Mosfet Patents (Class 326/97)
  • Patent number: 7839175
    Abstract: A Local Clock Buffer (LCB), an IC chip including registers, some of which may include master/slave latches, locally clocked by the LCB, e.g., providing a launch clock and a capture clock each with an identified critical edge. The LCB includes asymmetrically inductively peaked series connected logic gates (e.g., inverters and/or NAND gates), each with an inductor between gate devices and supply (Vdd) or ground. The series connected gates alternate between having the inductor located between gate devices and the supply and located between gate devices and ground, providing asymmetric inductive peaking to maintain the sharpness of the critical edges. Optionally, corresponding logic gates in multiple LCBs may share the same inductor. Asymmetric inductive peaking allows reducing LCB power without degrading performance.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: November 23, 2010
    Assignee: International Business Machines Corporation
    Inventor: Robert L. Franch
  • Patent number: 7830178
    Abstract: The dynamic circuit includes: a dynamic node; an evaluation circuit for changing the charged state of the dynamic node according to a result of logic evaluation for a plurality of input signals; a control circuit for outputting a control signal of which the logic level changes according to the result of logic evaluation performed by a replica of the evaluation circuit; and an initialization circuit for receiving the control signal from the control circuit and an external control signal, to control start and stop of initialization of the dynamic node according to the control signals.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 9, 2010
    Assignee: Panasonic Corporation
    Inventor: Yukihiro Sasagawa
  • Patent number: 7772890
    Abstract: Various systems and methods for implementing dynamic logic are disclosed herein. For example, some embodiments of the present invention provide dynamic logic devices with a logic circuit that includes an inverting output buffer, a logic function, a bias transistor, and a current circuit. An input of the logic function is electrically coupled to a logic input, an output of the logic function is electrically coupled to an input of the inverting output buffer, and the logic function exhibits a leakage current. The gate of the bias transistor is electrically coupled to an output of the inverting buffer, and a first leg of the bias transistor is electrically coupled to the input of the inverting buffer. The current circuit supplies a current corresponding to the to a second leg of the bias transistor. In some cases, an improved performance may be achieved for a given leakage, or a reduced leakage may be achieved for a given performance.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: August 10, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Andrew Marshall
  • Patent number: 7724036
    Abstract: Methods and apparatuses for optimizing switching delay in integrated circuits are described. Combinational logic gates are modified with precharge circuitry and instantiated in order to reduce switching transitions of circuit elements in a signal path.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: May 25, 2010
    Inventor: Ashutosh Das
  • Patent number: 7667489
    Abstract: A voltage regulator and method of voltage regulation for a power-on reset condition are described. Voltage regulation control signals responsive to the power-on reset condition are obtained. The control signals are generated with a first voltage to be associated with a second voltage to provide a first power-on-reset signal and a second power-on-reset signal which are opposite in state to one another. A portion of driver logic is tri-stated responsive to the control signals, and the second power-on-reset signal to at least impede supply to supply current leakage. Voltage is pulled up on a first output port and a second output port of the driver logic responsive to the first power-on-reset signal. A portion of a semiconductor substrate is electrically coupled to a higher one of a first voltage and a second voltage responsive to the pulling up to at least further impede the supply to supply current leakage.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 23, 2010
    Assignee: Xilinx, Inc.
    Inventor: Narasimhan Vasudevan
  • Patent number: 7649957
    Abstract: A multi-stage non-overlapping clock signal generator as described herein is suitable for use with a pipelined analog-to-digital converter architecture. The clock signal generator generally includes a back end clock generator, a second stage clock generator, and a first stage clock generator coupled in series. The clock signal generator may also include any number of intermediate stage clock generators coupled in series between the back end clock generator and the second stage clock generator. Example implementations of the various clock generator stages are also described herein.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: January 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Douglas A. Garrity, Mohammad Nizam Kabir
  • Patent number: 7639057
    Abstract: A clock gater includes a first logic circuit that receives an enable signal and that includes first and second subcircuits. The clock gater also includes a latch that shares first and second nodes with the first logic circuit and that includes third and fourth subcircuits. The first logic circuit and the latch receive a clock signal that varies between first and second clock states. The first and third subcircuits pull the first and second nodes, respectively, to a common precharge voltage based on the first clock state in order to pass the clock signal. The second and fourth subcircuits pull the first and second nodes, respectively, to complementary voltages based on the second clock state to pass the clock signal. The first node passes the clock signal or gates the clock signal based on the enable signal.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 29, 2009
    Assignee: Marvell International Ltd.
    Inventor: Jason T. Su
  • Patent number: 7626420
    Abstract: An apparatus, system, and method are described for synchronously resetting logic circuits. A synchronous reset signal is coupled to at least one asynchronous reset input for synchronously resetting sequential logic. In one embodiment, reset logic generates a signal coupled to the at least one asynchronous reset input of the sequential logic to synchronously reset the sequential logic.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: December 1, 2009
    Assignee: NVIDIA Corporation
    Inventor: Elik E. Cohen
  • Patent number: 7589565
    Abstract: An improved circuit for reducing a capacitance load on a processor. The circuit includes a global clock circuit capable of producing a primary timing signal. The circuit further includes a local clock buffer circuit having a plurality of outputs. The local clock buffer circuit is connected to the global clock circuit. The local clock buffer circuit is capable of producing a secondary timing signal based on the primary timing signal. The circuit also includes a latch connected to the local clock buffer circuit. The latch is capable of producing a select signal that controls which outputs of the plurality of outputs are active. Only a third signal, based on the secondary timing signal, controls an operation of the latch.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 15, 2009
    Assignee: International Business Machines Corporation
    Inventors: Leon J. Sigal, James D. Warnock, Dieter F. Wendel
  • Patent number: 7521969
    Abstract: Systems and methods are disclosed herein to provide improved I/O techniques. For example, in accordance with an embodiment of the present invention, an integrated circuit includes a driver that receives data signals and provides an output signal based on the data signals, with the driver having a plurality of transistors with a first set of the plurality of transistors adapted to provide a first logical value as the output signal and a second set of the plurality of transistors adapted to provide a second logical value as the output signal based on the data signals. A sequencing circuit provides the data signals to the driver such that the first set of the plurality of transistors is switched on before the second set of the plurality of transistors is switched off, and the second set of the plurality of transistors is switched on before the first set of the plurality of transistors is switched off.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 21, 2009
    Assignee: Lattice Semiconductor Corporation
    Inventors: Richard Booth, Phillip Johnson
  • Patent number: 7501850
    Abstract: A scannable limited switch dynamic logic (LSDL) circuit including a data input and a data output, a combinational logic circuit in communication with the data input, a pre-charge circuit in communication with the combinational logic circuit, a footer circuit in communication with the combinational logic, a keeper circuit in communication with the combinational logic circuit and the pre-charge circuit, a scan input connected to the data input, a scan input circuit in communication with the scan input, the combinational logic circuit, the pre-charge circuit, and the keeper circuit, a modified inverter circuit in communication with the combinational logic circuit, the pre-charge circuit, the keeper circuit, and the scan input circuit, a parallel gate circuit in communication with the modified inverter circuit, a series gate circuit in communication with the modified inverter circuit and the parallel gate circuit, a feedback inverter connected between an internal node and a feedback node, and an output buffer con
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Anthony Correale, Jr., Thomas A. Dick, Sven E. Meier, Robert K. Montoye
  • Patent number: 7482840
    Abstract: The semiconductor integrated circuit includes: a first transistor of a first conductivity type connected between a first power supply and an output node and turned ON according to a first clock to put the output node to a first logic level; a second transistor of a second conductivity type turned ON according to an input signal; a third transistor of the second conductivity type connected in series to the second transistor and turned ON according to a second clock; and a fourth transistor of the first conductivity type connected between the first power supply and the output node and turned ON according to a feedback signal. The second and third transistors are connected between the output node and a second power supply. The fourth transistor is turned from ON to OFF after both the second and third transistors are turned ON.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: January 27, 2009
    Assignee: Panasonic Corporation
    Inventors: Akira Masuo, Norihiko Sumitani
  • Patent number: 7459940
    Abstract: A Local Clock Buffer (LCB), an IC chip including registers, some of which may include master/slave latches, locally clocked by the LCB, e.g., providing a launch clock and a capture clock each with an identified critical edge. The LCB includes asymmetrically inductively peaked series connected logic gates (e.g., inverters and/or NAND gates), each with an inductor between gate devices and supply (Vdd) or ground. The series connected gates alternate between having the inductor located between gate devices and the supply and located between gate devices and ground, providing asymmetric inductive peaking to maintain the sharpness of the critical edges. Optionally, corresponding logic gates in multiple LCBs may share the same inductor. Asymmetric inductive peaking allows reducing LCB power without degrading performance.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: December 2, 2008
    Assignee: International Business Machines Corporation
    Inventor: Robert L. Franch
  • Patent number: 7454589
    Abstract: There are provided a buffer circuit buffers data between a synchronous circuit and an asynchronous circuit, and a control method therefor. There are also provided an interface circuit that controls data transfer between a synchronous memory circuit and the asynchronous circuit, and a control method therefor, which are used in the buffer circuit and the control method therefor. A data buffer circuit that is interposed between an image processing system and a main system includes a one-port RAM, a control signal generating section, an subsequent cycle address generating section, and a first selector. The first selector selectively outputs the present cycle address to an address of the one-port RAM when an access to the one-port RAM is a write access, and selectively outputs the subsequent cycle address to the address of the one-port RAM when the access to the one-port RAM is a read access.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: November 18, 2008
    Assignee: Fujitsu Limited
    Inventors: Kazuya Taniguchi, Toshiyuki Nishii, Hiromichi Mizuno, Tsutomu Terazawa
  • Publication number: 20080238484
    Abstract: A Local Clock Buffer (LCB), an IC chip including registers, some of which may include master/slave latches, locally clocked by the LCB, e.g., providing a launch clock and a capture clock each with an identified critical edge. The LCB includes asymmetrically inductively peaked series connected logic gates (e.g., inverters and/or NAND gates), each with an inductor between gate devices and supply (Vdd) or ground. The series connected gates alternate between having the inductor located between gate devices and the supply and located between gate devices and ground, providing asymmetric inductive peaking to maintain the sharpness of the critical edges. Optionally, corresponding logic gates in multiple LCBs may share the same inductor. Asymmetric inductive peaking allows reducing LCB power without degrading performance.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventor: Robert L. Franch
  • Patent number: 7429879
    Abstract: A semi-conductor component with a receiver, in particular a clock receiver circuit device, as well as a receiver, in particular a clock receiver circuit device is disclosed. The clock receiver circuit device includes a first input adapted to be connected with a first connection of a semi-conductor component, and second input adapted to be connected with a second connection of the semi-conductor component, wherein the receiver circuit device includes several, in particular more than three transfer gates.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: September 30, 2008
    Assignee: Infineon Technologies AG
    Inventor: Alessandro Minzoni
  • Patent number: 7365575
    Abstract: A gated clock logic circuit includes a pulse generator and a precharged latch. The pulse generator generates a pulse signal in response to a clock signal, and the precharged latch generates a gated clock signal in response to the clock signal, the pulse signal, and a control signal.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min-Su Kim
  • Patent number: 7346861
    Abstract: Programmable logic circuitry includes level-sensitive latches as at least some of the data storage elements. At least some of the latches are enabled by one phase of a clock signal, and at least some others of the latches are enabled by the other phase of the clock signal. Accordingly, these latches collectively have two-phase operation. These two-phase latches may replace at least some single-phase, edge-triggered flip-flops in a user's logic design, and may thereby increase the speed at which the user's logic can be operated. Methods for converting a single-phase, edge-triggered flip-flop design to a logically equivalent design using at least some two-phase latches are disclosed.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: March 18, 2008
    Assignee: Altera Corporation
    Inventor: Andy L Lee
  • Publication number: 20080061836
    Abstract: Methods, apparatuses, and systems to improve performance of integrated circuits are discussed. Some embodiments comprise methods to increase rates of logic evaluation in integrated circuits. The methods generally involve evaluating logic in one or more logic branches, where one of more of those branches employs a current mirror, and outputting a logic value through an output stage that also employs a current mirror. Other embodiments comprise apparatuses and circuits to reduce logic evaluation time in an integrated circuit, generally comprising one or more logic modules coupled to one or more current mirrors, where the current mirrors increase the discharge rates of logic elements in the integrated circuit and speed logic evaluation. Various embodiments have two or more logic modules to evaluate logic in parallel. Various embodiments may comprise “AND” and “NAND” logic circuits, such as dynamic “AND” and “NAND” gates.
    Type: Application
    Filed: August 22, 2006
    Publication date: March 13, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Zhibin Cheng
  • Patent number: 7342568
    Abstract: A shift register circuit having shift registers comprising a first transistor having a gate and a first source/drain for receiving an output signal of a pre-stage shift register, a second transistor having a gate coupled to a second source/drain of the first transistor, a first source/drain coupled to a first clock signal, and a second source/drain coupled to a output, a first pull-down module coupled to the output terminal, for receiving the first clock signal, wherein the output is coupled to a first voltage level when the output signal of pre-stage shift register and the first clock signal are at low voltage level, and a second pull-down module coupled to the output and a second clock signal, wherein the output is coupled to a first voltage level when the output signal of pre-stage shift register and the second clock signal are at low voltage level.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 11, 2008
    Assignee: Au Optronics Corp.
    Inventors: Chun-Ching Wei, Yang-En Wu, Wei-Cheng Lin
  • Patent number: 7339403
    Abstract: Clock error detections circuits can detect clock duty cycle error and/or quadrature phase error. During an evaluation phase, capacitors are charged. During an evaluation phase, the capacitors are unequally discharged based on the error. A positive feedback mechanism latches the result.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: Suwei Chen, Derek M. Conrow, Aaron K. Martin
  • Patent number: 7323910
    Abstract: Circuit arrangement for producing a dual-rail output signal having a signal processing apparatus with two switches, which are driven as a function of an input signal, a first output connected via one of the switches to a signal processing apparatus foot point, which is at a first potential, and a second output connected via the other switch to the foot point. The signal processing apparatus is connected via a switching apparatus to outputs of the circuit arrangement in order to output a dual-rail output signal. The outputs of the switching apparatus are each connected to one or to both inputs of the switching apparatus as a function of a control signal. A potential monitoring apparatus defines the potentials at the outputs of the circuit arrangement when these outputs are not connected via the switching apparatus and the signal processing apparatus to the foot point of the signal processing apparatus.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: January 29, 2008
    Assignee: Infineon Technologies Ag
    Inventors: Thomas Kunemund, Holger Sedlak
  • Patent number: 7317780
    Abstract: A shift registers circuit having a series of cascading shift registers comprises a first transistor coupling to an output signal of a pre-stage shift register, a second transistor coupling to the first transistor, an output and a first clock signal, and a pull-down module coupling to the output, output signals of pre-stage and post-stage shift register, a second and a third voltage level. When the second transistor turns on and the first clock signal is at high voltage level, the output is at a first voltage level. When the signal of post-stage shift register is at first voltage level, the output is at the third voltage level.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: January 8, 2008
    Assignee: AU Optronics Corp.
    Inventors: Wei-Cheng Lin, Chun-Ching Wei, Yang-En Wu, Cheng-Liang Ma
  • Patent number: 7301373
    Abstract: A flip-flop circuit includes a differential stage coupled to a latch stage. The differential stage comprises cross-coupled dynamic logic and only provides a single output to the latch stage. During an evaluation phase, the state of a data input signal is sensed. Depending upon the state of the data input signal, either an output side or reference side of the differential stage is discharged. Also, during the evaluation phase, the latch stage write port is enabled while feedback is disabled, and the flip flop thereby samples and stores an output signal from the output side of the differential stage. Upon initiation of the next precharge phase, the latch stage write port is disabled and feedback is enabled, thereby retaining its present state. Only a single side of the differential stage is used to drive the latch stage and the differential stage may be implemented in an asymmetric fashion.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: November 27, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Daniel William Bailey, Hariharan Kalyanaraman
  • Patent number: 7282960
    Abstract: A dynamic logical circuit having a pre-charge element separately controlled by a voltage-asymmetric clock controlled provides increased noise immunity in dynamic digital circuits. By clocking the pre-charge element with a signal having a reduced swing in the voltage direction that turns off the pre-charge element, the pre-charge element provides a small current that prevents the dynamic summing node of a gate from erroneously evaluating due to noise, and eliminates the need for a keeper device. Providing the reduced-swing asymmetric clock as a separate signal prevents performance degradation in the rest of the circuit. Specifically, the foot devices in the dynamic portion of the circuit are controlled with the full swing clock so that evaluation is not compromised by noise or slowed. Foot and pull-up devices in any static portion of the circuit are also controlled with the full-swing clock so that switching speed and leakage immunity are not affected.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wendy Ann Belluomini, Robert Kevin Montoye, Aniket Mukul Saha
  • Patent number: 7268590
    Abstract: A method and apparatus are provided for implementing subthreshold leakage current reduction in limited switch dynamic logic (LSDL). A limited switch dynamic logic circuit includes a cross-coupled NAND and inverter logic. A dynamic node provides a first input to the NAND. A sleep signal provides a second input to the NAND. An output of the NAND provides an input to the inverter logic that inverts the NAND output and provides a complementary output. The NAND logic includes a series connected first sleep transistor receiving the sleep input. The first sleep transistor is turned OFF during the sleep mode. A second sleep transistor is connected between a voltage supply rail and the NAND output. The second sleep transistor is turned ON during the sleep mode to force high the NAND output and force low complementary output.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: September 11, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jerry C. Kao, Chung-Tao Li, Salvatore Nicholas Storino, Christophe Robert Tretz
  • Publication number: 20070176640
    Abstract: The dynamic circuit includes: a dynamic node; an evaluation circuit for changing the charged state of the dynamic node according to a result of logic evaluation for a plurality of input signals; a control circuit for outputting a control signal of which the logic level changes according to the result of logic evaluation performed by a replica of the evaluation circuit; and an initialization circuit for receiving the control signal from the control circuit and an external control signal, to control start and stop of initialization of the dynamic node according to the control signals.
    Type: Application
    Filed: January 30, 2007
    Publication date: August 2, 2007
    Inventor: Yukihiro Sasagawa
  • Publication number: 20070176641
    Abstract: Low voltage swing techniques are provided for simultaneously reducing the active and standby mode power consumption and enhancing the noise immunity in domino logic circuits. One or both the upper and lower boundaries of the voltage swing at the dynamic node may be different from the upper and lower boundaries of the voltage swing at the output node. For example, the voltage swing at the dynamic node may be less than the voltage swing at the output node, optimized for speed or power consumption. As another example, the voltage swing at the dynamic node may be greater than the voltage swing at the output node, optimized for speed or power consumption. Further, the domino logic circuit may use dual Vt thereby reducing the short-circuit current during operation. Meanwhile, full voltage swing signals may be maintained at the inputs and outputs for high speed operation.
    Type: Application
    Filed: January 31, 2007
    Publication date: August 2, 2007
    Inventors: Volkan Kursun, Zhiyu Liu
  • Patent number: 7250789
    Abstract: Structures and methods for pseudo-CMOS dynamic logic with delayed clocks are provided. A pseudo-CMOS dynamic logic circuit with delayed clocks includes a dynamic pseudo-nMOS logic gate and a dynamic pseudo-pMOS logic gate coupled thereto. The dynamic pseudo-nMOS logic gate includes a delayed enable clock transistor coupled to a source region of at least two input transistors. The dynamic pseudo-pMOS logic gate includes a delayed enable clock transistor coupled to a drain of at least two input transistors. None of the logic input devices are connected in series.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: July 31, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7245157
    Abstract: A primarily domino logic block uses static buffers instead of clocked domino buffers to correct a phase skipping problem, while realizing the same logic function with less integrated circuit area, power consumption, and cost. The use of static buffers simplifies the clock network and clock tree synthesis. A domino logic circuit including at least one logic gate including a fast input and a slow input, and a static buffer inserted in series with the fast input of the logic gate. The falling time of the static buffer is set to be greater than a defined minimum falling time and less than a defined maximum falling time.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 17, 2007
    Assignee: STMicroelectronics, Inc.
    Inventor: Bernard Bourgin
  • Patent number: 7224190
    Abstract: The present invention relates to the field of hardware logic circuits and in particular to dynamic hardware logic implemented in computer processors, and more particularly, to an integrated circuit comprising a dynamic logic function implementing a predetermined logic function with a plurality of transistor stacks, the integrated circuit comprising a precharge node at the input of said logic function implementation, an output latch connected to the output node of said logic function for stabilizing the result of the evaluation of said logic function. The present invention provides such integrated dynamic circuit with a latch, which is protected against instability even in situations involving complex logic functions which are evaluated and their output states are saved by said output latch.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: May 29, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wilhelm Haller, Rolf Sautter, Monika Strohmer, Klaus Thumm
  • Patent number: 7218151
    Abstract: A variable threshold voltage keeper circuit technique is proposed for simultaneous power reduction and speed enhancement of domino logic circuits. The threshold voltage of the keeper transistor is dynamically modified during circuit operation to reduce the contention current without sacrificing noise immunity. The threshold voltage of the keeper transistor is controlled by a body bias generator which switches between two voltages in accordance with the clock signal.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: May 15, 2007
    Assignee: University of Rochester
    Inventors: Volkan Kursun, Eby G. Friedman
  • Patent number: 7218160
    Abstract: A semiconductor integrated circuit according to the present invention comprises a latch circuit, a retaining circuit, and a feedback circuit, wherein the latch circuit inputs therein an input data signal, a clock signal and a feedback signal and outputs an output data signal, the retaining circuit retains the output data signal, and the feedback circuit inputs therein the input data signal and the output data signal to thereby generate the feedback signal based on logic combinations of the input data signal and the output data signal, and an internal operation of the latch circuit is turned on/off by means of the feedback signal.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 15, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tooru Wada, Masaya Sumita
  • Patent number: 7215154
    Abstract: An apparatus and method provide logically controlled masking of one or more maskable data bits from a plurality of data bits that are input to a dynamic logic circuit. No masking logic and attendant delay penalty is coupled in the data path that is not needed for unmasked bits from the plurality of data bits that do not need masking. A system clock has a precharge phase and an evaluate phase. A first clock buffer is coupled to a precharge switch and precharges a dynamic node during the precharge phase. A second clock buffer having substantially the same delay from system clock input to an output of the second clock buffer is gated by a derivative of a mask. The output of the second clock buffer controls one or more switches in series with switches controlled by the maskable data bits.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: May 8, 2007
    Assignee: International Business Machines Corporation
    Inventors: Derick Gardner Behrends, Ryan Charles Kivimagi, Chihhung Liao
  • Patent number: 7202704
    Abstract: A method and apparatus for ensuring proper operation of a dynamic circuit is provided. A dynamic circuit instance has a plurality of outputs connected to a respective one of a plurality of leakage detector circuits. An output of each leakage detector circuit is connected with a respective one of a plurality of keeper circuits that reside at the dynamic circuit. Each of the plurality of keeper circuits has a unique size ratio with respect to a logic element size of the dynamic circuit.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Sam Gat-Shang Chu, Peter Juergen Klim, Michael Ju Hyeok Lee, Jose Angel Paredes
  • Patent number: 7180332
    Abstract: A clock synchronization circuit for synchronizing a first clock signal and a second clock signal for data transfer from a first function block, which is clocked by the first clock signal, to a second function block which is clocked by the second clock signal, where the clock synchronization circuit has a sampling unit for sampling the second clock signal using the first clock signal in order to generate samples and edge detection values of the sampled second clock signal, a logic circuit for outputting the generated edge detection values as a reconstructed clock signal and generating an Edge-too-Early signal and an Edge-too-Late signal; and a signal delay circuit, which delays the reconstructed second clock signal on the bases of the Edge-too-Early signal or the Edge-too-Late signal.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: February 20, 2007
    Assignee: Infineon Technologies AG
    Inventor: Lorenzo Di Gregorio
  • Patent number: 7173456
    Abstract: A dynamic logic return-to-zero (RTZ) latching mechanism including a complementary pair of evaluation devices responsive to a clock signal, a dynamic evaluator, delayed inversion logic, and latching logic. The dynamic evaluator is coupled between the complementary pair of evaluation devices at a pre-charged node and evaluates a logic function based on at least one input data signal. The latching logic asserts the logic state of an output node based on the state of the pre-charged node during an evaluation period between an operative edge of the clock signal and the next edge of an evaluation complete signal, which is a delayed and inverted version of the clock signal. The output node is returned to zero between evaluation periods. A footless latching domino circuit may be added to convert the RTZ output to a registered output signal.
    Type: Grant
    Filed: December 6, 2003
    Date of Patent: February 6, 2007
    Assignee: IP-First, LLC
    Inventor: James R. Lundberg
  • Patent number: 7154303
    Abstract: In a dynamic circuit, when only between a precharge node and an intermediate node through a plurality of logical-operating MOS transistors is conducted, the potential of the precharge node approximately drops to High*{C1/(C1+C2)} from High, where C1 represents the capacitance of the precharge node and C2 represents the capacitance of the intermediate node. Thereafter, with the charge from a power supply, the precharge node returns to High. At this charge sharing time, the amount of charge supply from the power supply is adjusted to suppress voltage drop of the precharge node, thereby reducing noise.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: December 26, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Junichi Yano
  • Patent number: 7132856
    Abstract: A logic circuit performs an internal level conversion function by driving portions of the circuit with different supply voltages. In one embodiment, first and second stage storage circuits are driven with different supply voltages. In another embodiment, first and second stage storage circuits are driven with a first supply voltage and an inverter coupled to the first stage storage circuit is driven with a second supply voltage. In either case, data transfer into the storage circuits may be controlled by different states of a clock signal. The logic circuit may be a flip-flop circuit, a latch circuit, or another type of circuit.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: November 7, 2006
    Assignee: Intel Corporation
    Inventors: Steven K. Hsu, Ram K. Krishnamurthy
  • Patent number: 7129754
    Abstract: An LSDL circuit replaces the normal clock control of the pre-charge device for the dynamic node with a control signal that is logic zero whenever the circuit is in an active mode and is a logic one when the circuit is in standby mode. The pre-charge device holds the dynamic node at a pre-charged logic one state independent of the clock. During the logic one evaluate time of the clock, the logic tree determines the asserted state of the dynamic node. During the evaluate time, the asserted state is latched by the static LSDL section. The dynamic node then re-charges to the pre-charge state. Since the pre-charge device is not de-gated during the evaluate time, the dynamic node cannot be inadvertently discharged by noise causing an error. Likewise, since the clock does not couple to the pre-charge device a load is removed from the clock tree lowering clock power.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jayakumaran Sivagnaname, Kevin J. Nowka, Robert K. Montoye
  • Patent number: 7126379
    Abstract: An output device for static random access memory is disclosed, which has a precharger, a charge and discharge path circuit, a voltage hold circuit and an output inverter. The precharger connects to a common output node of a plurality of memory cells. When one of the memory cells is to be read, the common output node is precharged to a high potential. The charge and discharge path circuit connects to the common output node and controls an output voltage on its output node in accordance with an internal first grounding path on or not. The voltage hold circuit connects to both the output node of the path circuit and the common output node and controls a voltage of the common output node in accordance with both the output voltage of the path circuit and an internal second grounding path. When the precharger is precharging, the second grounding path is disconnected.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: October 24, 2006
    Assignee: VIA Technologies, Inc.
    Inventor: Chao-Sheng Huang
  • Patent number: 7123056
    Abstract: A systematic method for single-rail domino logic circuits is provided, in which inverting and non-monotonic logic functions can be integrated into a pipelined system with almost zero overhead. This logic family, called Clock Logic (CL)-domino is functionally complete while tolerating skew and minimizing the number of clock phases that must be distributed. Simulation results for a CL-domino ALU at 1-GHz under high skew (1-FO4) conditions, shows a power reduction of 41% over the same ALU implemented in dual-rail skew-tolerant domino logic. This power reduction incurs no performance penalty over dual-rail techniques, although in some cases additional design effort is required.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 17, 2006
    Assignee: Mosaid Technologies Incorporated
    Inventors: Raymond Jit-Hung Sung, Duncan George Elliott
  • Patent number: 7095252
    Abstract: The present invention relates to dynamic hardware logic of computer processors. In particular, it relates to a method and respective system for operating a dynamic logic circuit implementing some predetermined logic function with reduced charge sharing. In order to further reduce charge sharing it is proposed to provide a predetermined number of pre-engineered switching arrangements (24, 26, 28) implementing the same logic function with a different combinatorial distribution of input variables (A, B, C), wherein each arrangement is connected between said precharged node of higher potential and a lower potential.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: August 22, 2006
    Assignee: International Business Machines Corporation
    Inventors: Michael Haase, Wilhelm Haller, Rolf Sautter, Christoph Wandel
  • Patent number: 7088144
    Abstract: A method and apparatus for creating a modified dynamic flip-flop avoids the power waste created by prior art dynamic flip-flops by including a conditional pre-charge control circuit and method. When the modified dynamic flip-flop is in a holding mode, i.e., in the clock disable state, the modified dynamic flip-flop does not use power pre-charging and discharging the internal dynamic node every cycle.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: August 8, 2006
    Assignee: Sun Microsystems, Inc.
    Inventors: Bo Tang, Edgardo F. Klass, Geoffrey M. Pilling
  • Patent number: 7075336
    Abstract: A method for distributing clocks to flip-flop circuits which constitute a logic circuit includes obtaining a timing slack of a first minimum delay time with respect to a minimum delay constraint time and a timing slack of a first maximum delay time with respect to a maximum delay constraint time for a clock in an input path to a flip-flop circuit, obtaining a timing slack of a second minimum delay time with respect to a minimum delay constraint time and a timing slack of a second maximum delay time with respect to a maximum delay constraint time for a clock in an output path from all the flip-flop circuits which receive the clocks from a clock terminal directly and obtaining a delay value which maximizes a minimum value of each of the first and second minimum delay time and maximum delay time of timing slacks.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: July 11, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naohito Kojima, Fumihiro Minami, Masami Murakata, Takashi Ishioka
  • Patent number: 6972599
    Abstract: Structures and methods for pseudo-CMOS dynamic logic with delayed clocks are provided. A pseudo-CMOS dynamic logic circuit with delayed clocks includes a dynamic pseudo-nMOS logic gate and a dynamic pseudo-pMOS logic gate coupled thereto. The dynamic pseudo-nMOS logic gate includes a delayed enable clock transistor coupled to a source region of at least two input transistors. The dynamic pseudo-pMOS logic gate includes a delayed enable clock transistor coupled to a drain of at least two input transistors. None of the logic input devices are connected in series.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: December 6, 2005
    Assignee: Micron Technology Inc.
    Inventor: Leonard Forbes
  • Patent number: 6967502
    Abstract: In a dynamic circuit, when only between a precharge node and an intermediate node through a plurality of logical-operating MOS transistors is conducted, the potential of the precharge node approximately drops to High*{C1/(C1+C2)} from High, where C1represents the capacitance of the precharge node and C2 represents the capacitance of the intermediate node. Thereafter, with the charge from a power supply, the precharge node returns to High. At this charge sharing time, the amount of charge supply from the power supply is adjusted to suppress voltage drop of the precharge node, thereby reducing noise.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: November 22, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Junichi Yano
  • Patent number: 6965254
    Abstract: A dynamic logic register including a dynamic circuit, a delayed inverter, a latching circuit, and a keeper circuit. The dynamic circuit pre-charges a pre-charged node while a clock signal is low and evaluates a logic function to control the state of the pre-charged node when the clock goes high. The delayed inverter provides an inverted and delayed clock. The latching circuit controls the state of an output node based on the pre-charged node during an evaluation period beginning when the clock goes high and ending when the inverted delayed clock next goes low. The latching circuit presents a tri-state condition to the output node and the keeper circuit maintains the state of the output node between evaluation periods. The register is very fast with zero setup and short data-to output-time, and may be used between stages in a pipeline system.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 15, 2005
    Assignee: IP-First, LLC
    Inventor: James R. Lundberg
  • Patent number: 6940313
    Abstract: In an embodiment, a dynamic bus includes a dynamic bus repeater with a noise margin of about Vcc/2. The bus repeater splits the bus into front and rear segments. The front segment pre-charges while the rear segment evaluates, and vice versa. The dynamic bus repeater hides the pre-charge signal propagated from the front segment from the rear segment while the rear segment is evaluating.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 6, 2005
    Assignee: Intel Corporation
    Inventors: Mark Anders, Ram Krishnamurthy
  • Patent number: 6940312
    Abstract: An LSDL circuit is improved by having the data input function to control the pre-charging of the dynamic node. The clock signal no longer is coupled to the P channel FET used to pre-charge the dynamic node. Additionally an N channel FET (NFET) is added in parallel with the NFET coupled to the clock for evaluating the dynamic node. This NFET assures the dynamic node does not float when the data input is a logic one and the clock is a logic zero.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang