layer deposited thereon. A second potential is applied to the conductive layer to attract electrons reflected from the reflective layer. The pixel element also includes at least one phosphor layer on the conductive layer oppositely opposed to the corresponding reflector layer. The emitter layer includes a plurality of nanostructures.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: December 10, 2013
    Assignee: Copytele, Inc.
    Inventors: Denis A. Krusos, Anthony J. Campisi, Sergey L. Shokhor
  • Publication number: 20130313963
    Abstract: A carbon nanotube layer for a field emission cathode where individual carbon nanotubes or small groups of carbon nanotubes that stick out from the surface more than the rest of the layer are avoided. Electron fields will concentrate on these sharp points, creating an enhanced image on the phosphor, resulting in a more luminous spot than the surroundings. Activation processes further free such carbon nanotubes or groups of carbon nanotubes sticking out from the surface, exasperating the problem.
    Type: Application
    Filed: March 11, 2013
    Publication date: November 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8593048
    Abstract: Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 26, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Toshiyuki Morishita
  • Patent number: 8593047
    Abstract: A pixel tube for field emission display includes a sealed container, an anode, a phosphor, and a cathode. The sealed container has a light permeable portion. The anode is located in the sealed container and spaced from the light permeable portion. The phosphor layer is located on the anode. The cathode is spaced from the anode and includes a cathode emitter. The cathode emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 26, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8581481
    Abstract: A thermionic emission assembly includes a Wehnelt cap that has a cap beam aperture and a cavity within which a cathode is supported. Electrical energy applied to the cathode causes it to reach a sufficiently high temperature to emit a beam of electrons that propagate through the cap beam aperture. An anode having an anode beam aperture is positioned in spatial alignment with the cap beam aperture to receive the electrons. The anode accelerates the electrons and directs them through the anode beam aperture for incidence on a target specimen. A ceramic base forms a combined interface that electrically and thermally separates the Wehnelt cap and the anode. The interface thermally isolates the Wehnelt cap from the anode to allow the cathode to rapidly reach the sufficiently high temperature to emit the beam of electrons.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Physics Technologies, Inc.
    Inventors: Gerald Magera, William Mackie, Larry Southall, Gary Cabe, Cory Fast
  • Patent number: 8581486
    Abstract: The present disclosure provides a field emission device. The field emission device includes an insulating substrate having a first surface, a first electrode, a second electrode, at least one cathode emitter and a secondary electron emitter. The first electrode and the second electrode are spaced from each other and are located on the first surface of the insulating substrate. The cathode emitter is electrically connected to the first electrode and spaced from the second electrode. A secondary electron emitter is spaced from the cathode emitter. The secondary electron emitter has an electron emitting surface exposed to the cathode emitter. A secondary electron emitter is spaced from the cathode emitter. The cathode emitter is oriented toward the secondary electron emitter.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Duan-Liang Zhou, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20130293090
    Abstract: The present disclosure relates to a field emission device. The field emission device includes a carbon nanotube structure and two electrodes electrically connected with the carbon nanotube structure. The carbon nanotube structure includes a carbon nanotube array, a carbon nanotube layer located on one side of the carbon nanotube array, and a carbon nanotube cluster between the carbon nanotube array and the carbon nanotube layer. The carbon nanotube array includes a number of first carbon nanotubes that are parallel with each other. The carbon nanotube layer includes a number of second carbon nanotubes. The carbon nanotube cluster includes a plurality of third carbon nanotubes that are entangled around both the plurality of first carbon nanotubes and the plurality of second carbon nanotubes.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 7, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: PENG LIU, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8575832
    Abstract: The present invention relates to a field emission display, which includes: a base substrate; a plurality of cathode strips, disposed over the base substrate; an insulating layer, disposed over the cathode strips and having a plurality of openings, therewith the openings corresponding to the cathode strips; a plurality of anode strips, disposed over the insulating layer, where the cathode strips and the anode strips are arranged into a matrix and the anode strips individually have at least one impacted surface; and a plurality of subpixel units, individually including: an emissive region having a phosphor layer disposed over the impacted surface; and at least one emissive protrusion, corresponding to the emissive region and disposed in the openings to electrically connect to the cathode strips and protrude out of the openings. Accordingly, the present invention can enhance light utilization efficiency of a field emission display.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Tatung Company
    Inventors: Tzung-Han Yang, Chi-Tsung Lo
  • Publication number: 20130285008
    Abstract: A method of forming a nanowire structure is disclosed. The method comprises applying on a surface of carrier liquid a layer of a liquid composition which comprises a surfactant and a plurality of nanostructures each having a core and a shell, and heating at least one of the carrier liquid and the liquid composition to a temperature selected such that the nanostructures are segregated from the surfactant and assemble into a nanowire structure on the surface.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 31, 2013
    Inventors: Roman VOLINSKY, Raz Jelinek
  • Patent number: 8552381
    Abstract: An infrared (IR) scene projector device includes a light emitter and a thermal emitter. The light emitter is configured to selectably provide visible light. The thermal emitter includes a vertically aligned carbon nanotube (VACN) array. The VACN array includes a plurality of carbon nanotubes disposed proximate to a thermally conductive substrate, such that a longitudinal axis of the carbon nanotubes extends substantially perpendicular to a surface of the substrate. The thermal emitter absorbs the visible light from the light emitter and converts the visible light from the light emitter into IR radiation.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 8, 2013
    Assignee: The Johns Hopkins University
    Inventors: Raul Fainchtein, David M. Brown, Christopher C. Davis
  • Publication number: 20130257263
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: SHARP KABUSHIKI KAISHI
    Inventors: Ayae NAGAOKA, Tadashi Iwamatsu, Hiroyuki Hirakawa, Yasuo Imura
  • Publication number: 20130249386
    Abstract: An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).
    Type: Application
    Filed: November 30, 2011
    Publication date: September 26, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Toshihiro Kaneko, Tadashi Iwamatsu, Ayae Nagaoka
  • Patent number: 8541941
    Abstract: A light emitting element includes a resonator structure which has a first reflecting member, a second reflecting member, and a light emission layer placed between the first reflecting member and the second reflecting member, and part of light resonated between the first reflecting member and the second reflecting member is transmitted through the first reflecting member or the second reflecting member in the resonator structure. A wavelength at which a resonator output spectrum from the resonator structure has a maximum value is located between a wavelength at which an inner light emission spectrum of the light emission layer has a maximum value and a wavelength at which relative luminous efficiency has a maximum value.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 24, 2013
    Assignee: Pioneer Corporation
    Inventors: Toshihiro Yoshioka, Toshiharu Uchida
  • Patent number: 8536775
    Abstract: A field emission lamp, capable of increasing the number of electron emitting points thereof, and of increasing the uniformity and the intensity of the light output therefrom by installing a mesh cathode is disclosed. The field emission lamp comprises: an outer shell having an inner surface, a mesh cathode unit surrounded by the outer shell, an anode unit formed on a portion of the inner surface of the outer shell, and a phosphor layer formed on a portion of the anode unit. Wherein, the light generated by the phosphor layer, due to the bombardment of the electrons, can output from the field emission lamp of the present invention, through the outer shell where none of the anode unit is formed thereon.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Tatung Company
    Inventor: Tzung-Han Yang
  • Publication number: 20130234582
    Abstract: In the present invention, heat dissipation is improved by extending the creepage distance in a vacuum vessel according to the size of a flange portion, without lengthening the vacuum vessel in the direction in which an electron beam is emitted. A vacuum vessel (20) in which a flange portion (20a) having a hollow portion between a cold cathode (9) and an anode (11) is formed is used. One example is a vacuum vessel (20) in which a cold cathode vessel (21) and an anode vessel (22), both cylindrically shaped, are communicated with each other and a hollow flange portion (20a) is formed between the vessels (21, 22). A focusing electrode (14) and a getter material (15), for example, are disposed in the hollow portion of the flange portion (20a). A cold cathode (9) which has a guard electrode on the outer side of the periphery of a carbon film structure (10) formed on a substrate (7) may be used. The carbon film structure (10) may be formed in the middle of an electrode surface of the substrate (7).
    Type: Application
    Filed: June 8, 2011
    Publication date: September 12, 2013
    Applicant: MICRO-X JAPAN LTD.
    Inventors: Yoshihisa Ishiguro, Masanori Haba
  • Patent number: 8531097
    Abstract: Disclosed is a field emitter, including: a cathode electrode in a shape of a tip; an emitter having a diameter smaller than a diameter of the cathode electrode and formed on the cathode electrode; and a gate electrode having a single hole and located above the emitter while maintaining a predetermined distance from the emitter.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 10, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Woo Jeong, Jun Tae Kang, Yoon Ho Song, Jae Woo Kim
  • Patent number: 8525399
    Abstract: According to the embodiment, an electron emission element includes a conductive substrate, a first diamond layer of a first conductivity type formed on the conductive substrate, and a second diamond layer of the first conductivity type formed on the first diamond layer. Thereby, it becomes possible to provide the electron emission element having a high electron emission amount and a high current density even in a low electric field at low temperature and the electron emission apparatus using this electron emission element.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: September 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Suzuki, Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Yuichi Yamazaki
  • Publication number: 20130221836
    Abstract: A field emission electron source includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate. A field emission device is also disclosed.
    Type: Application
    Filed: August 23, 2012
    Publication date: August 29, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Patent number: 8519608
    Abstract: Provided is an electron source which outputs a stable electron beam even when vibration is applied from the external to an apparatus which uses the electron source. The electron source is provided with an insulator (5); two conductive terminals (4) arranged at an interval on the insulator (5); a long filament (3) stretched between the conductive terminals (4); and a needle-like cathode (1) having an electron emitting section attached to the filament (3). The vertical cross-section shape of the filament (3) in the axis direction has a long direction and a short direction, and the maximum length in the long direction is 1.5 times or more but not more than 5 times the maximum length in the short direction.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Yoshinori Terui
  • Patent number: 8512090
    Abstract: A method for making a field emission cathode device is provided. A filler, a substrate, and a metal plate are provided. The metal plate has a first surface and a second surface opposite to the first surface, and defines at least one through hole extending through from the first surface to the second surface. At least one electron emitter is inserted into the at least one through hole. The first surface of the metal plate is attached to the substrate. At least a part of the at least one electron emitter is located between the first surface and the substrate. The at least one through hole is filled with the filler to firmly fix the at least one electron emitter.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Hai-Yan Hao, Shou-Shan Fan
  • Publication number: 20130187532
    Abstract: A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/?m is demonstrated in a macroscopic emitter array. The emitter is comprised of a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
    Type: Application
    Filed: August 8, 2012
    Publication date: July 25, 2013
    Applicant: THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Fred Sharifi, Myung-Gyu Kang, Henri Lezec
  • Patent number: 8476818
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode, and the electron acceleration layer includes a fine particle layer containing insulating fine particles and a basic dispersant. This makes it possible to provide an electron emitting element which does not cause insulation breakdown in an insulating layer and which can be produced at a low cost.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 2, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Ayae Nagaoka, Yasuo Imura, Tadashi Iwamatsu
  • Publication number: 20130155567
    Abstract: A discharge electrode includes a surface layer to which a surface treatment that enables solder bonding is applied.
    Type: Application
    Filed: September 6, 2011
    Publication date: June 20, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Takayuki Nakada, Takafumi Omori, Yusuke Yamada, Kazunobu Nakata, Toshihiro Ito, Takashi Kozai, Shinya Murase
  • Patent number: 8456074
    Abstract: A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 4, 2013
    Assignees: Nanomix, Inc., The Regents of the University of California
    Inventors: N. Peter Armitage, Keith Bradley, Jean-Christophe P. Gabriel, George Gruner
  • Patent number: 8456073
    Abstract: The present invention provides devices comprising an assembly of carbon nanotubes, and related methods. In some cases, the carbon nanotubes may have enhanced alignment. Devices of the invention may comprise features and/or components which may enhance the emission of electrons and may lower the operating voltage of the devices. Using methods described herein, carbon nanotube assemblies may be manufactured rapidly, at low cost, and over a large surface area. Such devices may be useful in display applications such as field emission devices, or other applications requiring high image quality, low power consumption, and stability over a wide temperature range.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Hongwei Gu
  • Patent number: 8447474
    Abstract: Externally deployed airbag system for a vehicle including one or more inflatable airbags deployable outside of the vehicle, an anticipatory sensor system for assessing the probable severity of an impact involving the vehicle based on data obtained prior to the impact and initiating inflation of the airbag(s) in the event an impact above a threshold severity is assessed, and an inflator coupled to the anticipatory sensor system and the airbag for inflating the airbag when initiated by the anticipatory sensor system. The airbag may be housed in a module mounted along a side of the vehicle, in a side door of the vehicle (both for side impact protection), at a front of the vehicle (for frontal impact protection) or at a rear of the vehicle (for rear impact protection). Also, the externally deployed airbag can be deployed to cushion a pedestrian's impact against the vehicle.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: May 21, 2013
    Assignee: American Vehicular Sciences LLC
    Inventor: David S. Breed
  • Publication number: 20130113359
    Abstract: The present invention provides devices comprising an assembly of carbon nanotubes, and related methods. In some cases, the carbon nanotubes may have enhanced alignment. Devices of the invention may comprise features and/or components which may enhance the emission of electrons and may lower the operating voltage of the devices. Using methods described herein, carbon nanotube assemblies may be manufactured rapidly, at low cost, and over a large surface area. Such devices may be useful in display applications such as field emission devices, or other applications requiring high image quality, low power consumption, and stability over a wide to temperature range.
    Type: Application
    Filed: May 29, 2009
    Publication date: May 9, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Hongwei Gu
  • Patent number: 8427037
    Abstract: A luminaire includes a lamp holder, a first light-emitting module, a second light-emitting module, a light guide, and a lamp cover. The lamp holder has a top portion. The top portion includes a first upper face and a platform projecting upwardly from the first upper face. The platform has a second upper face at a top end thereof. The first light-emitting module is disposed on the first upper face and around the platform. The second light-emitting module is disposed on the second upper face. The light guide is disposed around the platform and on the first light-emitting module. The lamp cover is disposed on the lamp holder for covering the first light-emitting module, the second light-emitting module, and the light guide.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 23, 2013
    Assignees: Silitek Electronic (Guangzhou) Co., Ltd., Lite-On Technology Corp.
    Inventors: Chih-Lung Liang, Shu-Hua Yang
  • Patent number: 8421327
    Abstract: An emitter includes an electrode, and a number of carbon nanotubes fixed on the electrode. The carbon nanotubes each have a first end and a second end. The first end is electrically connected to the substrate and the second end has a needle-shaped tip. Two second ends of carbon nanotubes have a larger distance therebetween than that of the first ends thereof, which is advantageous for a better screening affection. Moreover, the needle-shaped tip of the second ends of the carbon nanotube has a lower size and higher aspect ratio than the conventional carbon nanotube, which, therefore, is attributed to bear a larger emission current.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: April 16, 2013
    Assignees: Tsingua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Peng Liu, Liang Liu, Shou-Shan Fan
  • Publication number: 20130088141
    Abstract: An electrode for a hot cathode fluorescent lamp may include a main body that emits thermions, a conductive support that supports the main body, and a lead electrically connected to the conductive support. The main body includes no filament structure and may be made of a bulk material having a columnar shape or an ingot shape formed by a conductive mayenite compound.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 11, 2013
    Inventors: Naomichi MIYAKAWA, Kazuhiro ITO, Satoru WATANABE, Toshinari WATANABE, Shigeo MIKOSHIBA
  • Patent number: 8410675
    Abstract: A thermionic electron emission device includes an insulating substrate and one or more lattices located on the insulating substrate. Each lattice includes a first, second, third and fourth electrode down-leads located on the insulating substrate to define an area. A thermionic electron emission unit is located in the area. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The thermionic electron emitter includes a carbon nanotube film structure. The carbon nanotube film structure includes a carbon nanotube film. The carbon nanotube film includes a number of carbon nanotubes joined end to end along axial directions of the carbon nanotubes by contacting with each other directly.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: April 2, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20130049568
    Abstract: Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source.
    Type: Application
    Filed: November 30, 2010
    Publication date: February 28, 2013
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Ryozo Nonogaki, Toshiyuki Morishita
  • Patent number: 8378561
    Abstract: An electron emitter includes a guard electrode 13 on the outer circumferential side of a carbon film structure 10 which is formed on a substrate 7 by plasma CVD method. This guard electrode 13 includes a curved surface portion (a curved surface portion that curves from top toward a side opposite to the film-forming direction) 13a convex in a film-forming direction of the carbon film structure 10. A curvature radius R1 of an outer-circumferential-side portion of the curved surface portion 13a is larger than or equal to a curvature radius R2 of a carbon-film-structure-side portion of the curved surface portion 13a.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: February 19, 2013
    Assignee: Life Technology Research Institute, Inc.
    Inventors: Yoshihisa Ishiguro, Masanori Haba, Ryouichi Suzuki
  • Patent number: 8371892
    Abstract: A method for making the electron emission apparatus is provided. In the method, an insulating substrate including a surface is provided. A number of grids are formed on the insulating substrate and defined by a plurality of electrodes. A number of conductive linear structures are fabricated and supported by the electrodes. The number of conductive linear structures are substantially parallel to the surface and each of the grids contains at least one of the conductive linear structures. The conductive linear structures are cut to form a number of electron emitters. Each of the electron emitters has two electron emission ends defining a gap therebetween.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Liang Liu, Shou-Shan Fan
  • Patent number: 8368295
    Abstract: The present disclosure provides an electron emitter. The electron emitter includes a carbon nanotube linear compound. The carbon nanotube linear compound includes a conductive linear support and a carbon nanotube pipe. The conductive linear support is located in the carbon nanotube pipe. A plurality of carbon nanotube peaks extends from one end of the electron emitter.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: February 5, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20120306348
    Abstract: Disclosed is a field emitter, including: a cathode electrode in a shape of a tip; an emitter having a diameter smaller than a diameter of the cathode electrode and formed on the cathode electrode; and a gate electrode having a single hole and located above the emitter while maintaining a predetermined distance from the emitter.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jin Woo JEONG, Jun Tae KANG, Yoon Ho SONG, Jae Woo KIM
  • Patent number: 8318049
    Abstract: An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-chul Kim, In-taek Han, Ho-suk Kang