Depletion Or Enhancement Patents (Class 326/25)
  • Patent number: 10622987
    Abstract: According to one embodiment, a semiconductor device includes an output circuit; a detection circuit; and a control circuit. The output circuit includes a first transistor which includes one end of a current path connected to an output node, receives a first input signal, and outputs a first voltage, and a second transistor which includes one end of a current path connected to the output node, receives a second input signal, and outputs a second voltage. The output circuit outputs the first voltage or the second voltage. The detection circuit detects the voltage and outputs a detection result. The control circuit controls back-gate potentials of the first and the second transistors.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 14, 2020
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Atsushi Namai, Junichi Todaka
  • Patent number: 8686752
    Abstract: A circuit includes a logic stage, an inverter stage, and a driver stage. The logic stage and the inverter stage are provided with current limiters, which include a D-mode feedback transistor and a component that generates a voltage drop. A feedback loop connects the source and the gate of the D-mode feedback transistor via this component. The driver stage includes E-mode transistors connected in a totem pole that drive a D-mode transistor and an E-mode transistor to connect and disconnect the load circuit.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 1, 2014
    Assignee: EPCOS AG
    Inventors: Léon C. M. van den Oever, Erwin Spits
  • Patent number: 8305109
    Abstract: An object is to obtain a desired threshold voltage of a thin film transistor using an oxide semiconductor. Another object is to suppress a change of the threshold voltage over time. Specifically, an object is to apply the thin film transistor to a logic circuit formed using a transistor having a desired threshold voltage. In order to achieve the above object, thin film transistors including oxide semiconductor layers with different thicknesses may be formed over the same substrate, and the thin film transistors whose threshold voltages are controlled by the thicknesses of the oxide semiconductor layers may be used to form a logic circuit. In addition, by using an oxide semiconductor film in contact with an oxide insulating film formed after dehydration or dehydrogenation treatment, a change in threshold voltage over time is suppressed and the reliability of a logic circuit can be improved.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Yoshiaki Oikawa, Hotaka Maruyama, Hiromichi Godo, Shunpei Yamazaki
  • Patent number: 7116126
    Abstract: A method of transmitting adjacent signals is disclosed. Sensing is performed on signals in the group and adjacent signals are either switched or delayed if the adjacent signals are switching at the same time. The method is used in networks where coupling and capacitance effects are possible.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: October 3, 2006
    Assignee: Sun Microsystems, Inc.
    Inventors: Nayon Tomsio, Harsh D. Sharma
  • Patent number: 6177818
    Abstract: An off-chip driver circuit including an enhancement PFET, a depletion PFET, a depletion NFET and an enhancement NFET connected in series. The large enhancement PFET and large enhancement NFET turn off the OCD in tri-state and to turn off the unused half of the OCD to prevent overlap current when driving a ‘0’ or a ‘1’. A first gate signal is applied to the gate of the enhancement PFET and a second gate signal is applied to the enhancement NFET. A fixed voltage is connected to the gate of the depletion NFET and ground to gate of the depletion PFET. An output signal is obtained from a node between the depletion PFET and depletion NFET devices. In another embodiment, a reflection/overshoot sensor 60 is added. The output of sensor is connected to the body of a depletion PFET and an NFET. The feedback from sensor is such that the threshold voltage of the depletion devices are made more positive if the sensor detects that the output is being over-driven.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: January 23, 2001
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Anthony R. Bonaccio, Howard L. Kalter, Thomas M. Maffitt, Jack A. Mandelman, William R. Tonti
  • Patent number: 6154058
    Abstract: An output buffer includes a p-channel transistor, and first and second n-channel transistors. The p-channel transistor has one of a source and drain which is connected to power supply and the other which is connected to an output node connected to an output terminal. The first n-channel transistor has one of a source and drain which is grounded and the other which is connected to the output node. The second n-channel transistor is series-connected to the p-channel transistor between a power supply and the output node and receives at a gate a power supply potential level which rises at substantially the same time as the power supply upon ON operation.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: November 28, 2000
    Assignee: NEC Corporation
    Inventor: Yasunori Sawai
  • Patent number: 5459428
    Abstract: Disclosed is a switch circuit which has a depletion mode n-channel MOSFET which can be used in a circuit allowing only a positive voltage to be supplied thereto, comprising a first D-FET having a gate for receiving an input signal, a drain for outputting an output signal and a source; a first resistor connected between the drain of the first D-FET and a positive voltage source to bias the drain of the first D-FET; a second D-FET having a gate connected to an intermittence controlling voltage source, a drain and a source connected to the positive voltage source and the source of the first D-FET 201, respectively; a second resistor connected between the gate of the second D-FET and a ground to bias the gate of the second D-FET; a constant-current source connected between each of the sources of the first and second D-FET and the ground; a bypass capacitor connected in parallel with the constant-current source and between the drain of the constant-current source and the ground to bypass an RF signal to the ground
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: October 17, 1995
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Min-Gun Kim, Choong-Hwan Kim, In-Gab Hwang, Chang-Seok Lee, Hyung-Moo Park