Current Driving (e.g., Fan In/out, Off Chip Driving, Etc.) Patents (Class 326/82)
  • Patent number: 8220947
    Abstract: A first current source supplies a tail current It to a plurality of differential pairs. A pre-driver outputs gate signals to the gates of transistors of the corresponding differential pair. A pre-driver is configured to switch the state between the enable state and the disable state. In the enable state, the pre-driver outputs the gate signals that correspond to the differential signals. In the disable state, the pre-driver outputs the gate signals having levels which instruct the transistors of the corresponding differential pair to switch off.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 17, 2012
    Assignee: Advantest Corporation
    Inventors: Yasuyuki Arai, Shoji Kojima
  • Patent number: 8222929
    Abstract: Switch pre-driver systems and methods are described. The present switch pre-driver systems and methods facilitate switch driver breakdown protection, reduction of leakage current, and avoidance of false switching. In one embodiment, a switch system includes a switch driver, a switch pre-driver, and a mode detection circuit. The switch driver drives a voltage. The switch pre-driver controls the switch driver. The mode detection circuit notifies the switch pre-driver of a mode condition.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: July 17, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventor: King Kwan
  • Patent number: 8222925
    Abstract: A multimode line driver circuit is provided. The multimode line driver circuit has a first driver circuit for receiving a first differential input signal and transmitting a first differential output signal, and a second driver circuit for receiving a second driver circuit for receiving a second differential input signal and transmitting a second differential output signal. The multimode line driver circuit also has a first switch coupling the first driver circuit to a first power supply and a second switch coupling the second driver circuit to a second power supply. The multimode line driver circuit also has a transformer coupled to the output interface for transforming the first differential output and the second differential output and a mode controller configured to close the first switch in the first mode and to close the second switch in the second mode.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 17, 2012
    Assignee: Ralink Technology Corp.
    Inventors: Hsin-Hsien Li, Chin-Chun Lin, Tsung-Hsien Hsieh, Zi-Long Huang
  • Publication number: 20120170385
    Abstract: An output driver comprises a pull-up circuit that pulls up an output node to a supply voltage in N successive intervals in response to N pull-up control signals having different phases and a pull-down circuit that pulls down the output node to a ground voltage in M successive intervals in response to M pull-down control signals having different phases.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 5, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Kyung Hoi Koo
  • Publication number: 20120169372
    Abstract: A differential logic circuit including a current source circuit which is connected to a current control terminal and generates a current, the current value is controlled by a signal received from the current control terminal, a differential unit which, based on the current from the current source circuit, inputs a plurality of logic signals, performs a logic operation, and outputs a result of the logic operation from a pair of differential signal output terminals thereof, a load circuit which is connected to the pair of differential signal output terminals, and a load control circuit which monitors a change of the current value and controls a load of the load circuit based on a result of the monitoring.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Jianqin Wang
  • Patent number: 8212587
    Abstract: A redriver chip is inserted between a transmitter chip and a receiver chip and re-drives differential signals from the transmitter chip to the receiver chip. The redriver chip has switched output termination that switches to a high value to detect far-end termination at the receiver chip, and to a low value for signaling. An output detector detects when the receiver chip has termination to ground and enables switched input termination to provide termination to ground on the lines back to the transmitter chip so that the far-end termination on the receiver chip is mirrored back to the transmitter chip, hiding the redriver chip. An input signal detector detects when the transmitter chip begins signaling and enables an equalizer, limiter, pre-driver, and output stage to re-drive the signals to the receiver chip. The input signal detector also causes the switched output termination to switch to the low value termination for signaling.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: July 3, 2012
    Assignee: Pericom Semiconductor Corp.
    Inventors: Tony Yeung, Michael Y. Zhang
  • Publication number: 20120162054
    Abstract: There is disclosed a gate driver, a driving circuit, and a liquid crystal display (LCD), wherein the gate driver comprises input terminals for inputting a CPV signal, an OE signal, and an STV signal, and output terminals for outputting a CKV signal and a CKVB signal, and a processing circuit is connected between the input terminals and the output terminals for processing the CPV signal, the OE signal, and the STV signal such that a preset time interval is present between the falling edge of the CKV signal and the rising edge of the CKVB signal during one period of the CKV signal, or a preset time interval is present between the rising edge of the CKV signal and the falling edge of the CKVB signal during one period of the CKVB signal.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 28, 2012
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Jieqiong WANG
  • Patent number: 8203377
    Abstract: A DC-coupled two-stage gate driver circuit for driving a junction field effect transistor (JFET) is provided. The JFET can be a wide bandgap junction field effect transistor (JFET) such as a SiC JFET. The driver includes a first turn-on circuit, a second turn-on circuit and a pull-down circuit. The driver is configured to accept an input pulse-width modulation (PWM) control signal and generate an output driver signal for driving the gate of the JFET.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 19, 2012
    Assignee: SS SC IP, LLC
    Inventors: Robin Lynn Kelley, Fenton Rees
  • Patent number: 8203359
    Abstract: An open loop modulation network for a voltage regulator including a latch network, an output sense network, a timing network, and pulse control logic. The latch network latches assertion of a pulse control signal and provides a corresponding latched control pulse indication. The output sense network detects initiation of an output pulse and provides a corresponding output pulse indication. The timing network initiates a delay period in response to the output pulse indication and resets the latched control pulse indication after expiration of the delay period. The pulse control logic terminates the output pulse after the latched control pulse indication is reset and the pulse control signal is negated, whichever occurs last. Very narrow input pulses are detected and either a minimum output pulse is generated or the output pulse is based on the pulse control signal.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 19, 2012
    Assignee: Intersil Americas Inc.
    Inventors: Noel B. Dequina, M. Jason Houston
  • Patent number: 8198917
    Abstract: The present invention provides a current segmentation circuit for optimizing output waveform from high speed data transmission interface, which comprises a four current sources controlled by four switches to segment current so as to control the rising and falling time of the high speed transmission data, and to match the delay of the current control signal and the delay of the data, wherein the four current sources are I1, I2, I3 and I4, and the current control switches are K1, K2, K3 and K4, wherein I1+I2=I3+I4, wherein the switches K1 and K3 control the current I1/I3 to flow into DP/DM line, and the switches K2 and K4 control the current I2/I4 to flow into DP/DM line. The present invention can depress overshoot and eliminate turning point in the waveform.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 12, 2012
    Assignee: IPGoal Microelectronics (SiChuan) Co., Ltd.
    Inventors: Fei Ye, Xiangyang Guo, Guojun Zhu
  • Patent number: 8198910
    Abstract: Apparatus, systems, and methods are disclosed that operate to drive an output with a data signal and to boost a potential of the output in response to a boost signal. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 12, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Gregory King
  • Publication number: 20120139583
    Abstract: Methods and circuits related to a driving circuit with zero current shutdown are disclosed. In one embodiment, a driving circuit with zero current shutdown can include: a linear regulating circuit that receives an input voltage source, and outputs an output voltage; a start-up circuit having a threshold voltage, the start-up circuit receiving an external enable signal; a first power switch receiving both the output voltage of the linear regulating circuit and the external enable signal, and that generates an internal enable signal, the internal enable signal being configured to drive a logic circuit; when the external enable signal is lower than a threshold voltage, the driving circuit is not effective; when the external enable signal is higher than the threshold voltage, the start-up circuit outputs a first current; and where the output voltage at the first output terminal is generated by the linear regulating circuit based on the first current.
    Type: Application
    Filed: November 16, 2011
    Publication date: June 7, 2012
    Applicant: Hangzhou Silergy Semiconductor Technology LTD
    Inventor: Jaime Tseng
  • Patent number: 8193838
    Abstract: An input circuit, includes a first buffer circuit, a second buffer circuit, a first differential amplification circuit that includes a first input coupled to a first external power source terminal, a second input coupled to an output of the first buffer circuit, and an output coupled to an input of the first buffer circuit, and a second differential amplification circuit that includes a first input coupled to a second external power source terminal, a second input coupled to an output of the second buffer circuit, and an output coupled to an input of the second buffer circuit.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yuji Nakajima
  • Patent number: 8195855
    Abstract: A bus system includes a plurality of stubs; a plurality of connectors, each of which is serially coupled between a corresponding one of the stubs and a corresponding one of memory modules; a plurality of first serial loads, each of which is serially coupled to a corresponding one of the connectors; and a plurality of second serial loads, each of which is serially coupled to characteristic impedance of a transmission line of a corresponding one of the stubs, wherein the first and the second serial loads are determined to be impedance matched at each transmission line terminal of the stubs.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 5, 2012
    Assignees: Hynix Semiconductor Inc., Seoul National University Industry Foundation
    Inventors: Deog-Kyoon Jeong, Suhwan Kim, Woo-Yeol Shin, Dong-Hyuk Lim, Ic-Su Oh
  • Patent number: 8188762
    Abstract: A control component outputs to an integrated circuit device an indication to apply one of a plurality of controllable termination impedance configurations at a data input of the integrated circuit device. The indication causes the integrated circuit device to apply a first of the controllable termination impedance configurations at the data input during a first internal state of the integrated circuit device corresponding to the reception of write data on the data input, and causes the integrated circuit device to apply a second of the controllable termination impedance configurations at the data input during a second internal state of the integrated circuit device that follows the first internal state.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: May 29, 2012
    Assignee: Rambus Inc.
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Patent number: 8183884
    Abstract: An output driving device prevents an inflow of external current through an output terminal even when there is no power supply. The output driving device includes an output circuit that maintains an output terminal at a low impedance state by receiving a supply of power in an output drive operation and maintains the output terminal at a high impedance state by receiving the supply of power in a non-output drive operation and a leakage prevention unit coupled to the output terminal of the output circuit, the leakage prevention unit preventing a current inflow to the output circuit through the output terminal when the supply of power is not supplied to the output circuit.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Il Jung
  • Patent number: 8179161
    Abstract: A programmable input/output circuit includes a programmable output circuit configured to drive an output signal to an input/output pad at a plurality of voltages. The programmable input/output circuit further includes a programmable input configured to detect an input signal from the input/output pad at a plurality of voltages. The voltage levels of the input and output circuits may be independently and dynamically controllable.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: May 15, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Timothy J. Williams, David G. Wright, Gregory J. Verge, Bruce E. Byrkett
  • Patent number: 8171353
    Abstract: Systems, controllers and methods are disclosed, such as an initialization system including a controller that receives patterns of read data coupled from a memory device through a plurality of read data lanes. The controller is operable to detect any lane-to-lane skew in the patterns of read data received through the read data lanes. The controller then adjusts the manner in which the read data received through the read data lanes during normal operation are divided into frames. The controller can also couple patterns of command/address bits to the memory device through a plurality of command/address lanes. The memory device can send the received command/address bits back to the controller through the read data lanes. The controller is operable to detect any lane-to-lane skew in the patterns of command/address bits received through the read data lanes to adjust the manner in which the command/address bits coupled through the command/address lanes during normal operation are divided into frames.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 1, 2012
    Assignee: Micron Technology, Inc.
    Inventor: A. Kent Porterfield
  • Patent number: 8169235
    Abstract: In one embodiment, a receiver circuit is provide that may receive either a differential input or a single-ended input corresponding to an interface. The receiver circuit may include at least two current sources to control a gain of an amplification stage in the receiver. If the receiver circuit is receiving a differential input, one of the current sources may be used. If the receiver circuit is receiving a single-ended input, both of the current sources may be used. A larger gain may thus be provided for the single-ended input as compared to the differential input.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 1, 2012
    Assignee: Apple Inc.
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Patent number: 8159269
    Abstract: A single terminal is used to configure an integrated circuit into one of three states. A circuit within the integrated circuit is coupled to the terminal and determines whether the terminal: 1) is coupled by a low impedance to a voltage source, or 2) is coupled by a medium impedance to the voltage source, or 3) is floating or substantially floating. The circuit asserts a first digital logic signal when the circuit determines that the terminal is coupled by the low impedance to the voltage source. The circuit asserts a second digital logic signal when the circuit determines that the terminal is coupled by the medium impedance to the voltage source. The circuit asserts a third digital logic signal when the circuit determines that the terminal is floating or substantially floating. The terminal and circuit are particular suited for use in a Power Management Unit (PMU) Integrated Circuit.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 17, 2012
    Assignee: Active-Semi, Inc.
    Inventors: Quang Khanh Dinh, Gary M. Hurtz, Steven Huynh
  • Patent number: 8154322
    Abstract: Apparatus and methods are disclosed, such as those involving a high frequency transmitter. One such apparatus includes a pre-amplifier configured to receive an input signal via an input node; and a capacitor block electrically coupled between the pre-amplifier and an output node from which an output signal is transmitted. The capacitor block is configured to provide charge to the output node or pull charge from the output node while the output signal transitions. The apparatus further includes a switch electrically coupled between the output node and a voltage reference, wherein the switch is turned on or off at least partly in response to a signal from the pre-amplifier. This configuration effectively reduces rise and fall time of the output signal for high-frequency transmission.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 10, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Barry Stakely, Gan Guo, Jiefeng Yan
  • Patent number: 8149025
    Abstract: An exemplary gate driving circuit is adapted for receiving an external gate power supply voltage and an external control signal, sequentially generating multiple internal shift data signal groups and thereby sequentially outputting multiple gate signals. Each of the internal shift data signal groups includes multiple sequentially-generated internal shift data signals. The gate driving circuit includes multiple gate signal generating modules. Each of the gate signal generating modules includes a voltage modulation circuit and a gate output buffer circuit. The voltage modulation circuit modulates the external gate power supply voltage according to a corresponding one of the internal shift data signal groups and the external control signal, and thereby a modulated voltage signal is obtained. The gate output buffer circuit includes a plurality of parallel-coupled output stages. The output stages output the modulated voltage signal as a part of the gate signals during the output stages being sequentially enabled.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: April 3, 2012
    Assignee: AU Optronics Corp.
    Inventors: Wen-Chiang Huang, Chih-Sung Wang, Yu-Hsi Ho
  • Patent number: 8149014
    Abstract: An I/O driver has v/i characteristic control for maintaining a substantially flat output impedance response using a transmission gate configuration at an I/O output pad. The configuration includes a linear resistive element electrically connected at an I/O pad for limiting a processed data I/O signal, an active impedance element for receiving and processing the data signal, which comprises data represented by a series of voltage state transitions, and pull-up and pull-down array calibration words, for generating and outputting a processed I/O output signal to the resistive element to output a substantially flat v/i response at switching of the data signal.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: April 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: David Jia Chen, William Frederick Lawson, David William Mann
  • Patent number: 8143911
    Abstract: In general, in one aspect, the disclosure describes an apparatus having an averager to receive differential output voltages of a transmitter and generate an average transmitter output voltage. A comparator is to compare the average transmitter output voltage to a reference voltage and generate a difference therebetween. An integrator is to integrate the difference between the average transmitter output voltage and the reference voltage over time. The integrated difference is fed back to the transmitter to bias the transmitter.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 27, 2012
    Assignee: Intel Corporation
    Inventors: Zuoguo Wu, Feng Chen, Sanjay Dabral
  • Patent number: 8143918
    Abstract: An apparatus for driving a display device includes a plurality of stage connected to each other, wherein each stage includes first to seventh transistors and first and second capacitors, the seventh transistor is connected to one terminal of the first capacitor, and a ratio of an area of the first capacitor to a channel width of the seventh transistor is less than 40. Accordingly, since the ratio of the area of the capacitor to the channel width of the transistor is less than 40, deterioration may be remarkably reduced in a low temperature test.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwan-Wook Jung, Seung-Gyu Tae
  • Patent number: 8145812
    Abstract: A programmable system includes programmable analog and digital components that, when configured by a processing device, implement a line driver to transmit differential signals over multiple drive lines and a line receiver to receive differential signals over multiple receive lines. A system includes a line receiver to receive differential signals from receive lines with multiple input pads and to convert the differential signals into a single-ended signal. The system further includes a digital communication device to receive the single-ended signal from the line receiver and extract received data from the single-ended signal. The system includes a line driver to receive transmission data from the digital communication device, convert the transmission data into differential signals, and provide the differential signals to multiple output pads for transmission over drive lines.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 27, 2012
    Inventors: Gaurang Kavaiya, Rick Harding, Mark Ainsworth
  • Patent number: 8138793
    Abstract: An integrated circuit includes a CML swing reference voltage generating unit, a CML bias control voltage generating unit and a CML buffering unit. The CML swing reference voltage generating unit determines a level of a CML swing reference voltage in response to a frequency setting code and a CML bias control voltage. The CML bias control voltage generating unit compares the level of the CML swing reference voltage with a level of a CML target reference voltage and determines a level of the CML bias control voltage based on the comparison result. The CML buffering unit generates a CML output signal swinging in a CML region by buffering an input signal and determines a swing level of the CML output signal on the basis of the level of the CML swing reference voltage in response to the frequency setting code and the CML bias control voltage.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: March 20, 2012
    Assignee: Hynix Semiconductor
    Inventor: Kwan-Dong Kim
  • Publication number: 20120049888
    Abstract: A multipoint low-voltage differential signaling (mLVDS) receiver of a semiconductor device and a buffering circuit of a semiconductor device, includes: an even-number data buffering unit configured to: sample even-number data from input data, amplify and output the even-number data in a section in which a positive clock is activated, and latch the even-number data in a section in which the positive clock is inactivated, and an odd-number data buffering unit configured to: sample odd-number data from the input data, amplify and output the odd-number data in a section in which a negative clock is activated, and latch the odd-number data in a section in which the negative clock is inactivated.
    Type: Application
    Filed: April 7, 2011
    Publication date: March 1, 2012
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventor: Jung-huyn Kim
  • Patent number: 8120384
    Abstract: In a bridge adder circuit, a first and a second complementary pair of current mirrors is connected between the input terminals and a positive and a negative supply voltage bus, respectively, to control a first and a second push-pull output stage. The outputs of the push-pull output stages are connected to the respective inputs through first resistors and to a common output node through second resistors. As a result, a universal circuit element for a multivalued logic element, such as ternary logic or 5-valued logic is provided.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 21, 2012
    Assignee: Fuzzy Chip Pte. Ltd.
    Inventor: Viktor Viktorovich Olexenko
  • Patent number: 8117354
    Abstract: A system and method operable to automatically disable input/output signal processing based on the required data format is provided. The need for an input/output module, such as an encoder, required to process input signal having a first data format (i.e. multimedia format) and produce an output signal having a second format (i.e. multimedia format) is determined. When the input/output module is not required to produce the output signal in the second format, the input/output module is disabled.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Sigmatel, Inc.
    Inventors: Daniel Mulligan, David Baker
  • Patent number: 8115520
    Abstract: A driver circuit includes a main driver which receives an input signal and outputs a first signal corresponding to the input signal, a sub driver which receives the input signal and outputs a non-inverted signal and an inverted signal corresponding to the input signal, a differentiating circuit including resistors and a variable capacity condenser, which outputs signals by differentiating the non-inverted signal and the inverted signal, respectively, and an addition unit which outputs a high frequency emphasized signal given by adding the output signal of the main driver and the signal given by differentiating the non-inverted signal, or a low frequency emphasized signal given by adding the output signal of the main driver and the signal given by differentiating the inverted signal.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Advantest Corp.
    Inventors: Naoki Matsumoto, Takashi Sekino
  • Patent number: 8111088
    Abstract: A level shifter and method are provided for balancing a duty cycle of a signal. An input circuit receives a differential logic signal with two complimentary logic levels. A level transition balancing circuit balances the rise and fall times of a level shifted version of each complimentary logic level during a transition from a first to a second of the logic levels and a level shift. A logic element stores and provides outputs of the level shifted versions of the logic levels. The level transition balancing circuit can include a capacitor in parallel with a transfer element for each input. The capacitor destabilizes inputs to the logic element and balances the transition using a capacitance and a level previously stored in the logic element.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 7, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Ankit Srivastava, Xiaohong Quan
  • Patent number: 8106685
    Abstract: A signal receiver includes a first input terminal, a second input terminal, a first transistor, a second transistor and a variable load. The first and the second transistors each include a gate electrode, a first electrode and a second electrode. The gate electrode of the first transistor is coupled to the first input signal terminal, the gate electrode of the second transistor is coupled to the second input signal terminal, and the variable load is coupled to the first electrode of the first transistor, where a resistance of the first variable load is adjusted to make a DC level at an output node of the signal receiver keep a constant value.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: January 31, 2012
    Assignee: Nanya Technology Corp.
    Inventor: Wen-Chang Cheng
  • Patent number: 8098083
    Abstract: A multiple-finger off-chip driver (OCD) uses delay between branches of the output stage. The delay between branches is controlled using bias circuitry which compensates for process, temperature, and voltage (PVT) variations, resulting in less variation of slew rate at the output of the OCD. The OCD includes a time domain delay stage; a pre-driver stage; a final driver stage; and a bias circuit, for providing bias voltages to the time domain stage that compensate for process, temperature and voltage (PVT) variations on the time domain stage.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 17, 2012
    Assignee: Nanya Technology Corp.
    Inventors: Phat Truong, Mosaddiq Saifuddin, Chia-Jen Chang
  • Patent number: 8093925
    Abstract: An integrated regulated current drive circuit for driving a squib of an inflatable airbag has a current sense resistor connected in series with a load, and a reference resistor connected in series with a reference current source. Both resistors are matched to define a precise ratio of resistance values which determines the amount of current fed to the squib. Both resistors are implemented by combining a number of identical on-chip resistor elements.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Sri N. Easwaran, Michael Wendt
  • Patent number: 8085066
    Abstract: A microprocessor control unit (MCU) is mounted on a printed circuit board. The MCU includes first and second clocked serial interface (CSI) circuits. The first CSI circuit is configured to serially transmit a first xCP packet to a first encoder circuit, which in turn is configured to generate an encoded first xCP packet as a function of the first xCP packet and a first clock signal. A first low voltage differential signal (LVDS) circuit is coupled to the first encoder circuit and configured to serially receive the encoded first xCP packet therefrom. The first LVDS circuit is configured to generate a first differential signal as a function of the encoded first xCP packet.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 27, 2011
    Assignee: Renesas Electronics America Inc.
    Inventors: Jeremy W. Brodt, Amit Choudhury, Ben F. McCormick, II
  • Publication number: 20110304356
    Abstract: Differential current driving type transmitter and receiver, and an interface system having the transmitter and receiver. The transmitter includes a current source, a current direction selecting block, and a balancing switch block. The current source sources currents to a pair of transmission lines or sinks currents flowing through the pair of transmission lines. The current direction selecting block transfers a current flowing from the current source to one transmission line of the pair of transmission lines and a current flowing through the other transmission line of the pair of transmission lines to the current source. The balancing switch block initializes the pair of transmission lines to a balanced state.
    Type: Application
    Filed: July 7, 2009
    Publication date: December 15, 2011
    Applicant: SILICON WORKS CO., LTD
    Inventors: Jun Ho Kim, Young Soo Ryu, Ju Pyo Hong, Jung Hwan Choi
  • Patent number: 8072162
    Abstract: An LED lamp includes a bi-direction constant current device coupled between a power supply and a LED load to provide stable positive and negative currents to the LED load. The bi-direction constant current device includes a pair of current sources face-to-face or back-to-back connected in series between the power supply and the LED load, and two protective elements shunt to the pair of current sources, respectively.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: December 6, 2011
    Assignee: Lighting Device Technologies Corp.
    Inventors: Yung Ming Tsao, Li-Hsuan Huang
  • Publication number: 20110285423
    Abstract: First and second devices may simultaneously communicate bidirectionally with each other using only a single pair of LVDS signal paths. Each device includes an input circuit and a differential output driver connected to the single pair of LVDS signal paths. An input to the input circuit is also connected to the input of the driver. The input circuit may also receive an offset voltage. In response to its inputs, the input circuit in each device can use comparators, gates and a multiplexer to determine the logic state being transmitted over the pair of LVDS signal paths from the other device. This advantageously reduces the number of required interconnects between the first and second devices by one half.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Lee D. Whetsel
  • Patent number: 8063663
    Abstract: A differential signal transmitting apparatus for transmitting a differential signal through two transmission lines. The apparatus includes: transmitting-side board connecting terminals that are provided for each of the transmission lines, and are able to connect a transmitting circuit for transmitting a differential signal; receiving circuit connecting terminals that are provided at a far end of a daisy-chain connection extending from the transmitting-side board connecting terminals provided for each of the transmission lines, and connect the receiving circuit for receiving the differential signal; and an undefined-logic preventing circuit that is connected at a near end of the daisy-chain connection and outputs a prescribed potential difference to the receiving circuit connecting terminals when the transmitting circuit is not connected to the transmitting circuit connecting terminals.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: November 22, 2011
    Assignee: Fujitsu Limited
    Inventors: Yasushi Mizutani, Kouichi Okamoto
  • Patent number: 8063664
    Abstract: An integrated circuit includes multiple power domains. Supply current switch circuits (SCSCs) are distributed across each power domain. When a signal is present on a control node within a SCSC, the SCSC couples a local supply bus of the power domain to a global supply bus. An enable signal path extends through the SCSCs so that an enable signal can be propagated down a chain of SCSCs from control node to control node, thereby turning the SCSCs on one by one. When the domain is to be powered up, a control circuit asserts an enable signal that propagates down a first chain of SCSCs. After a programmable amount of time, the control circuit asserts a second enable signal that propagates down a second chain. By spreading the turning on of SCSCs over time, large currents that would otherwise be associated with coupling the local and global buses together are avoided.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 22, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Lew G Chua-Eoan, Matthew L Severson, Sorin A Dobre, Tsvetomir P Petrov, Rajat Goel
  • Patent number: 8063670
    Abstract: A transistor driver includes a sender module configured to generate a power input signal. A converter module includes a transformer including a first side and a second side. The first side of the transformer is configured to receive the power input signal. A rectifier is connected to the second side of the transformer. The converter module is configured to generate an output signal at an output of the rectifier. A first receiver module is connected to each of the second side of the transformer and the output of the rectifier. The first receiver module is configured to transition a first transistor between an ON state and an OFF state based on a first signal received from the second side of the transformer.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 22, 2011
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 8058902
    Abstract: A circuit for aligning input signals includes a clock generating circuit (CGC) responsive to first signal and second signal to generate a clock signal. A first flip flop and a second flip flop, coupled to the CGC, are responsive to first type of edge of the clock signal to output the first signal and the second signal. A finite state machine (FSM), coupled to the CGC, the first flip flop and the second flip flop, is responsive to second type of edge of the clock signal to detect early arrival of one of the first signal and the second signal with respect to each other, and to generate first control signal and second control signal. A first programmable delay element and a second programmable delay element, coupled to the FSM, delays first input signal based on the first control signal and second input signal based on the second control signal.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Sahil Khurana, Vivek Singhal, Yogesh Darwhekar
  • Patent number: 8054101
    Abstract: A current source and a method for designing the current source are provided. The current source is designed by a recursive rule and enables controllable delay lines to provide linear delay and occupy smaller area than conventional controllable delay lines with thermometer code current sources do.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: November 8, 2011
    Assignee: Faraday Technology Corp.
    Inventors: Chi-Che Chen, Jung-Chi Ho
  • Patent number: 8049533
    Abstract: A receiver and a method for dynamically adjusting sensitivity of the receiver are provided. The receiver includes a detection unit and a receiving unit. The detection unit detects an input signal group, and outputs a detection result. The receiving unit receives the input signal group according to a sensitivity. Wherein, the receiving unit dynamically adjusts the sensitivity used for receiving the input signal group according to the detection result of the detection unit.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 1, 2011
    Assignee: Himax Technologies Limited
    Inventor: Shih-Chun Lin
  • Publication number: 20110261138
    Abstract: A reference voltage generation circuit includes a first current-mirror circuit including a first MOS transistor connected to a first power source and a second MOS transistor of the first conductive type connected to the first power source; a second current-mirror circuit including a third MOS transistor and a fourth MOS transistor; a first resistor connected to the first node; a first bipolar transistor having a collector connected to the first resistor, an emitter connected to a second power source, and a base connected to the first node; a second bipolar transistor having a collector connected to the second node, an emitter connected to the second power source, and a base connected to the first bipolar transistor; a fifth MOS transistor connected between the first power source and an output terminal; and a third resistor connected between the output terminal and the second power source.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Inventor: Akira Nagumo
  • Patent number: 8044693
    Abstract: A driver circuit includes a first transistor having a first node coupled to a high supply voltage and a second node coupled to an output node, wherein the first transistor passes the high supply voltage to the output node based on a first gate voltage on a gate of the first transistor. The driver circuit also includes a second transistor having a first node coupled to a low supply voltage and a second node coupled to the output node of the driver circuit, wherein the second transistor passes the low voltage to the output node based on a second gate voltage on a gate of the second transistor. The driver circuit further includes a logic block configured to control a slew rate of an output signal Vout at the output node by controlling a slew rate of the first gate voltage and controlling a slew rate of the second gate voltage.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: October 25, 2011
    Assignee: Marvell International Ltd.
    Inventors: Vishnu Mannoorittathu, Ying Tian Li
  • Patent number: 8040164
    Abstract: An integrated circuit may include at least a first replica driver stage coupled between a reference impedance input and a first power supply node and having a first programmable driver impedance set by a first driver configuration value in the same manner as a first output driver section of the integrated circuit. At least a first replica input termination stage may be coupled between the reference impedance input and the first power supply node and having a first programmable termination impedance set by a first termination configuration value in the same manner as a first input termination section of the integrated circuit. An impedance programming circuit may generate at least the first driver configuration value and the first termination configuration value in response to a potential at the reference node.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 18, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Suresh Parameswaran, Joseph Tzou, Morgan Whately, Thinh Tran
  • Patent number: 8030968
    Abstract: According to various embodiments, a differential transmitter includes a driver and a predriver. In various embodiments, the predriver may include pull-up transistors and pull-down transistors configured in various ways to produce a staged output signal during a pull-up transition, wherein the higher bits of the input signal are switched slower in comparison with the lower bits of the input signal, while at the same time maintaining the simultaneous pull-down transition among all the bits. In various embodiments, the staged output of a predriver may further be dynamically disabled during a deemphasis exit transition. Other embodiments may be described and claimed.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: October 4, 2011
    Assignee: Intel Corporation
    Inventors: Eugene Avner, Ofer Ginzberg, Ziv Shmuely
  • Patent number: RE43015
    Abstract: The present invention discloses a capacitive high-side switch driver for a power converter. The capacitive high-side switch driver according to the present invention includes an inverter and two alternately conducting totem-pole buffers with complementary duty cycles. The duty cycles alternate in response to an input signal. The capacitive high-side switch driver further includes a low-side transistor and a high-side transistor. Once the low-side transistor is turned on, a bootstrap capacitor is charged to create a floating voltage via a charge-pump diode to supply power for the high-side switch driver. To supply additional power for the high-side switch driver, differential signals are produced to further charge the bootstrap capacitor via a bridge rectifier. The capacitive high-side switch driver utilizes a programmable load to provide variable impedance. Furthermore, an under-voltage protector supervises the supply voltage to ensure a reliable gate driving voltage.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: December 13, 2011
    Assignee: System General Corp.
    Inventor: Ta-yung Yang