Master-slave Bistable Latch Patents (Class 327/202)
  • Patent number: 11948659
    Abstract: A mixed-signal in-memory computing sub-cell only requires 9 transistors for 1-bit multiplication. A computing cell is constructed from a plurality of such sub-cells that share a common computing capacitor and a common transistor. A MAC array for performing MAC operations, includes a plurality of the computing cells each activating the sub-cells therein in a time-multiplexed manner. A differential version of the MAC array provides improved computation error tolerance and an in-memory mixed-signal computing module for digitalizing parallel analog outputs of the MAC array and for performing other tasks in the digital domain. An ADC block in the computing module makes full use of capacitors in the MAC array, allowing the computing module to have a reduced area and suffer from fewer computational errors.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: April 2, 2024
    Assignee: Reexen Technology Co., Ltd.
    Inventors: Minhao Yang, Hongjie Liu, Alonso Morgado, Neil Webb
  • Patent number: 11916556
    Abstract: The disclosed method of operation for a data latch (DLATCH) circuit may include receiving, by an input component of the DLATCH circuit, an input signal. The method may additionally include storing, by a combinatorial gate of the DLATCH circuit, a state of the input signal, wherein the combinatorial gate corresponds to at least one of an AND-OR-inverted (AOI22) cell or an OR-AND-inverted (OAI22) cell. The method may further include providing an output signal, by an output component of the DLATCH circuit, wherein the output signal has the state stored by the combinatorial gate. Various other methods, systems, and circuits are also disclosed.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: February 27, 2024
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Ioan Cordos
  • Patent number: 11863190
    Abstract: Circuits, methods, and systems for generating data outputs based on sampled data inputs. One circuit includes a first clock-activated transistor electrically coupled to a first shared clock node, a second clock-activated transistor coupled to a second shared clock node, a third clock-activated transistor coupled to a third shared clock node, a plurality of flip-flops, a latch electrically coupled to the second shared clock node and the third shared clock node, and a first keeper sub-circuit electrically coupled to the third shared clock node and at least one of a first output or a second output of the latch. Each flip-flop of the plurality of flip-flops includes a latch electrically coupled to the second shared clock node and the third shared clock node and a first keeper sub-circuit electrically coupled to the third shared clock node and at least one of a first output or a second output of the latch.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: January 2, 2024
    Inventor: Steve Dao
  • Patent number: 11836278
    Abstract: Disclosed is a fault event detector configured to detect a fault injection event in an area of a chip that includes a vulnerable digital circuit. Such a fault event detector may include a bistable device that changes state at least partially in response to a presence of a fault injection event in a surrounding area of the fault event detector. Such a fault event detector may be arranged relative to a vulnerable digital circuit such that the vulnerable digital circuit is substantially located within the surrounding area of the first fault event detector.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: December 5, 2023
    Assignee: Microchip Technology Incorporated
    Inventor: Michael Klein
  • Patent number: 11797745
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a first conductive pattern disposed within a first region from a top view perspective and extending along a first direction, a first phase shift circuit disposed within the first region, a first transmission circuit disposed within a second region from the top view perspective, and a first gate conductor extending from the first region to the second region along a second direction perpendicular to the first direction. The first phase shift circuit and the first transmission circuit are electrically connected with the first conductive pattern through the first gate conductor.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Wei Peng, Ching-Yu Huang, Jiann-Tyng Tzeng
  • Patent number: 11757434
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Patent number: 11726141
    Abstract: A flip-flop circuit includes a clock generator configured to generate first and second clock signals having different phases relative to each other, and a master-slave latch circuit including master and slave latches. The master latch includes a scan path configured to output a scan path signal in response to a scan enable signal and a scan input signal, and a data path configured to output a first latch signal in response to a data signal and the scan path signal. A feedback path is provided, which includes a tri-state inverter responsive to the first and second clock signals. The tri-state inverter has an input terminal connected to an output terminal of the data path and an output terminal connected to a node of the scan path.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: August 15, 2023
    Inventor: Byoung Gon Kang
  • Patent number: 11705893
    Abstract: A latch circuit includes a latch module, a set control module, a reset control module and a clock module, wherein the latch module is employed for latching data input by a data module, the set control module is employed for controlling the latch module to output a high-level signal, the reset control module is employed for controlling the latch module to output a low-level signal, and the clock module is employed for providing a readout clock signal to the latch module.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: July 18, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: KeJun Wang
  • Patent number: 11621706
    Abstract: A complementary clock gate, includes a NOR gate configured to receive a data signal D and a signal QI; a first P-type transistor gated by an output value of the NOR gate; and a NAND gate, connected in series to the first P-type transistor, configured to receive a clock signal CK and an inverted data signal DN, and output an inverted clock signal CKB.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: April 4, 2023
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Yoon Myung Lee, Gi Cheol Shin
  • Patent number: 11575367
    Abstract: A flip-flop circuit includes first and second latches. The first latch comprises a first inverting logic element and a second inverting logic element. The first inverting logic element has a first logic threshold voltage. The second inverting logic element is connected in antiparallel to the first inverting logic element and has a second logic threshold voltage. The first and second logic threshold voltages are set with respect to one half of a power supply voltage. The second latch comprises a third inverting logic element and a fourth inverting logic element. The third inverting logic element is connected to the first latch and has a third logic threshold voltage. The fourth inverting logic element is connected in antiparallel to the third inverting logic element and has a fourth logic threshold voltage. The third and fourth logic threshold voltages are set with respect to one half of the power supply voltage.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 7, 2023
    Assignee: Kioxia Corporation
    Inventor: Koji Kohara
  • Patent number: 11552622
    Abstract: A master-slave flip-flop includes a first latch, a second latch and a tristate driver. The first latch has a combined input/output that is coupled with a common node, a pm output, and an nm output. The tristate driver has pm and nm inputs coupled with the pm and nm outputs of the first latch, and a tristate output coupled with the common node. A pm input signal prevents the tristate driver from pulling the common node high, and an nm input signal prevents the tristate driver from pulling the common node low. The second latch is directly coupled with the common node. The first latch generates an nm signal and a pm signal in response to a signal on the first latch clk input and a state of the common node, wherein the pm signal and the nm signal have opposite polarities when the signal on the first latch clk input has a first value, and equal polarities when the signal on the first latch clk input has a second value.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: January 10, 2023
    Assignee: SambaNova Systems, Inc.
    Inventors: Ha Pham, Jinuk Shin, Yukio Otaguro
  • Patent number: 11545231
    Abstract: Methods and systems include memory devices having multiple memory cells configured to store data. The memory devices also include control circuitry including retry circuitry. The retry circuitry is configured to receive a read command having a target address. The retry circuitry is also configured to determine that the target address of the data stored in the memory cells is to be reused from a previous read operation. Additionally, the retry circuitry is configured to cause reading of the data from a sense amplifier latch from the previous read operation by reusing the target address. Specifically, reusing the target address includes bypassing rereading the data into the sense amplifier latch from the memory cells for a current read operation.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 3, 2023
    Assignee: Micron Technology, Inc.
    Inventor: John Christopher M. Sancon
  • Patent number: 11496120
    Abstract: A flip-flop with glitch protection is disclosed. The flip-flop includes a differential amplifier circuit that generates amplifier output signals based on an input data and clock signals and precharges a true data node when a clock signal is inactive. A latch circuit is coupled to the differential amplifier and includes a latch node. Responsive to a current value of the input data signal having a first logic state, the latch node is set at a logic value equivalent to the precharged value during an active phase of the clock signal. Responsive to the current value of the input data signal having a second logic state complementary to the first, during the active phase of the clock signal, the latch circuit causes the latch node to be set to a logic value complementary to the precharged value, using the clock signal and the current value of the input data signal.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: November 8, 2022
    Assignee: Apple Inc.
    Inventors: Qi Ye, Ajay Bhatia, Vivekanandan Venugopal
  • Patent number: 11456727
    Abstract: Various implementations described herein are directed to a device having multiple stages. The device may have a first stage that provides a data path for an input data signal. The first stage may receive the input data signal, receive feedback signals, and provide an intermediate data signal based on the input data signal and/or the feedback signals. The device may have a second stage that provides set/reset signals based on the intermediate data signal and/or a clock signal. The second stage may receive the intermediate data signal, receive the clock signal, and generate the set/reset signals based on the intermediate data signal and the clock signal. The second stage may also provide the set/reset signals as the feedback signals to the first stage.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: September 27, 2022
    Assignee: Arm Limited
    Inventor: Anil Kumar Baratam
  • Patent number: 11423965
    Abstract: A clocked driver circuit can include a level shifter latch and a driver. The level shifter latch can be configured to receive an input signal upon a clock signal and generate a level shifted output signal. The driver can be configured to receive the level shifted output signal from the level shifter and drive the output signal on a line. The signal levels of the output signal can be greater than the signal level of the input signal.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: August 23, 2022
    Assignee: Integrated Silicon Solution, (Cayman) Inc.
    Inventors: Neal Berger, Susmita Karmakar, Benjamin Louie
  • Patent number: 11422187
    Abstract: A scan flip-flop includes a selection circuit, a primary latch, a secondary latch, and a data retention latch. The selection circuit selects and outputs one of functional data, first reference data, scan data, and first control data as second reference data. The primary latch receives the second reference data and outputs third reference data, whereas the secondary latch receives the third reference data and outputs second control data. The second control data is then provided to a subsequent scan flip-flop of a scan chain. The data retention latch receives one of the third reference data and the second control data, and outputs and provides the first reference data to the selection circuit. The first reference data corresponds to functional data retained in the scan flip-flop during a structural testing mode associated with the scan chain.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: August 23, 2022
    Assignee: NXP B.V.
    Inventor: Shikhar Makkar
  • Patent number: 11398814
    Abstract: A new family of shared clock single-edge triggered flip-flops that reduces a number of internal clock devices from 8 to 6 devices to reduce clock power. The static pass-gate master-slave flip-flop has no performance penalty compared to the flip-flops with 8 clock devices thus enabling significant power reduction. The flip-flop intelligently maintains the same polarity between the master and slave stages which enables the sharing of the master tristate and slave state feedback clock devices without risk of charge sharing across all combinations of clock and data toggling. Because of this, the state of the flip-flop remains undisturbed, and is robust across charge sharing noise. A multi-bit time borrowing internal stitched flip-flop is also described, which enables internal stitching of scan in a high performance time-borrowing flip-flop without incurring increase in layout area.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: July 26, 2022
    Assignee: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Satish Damaraju, Ram Krishnamurthy
  • Patent number: 11362648
    Abstract: A pre-discharging based flip-flop having a negative setup time can include a flip-flop with an inverted output QN. The flip-flop includes a master section and a slave section. The master section latches a data input or a scan input signal based on a scan enable signal, and the slave section retains a previous value of the inverted output QN when a clock signal is at a low logic level. The master section retains a previously latched value of the data input or the scan input signal and the slave section fetches the latched value of the master section and provides a new inverted output QN when the clock signal is at a high logic level. Further, the master section includes sub-sections that are operated using a negative clock signal. An output of the master section is discharged to zero for a half of a phase of the clock cycle.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: June 14, 2022
    Inventors: Aroma Bhat, Abdur Rakheeb, Arani Roy, Mitesh Goyal, Abhishek Ghosh
  • Patent number: 11303267
    Abstract: A flip-flop is provided. The flip-flop includes: a first inverter including an input terminal to receive data signal and an output terminal coupled to an input terminal of the master latch, a second inverter, a master latch including an output terminal coupled to an input terminal of a slave latch, and the slave latch including an output terminal coupled to an input terminal of the second inverter. An output terminal of the second inverter is configured as an output terminal of the flip-flop. A duration of the first clock signal inputted to the master latch is greater than a duration of the first clock signal inputted to the slave latch. A duration of the second clock signal inputted to the master latch is greater than a duration of the second clock signal inputted to the slave latch.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 12, 2022
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Yan Fei Cai, Kai Hua Hou, Yuan Chai, Jian Chen, Jun Wang
  • Patent number: 11296681
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 5, 2022
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Patent number: 11282957
    Abstract: Integrated circuit devices are provided. The devices may include a substrate including a first region, a second region and a boundary region between the first and second regions. The first and second regions may be spaced apart from each other in a first horizontal direction. The devices may also include a first latch on the first region, a second latch on the second region, and a conductive layer extending in the first horizontal direction and crossing over the boundary region. The first latch may include a first vertical field effect transistor (VFET), a second VFET, a third VFET, and a fourth VFET. The second latch may include a fifth VFET, a sixth VFET, a seventh VFET, and an eighth VFET. The first and seventh VFETs may be arranged along the first horizontal direction. Portions of the conductive layer may include gate electrodes of the first and seventh VFETs, respectively.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: March 22, 2022
    Inventor: Jung Ho Do
  • Patent number: 11264974
    Abstract: A processing circuit includes an input circuit and a follow-up circuit. The input circuit includes a first transistor, a second transistor, and a delay element. The first transistor has a control terminal, a first connection terminal, and a second connection terminal. The control terminal of the first transistor is arranged to receive a data signal. A first connection terminal of the second transistor is coupled to the second connection terminal of the first transistor, and a control terminal of the second transistor is arranged to receive a first non-data signal. The delay element is coupled between the control terminal and the second connection terminal of the first transistor. A data input is received at an input node of the follow-up circuit, and the input node of the follow-up circuit is coupled to the second connection terminal of the second transistor.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: March 1, 2022
    Assignee: MEDIATEK INC.
    Inventor: Jen-Hang Yang
  • Patent number: 11264078
    Abstract: Memory devices receive a data signal and an accompanying data strobing signal, which informs the device that data is ready for latching. The data strobing signal enables capturing the data while the data signal transitions from a logic high to a logic low or vice versa, resulting in an indeterminate output (e.g., between 0 and 1). The indeterminate value may cause metastability in memory operations using the indeterminate output. To prevent or reduce metastability, a cascaded timing arbiter latch includes cascaded alternating NAND timing arbiters and NOR timing arbiters. In some embodiments, these logic gates are connected to transistors above and below the cascaded timing arbiters. The cascaded timing arbiters and/or transistors provide amplification on a feedback path of the latch. In other embodiments, the cascaded timing arbiters are isolated by inverters and are not connected to transistors. This embodiment reduces capacitive loading on nodes of the internal feedback path.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Daniel B. Penney, William C. Waldrop
  • Patent number: 11251781
    Abstract: The invention provides a dynamic D flip-flop, and a data operation unit, a chip, a hash board and a computing device using the same. The dynamic D flip-flop comprises: an input terminal, an output terminal and at least one clock signal terminal; a first latch unit for transmitting data of the input terminal and latching the data under control of a clock signal; a second latch unit for latching data of the output terminal and inversely transmitting the data latched by the first latch unit under control of a clock signal; and an output driving unit for inverting and outputting the data received from the second latch unit; wherein the second latch unit outputs in high level, low level and high impedance states by means of a single element under control of a clock signal. Therefore, the invention can effectively reduce chip area, power consumption, and logic delay.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: February 15, 2022
    Assignee: CANAAN CREATIVE CO., LTD.
    Inventors: Jieyao Liu, Nangeng Zhang, Jingjie Wu, Shenghou Ma
  • Patent number: 11244710
    Abstract: Design and operation of a processing device is configurable to optimize wake-up time and peak power cost during restoration of a machine state from non-volatile storage. The processing device includes a plurality of non-volatile logic element arrays configured to store a machine state represented by a plurality of volatile storage elements of the processing device. A stored machine state is read out from the plurality of non-volatile logic element arrays to the plurality of volatile storage elements. During manufacturing, a number of rows and a number of bits per row in non-volatile logic element arrays are based on a target wake up time and a peak power cost. In another approach, writing data to or reading data of the plurality of non-volatile arrays can be done in parallel, sequentially, or in any combination to optimize operation characteristics.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: February 8, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Craig Bartling, Sudhanshu Khanna
  • Patent number: 11239830
    Abstract: A master-slave D flip-flop is disclosed having gates configured to supply two second intermediate signals as a function of first intermediate signals and a clock signal, and a slave circuit connected to a transfer circuit to form at least one output signal of the flip-flop from the second intermediate signals. The slave circuit is configured, when the second intermediate signals have, after a preceding pair of states, a predetermined pair of states, to maintain the at least one output signal as given by the preceding pair of states. The transfer circuit has a control input and is configured to generate the second intermediate signals to have the predetermined pair of states in response to a predetermined control signal state at the control input.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: February 1, 2022
    Assignee: Infineon Technologies AG
    Inventors: Thomas Kuenemund, Anton Huber
  • Patent number: 11201623
    Abstract: Examples generally relate a programmable device having a unified programmable computational memory (PCM) and configuration network. In an example, a programmable device includes a die that includes a PCM integrated circuit having a PCM tile. The PCM tile includes a configuration memory (CM) and combinational logic (CL). The CM is capable of storing configuration data received via a node in the PCM tile. The CL is configured to receive internal control signal(s) and first and second input signals and to output a result signal. The CL is capable of outputting the result signal resulting from a logic function that is responsive to the internal control signal(s) and a signal of a group of signals including the first and second input signals. The CL is configured to receive the first input signal via the node in the PCM tile.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: December 14, 2021
    Assignee: XILINX, INC.
    Inventor: Rafael C. Camarota
  • Patent number: 11177795
    Abstract: A master latch includes a latch input node and a latch output node, a first inverter with an input and an output, the input coupled to the latch input node and the output coupled to the latch output node, and a second inverter with an input and an output, the input coupled to the latch output node and the output coupled to the latch input node. The master latch further includes a first pull-up device connected between a source voltage and the latch input node, the first pull-up device configured to pull the latch input node up towards the source voltage when the latch output node is low, and a first pull-down device connected between the latch input node and a ground voltage, the first pull-down device configured to pull the latch input node towards the ground voltage when the latch output node is high.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: November 16, 2021
    Assignee: XILINX, INC.
    Inventors: Jun Liu, Bruce Young
  • Patent number: 11152943
    Abstract: A dual-edge aware clock divider configured to generate an output clock based on the input clock and a ratio of an integer M over an integer N is disclosed herein. The frequency of the output clock is based on a frequency of the input clock multiplied by the ratio (M/N), wherein M may be set to a range up to N. The output clock includes M pulses within a sequence time window having a length of N periods of the input clock. The output clock includes one or more rising edges that are substantially time aligned with one or more rising edges and one or more falling edges of the input clock, respectively. The dual-edge aware clock divider is configured to generate the output clock based on inverted and non-inverted portions of the input clock. A hybrid clock divider including the dual-edge and single-edge aware techniques is provided.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: October 19, 2021
    Assignee: QUALCOMM INCORPORATED
    Inventors: Kevin Bowles, Vijay Kiran Kalyanam, Sindhuja Sundararajan
  • Patent number: 11086546
    Abstract: Systems, methods, and software are disclosed herein that enhance data storage operations. In various implementations, a preserve write process identifies one or more regions of the solid-state memory components that qualify to be relocated prior to a data storage device entering a data retention state. Prior to the data retention state, the process changes one or more values, of one or more write settings, to one or more new values. With the write settings changed to the one or more new values, the process relocates data from the one or more regions to one or more new regions. After having relocated the data, the process returns the one or more new values, of the one or more write settings, to one or more earlier values.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: August 10, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Vamsi Sata, Dillip Kumar Dash
  • Patent number: 11088678
    Abstract: Examples described herein generally relate to devices that include a pulsed flip-flop capable of being implemented across multiple voltage domains. In an example, a device includes a pulsed flip-flop. The pulsed flip-flop includes a master circuit and a slave circuit sequentially connected to the master circuit. The master circuit includes a pre-charge input circuit and a first latch. A first node is connected between the pre-charge input circuit and the first latch. The slave circuit includes a resolving circuit and a second latch. The first node is connected to an input node of the resolving circuit. A second node is connected between the resolving circuit and the second latch. The resolving circuit is configured to selectively (i) pull up or pull down a voltage of the second node and (ii) be disabled.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 10, 2021
    Assignee: XILINX, INC.
    Inventors: Kumar Rahul, Mohammad Anees, Mahendrakumar Gunasekaran
  • Patent number: 11086802
    Abstract: A technique is provided for routing access requests within an interconnect. An apparatus provides a plurality of requester elements for issuing access requests, and a slave element to be accessed in response to the access requests. An interconnect is used to couple the plurality of requester elements with the slave element, and provides an intermediate element that acts as a point of serialisation to order the access requests issued by the plurality of requester elements via the intermediate element. Communication channels are provided within the interconnect to support communication between each of the requester elements and the intermediate element, and between the intermediate element and the slave element.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: August 10, 2021
    Assignee: Arm Limited
    Inventors: Jamshed Jalal, Tushar P. Ringe, Mark David Werkheiser, Gurunath Ramagiri
  • Patent number: 11018653
    Abstract: Systems, apparatuses, and methods for implementing low voltage clock swing sequential circuits are described. An input signal is coupled to the gates of a first P-type transistor and a first N-type transistor of a first transistor stack. A low voltage swing clock signal is coupled to the gate of a second N-type transistor of the first transistor stack. An inverse of the input signal is coupled to the gates of a second P-type transistor and a third N-type transistor of a second transistor stack. The low-swing clock is coupled to the gate of a fourth N-type transistor of the second transistor stack. A first end of one or more enabling P-Type transistors with gates coupled to the low-swing clock is coupled to the first P-type transistor's drain, and a second end of the one or more enabling P-Type transistors is coupled to the second P-type transistor's drain.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: May 25, 2021
    Assignee: Apple Inc.
    Inventors: Vivekanandan Venugopal, Ajay Bhatia, Qi Ye
  • Patent number: 10979034
    Abstract: A circuit includes a master latch circuit and a slave latch circuit. The master latch circuit is configured to receive an input data signal associated with an input data voltage domain and generate a first output data signal associated with an output data voltage domain different from the input data voltage domain. The slave latch circuit is configured to receive, from the master latch circuit, the first output data signal and generate a second output data associated with the output data voltage domain.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 13, 2021
    Assignee: XILINX, INC.
    Inventors: Kumar Rahul, Santosh Yachareni, Jitendra Kumar Yadav, Md Nadeem Iqbal, Teja Masina, Sourabh Swarnkar, Suresh Babu Kotha
  • Patent number: 10971237
    Abstract: A semiconductor device has stored therein a plurality of bits of fixed data. The semiconductor device includes a plurality of memory elements that correspond, respectively, to the plurality of bits of the fixed data, and that acquire, store, and output the value of each bit received at an input terminal of each of the memory elements according to a timing signal. An initialization control unit feeds, to the plurality of memory elements, an initialization signal upon receipt of a fixed data setting signal, each of the plurality of memory elements being initialized to a state of storing a corresponding value represented by a bit of the fixed data according to the initialization signal.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: April 6, 2021
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Takashi Yamada
  • Patent number: 10950296
    Abstract: A latch formed from a memory cell includes a clock input terminal configured to receive a clock signal, complementary first and second data terminals, and a latch circuit. The latch circuit has first and second inverters. The first inverter has an input terminal coupled to the first data terminal, and the second inverter has an input terminal coupled to the second data terminal. A first pass gate transistor is coupled between an output terminal of the second inverter and the first data terminal. A second pass gate transistor is coupled between an output terminal of the first inverter and the second data terminal. The first and second pass gate transistors each have a gate terminal coupled to the clock input terminal. The input terminal of the first inverter is not directly connected to the output terminal of the second inverter, and the input terminal of the second inverter is not directly connected to the output terminal of the first inverter.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hua-Hsin Yu, Cheng Hung Lee, Hung-Jen Liao, Hau-Tai Shieh
  • Patent number: 10891780
    Abstract: Instructions indicative of changing a view of a virtual object may be received by a device. At least a portion of the virtual object may be viewable from a viewpoint that is at a given distance from a surface of the virtual object. The device may cause a change of the view along a rotational path around the virtual object in response to the receipt of the instructions based on the given distance being greater than a threshold distance. The device may cause a change of the view along a translational path indicative of a shape of the surface of the virtual object in response to the receipt of the instructions based on the given distance being less than the threshold distance.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: January 12, 2021
    Assignee: Google LLC
    Inventors: James Joseph Kuffner, James Robert Bruce, Thor Lewis, Sumit Jain
  • Patent number: 10868524
    Abstract: A semiconductor circuit and a semiconductor circuit layout system are provided. The semiconductor circuit includes a clock inverter which inverts a clock signal and outputs an inverted clock signal where the clock inverter is laid out between a second master latch main circuit configured to latch signals of a first node and a fourth node based on the clock signal and the inverted clock signal, respectively, and a second slave latch main circuit configured to latch signals of a second node and a fifth node based on the clock signal and the inverted clock signal, respectively.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: December 15, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young O Lee, Doo Seok Yoon, Min Su Kim
  • Patent number: 10855257
    Abstract: An integrated circuit includes a pulse generator having at least one delay circuit with an input that receives a clock signal and an output that provides a delayed clock pulse. The delayed clock pulse has a width proportional to an amount of time required to maintain a magnitude of the clock signal. A pulse latch circuit includes a clock input coupled to receive the delayed clock pulse, a data input coupled to receive a data value, and a data output, wherein the pulse latch circuit outputs and holds the data value at the data output each time the delayed clock pulse is provided at the clock input, and the pulse latch circuit operates on a continuous voltage source that supplies power during power on and power off modes.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 1, 2020
    Assignee: NXP USA, Inc.
    Inventors: Anis Mahmoud Jarrar, David Russell Tipple, Viacheslav Sergeyevich Kalashnikov, Mikhail Yurievich Semenov
  • Patent number: 10819343
    Abstract: Described is soft error tolerant flip-flop which comprises hardened sequential elements to reduce latch soft error rate. The flip-flop may include a master latch; and a slave latch coupled to the master latch, wherein only one of the master or slave latch of the flip-flop comprises hardened latch circuitry. For example, only the master latch comprises the hardened latch circuitry.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventor: Arkady Bramnik
  • Patent number: 10812055
    Abstract: Embodiments herein disclose a flip flop comprising at least one of a slave circuit and a retention circuit receiving an input from a master circuit. The output circuit receives an input (X1) from at least one of the slave circuit and the retention circuit. A first node and a second node in the retention circuit receive a power supply from a global power supply through transistors, when a retention is 0 in the retention circuit, so that the slave circuit retains a current state of the X1 and X2 irrespective of a clock input in the slave circuit, and the output circuit receives the stored state of the retention circuit, when a local power supply is turned ON.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 20, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Aroma Bhat, Hareharan Nagarajan, Rahul Kataria, Abhishek Ghosh
  • Patent number: 10742199
    Abstract: A semiconductor device that retains a state of a data storage element during a power reduction mode including supply rails and voltages, and a storage latch and a retention latch both powered by retention supply voltage that remains energized during a power reduction mode. The storage latch and the retention latch are both coupled to a retention node that is toggled between first and second states before entering the power reduction mode. The toggling causes the storage latch to latch the state of the data storage element during the normal mode, and the retention node enables the storage element to hold the state during the power reduction mode. The retention latch includes a retention transistor and a retention inverter powered by the retention supply voltage. The retention inverter keeps the retention transistor turned on and the retention transistor holds the state of the retention node during the power reduction mode.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 11, 2020
    Assignee: Silicon Laboratories Inc.
    Inventors: Thomas S. David, Wasim Quddus
  • Patent number: 10715119
    Abstract: Aspects for a flip-flop circuit are described herein. As an example, the aspects may include a passgate, a passgate inverter, a leakage compensation unit, and an inverter. The passgate may be coupled between a flip-flop data input terminal and a first node. The passgate inverter and the inverter may be sequentially connected between the first node and a flip-flop data output terminal. The leakage compensation unit may be connected between the first node and the flip-flop data output terminal parallel to the passgate inverter and the inverter.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 14, 2020
    Assignee: Little Dragon IP Holding LLC
    Inventor: Mingming Mao
  • Patent number: 10659038
    Abstract: A method of powering up a circuit includes powering up a latch circuit in a known latch state by applying a first power supply voltage differential of a first voltage domain across power supply terminals of the latch circuit. A current diode inhibits current diode in a current path between a latch node of the latch circuit and a power supply terminal when the power supply voltage differential is below a threshold voltage during the powering up in which the inhibiting prevents the latch circuit from switching from the known latch state during the powering up.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: May 19, 2020
    Assignee: NXP USA, Inc.
    Inventors: Robert Matthew Mertens, James Robert Feddeler, Stefano Pietri
  • Patent number: 10560100
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for arranging configurable logic circuits such that the configurable logic circuit may be configured to form one or more of several logic circuits by coupling a combination of nodes included in the logic circuit. Configuring the configurable logic circuit may include modification of a single wiring layer.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 11, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Ken Ota
  • Patent number: 10530346
    Abstract: An aspect of the disclosure includes a comparator circuit comprising: a master latch comprising a first amplifier circuit and a first latch circuit coupled to an output of the first amplifier circuit; a slave latch comprising a second amplifier circuit having an input coupled to the output of the first amplifier circuit, and a second latch circuit coupled to an output of the second amplifier circuit; and a hysteresis compensation circuit coupled to the output of the second amplifier circuit and configured to cause a first predetermined signal level shift of an output signal of the first amplifier circuit in response to a high signal level at the output of the second amplifier circuit, and configured to cause a second predetermined signal level shift of an output signal of the first amplifier circuit in response to a low signal level at the output of the second amplifier circuit.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 7, 2020
    Assignees: IMEC VZW, VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Oscar Elisio Mattia, Davide Guermandi
  • Patent number: 10511293
    Abstract: A semiconductor device may include a clock driver including a first gate line, a second gate line, a third gate line and a fourth gate line each extending in a first direction, the first gate line and the second gate line each configured to receive a clock signal, and the third gate line and the fourth gate line each configured to receive an inverted clock signal; a master latch circuit overlapping the first gate line and the third gate line such that the master latch circuit receive the clock signal from the first gate line and receive the inverted clock signal from the third gate line; and a slave latch circuit overlapping the second gate line and the fourth gate line such that the slave latch circuit receives the clock signal from the second gate line, and receives the inverted clock signal from the fourth gate line.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 17, 2019
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Jae-Woo Seo, Youngsoo Shin, Jinwook Jung
  • Patent number: 10483956
    Abstract: During a period in which a first signal S1 and second signal S2 are both set to a first level, an initializing circuit initializes a capacitor voltage. Multiple circuit units are coupled in parallel between an intermediate line and a second line. An output circuit generates an output signal SOUT that changes level when the capacitor voltage crosses a predetermined threshold value VTH. Each circuit unit includes a resistor Rg and first path arranged in series between the intermediate and second lines and a second path parallel to the first path. The first path is configured to turn on when the first signal S1 is the second level and the corresponding bit of an input code is a first value. The second path is configured to turn on when the second signal S2 is the second level and the corresponding bit of the input code is a second value.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 19, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Masanobu Tsuji
  • Patent number: 10469062
    Abstract: Circuits and a corresponding method are used to eliminate or greatly reduce SET induced glitch propagation in a radiation hardened integrated circuit. A clock distribution circuit and an integrated circuit portioning can be radiation hardened using one or two latch circuits interspersed through the integrated circuit, each having two or four latch stages.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: November 5, 2019
    Assignee: Aeroflex Colorado Springs Inc.
    Inventor: Viorel Olariu
  • Patent number: 10446070
    Abstract: Provided are a display device, a scan driver, and a method of manufacturing the same. A scan driver includes: a level shifter configured to output a power and a signal, and a scan signal generating circuit configured to generate a scan signal based on the power and the signal supplied from the level shifter, the scan signal generating circuit including a buffer configured to transmit a clock signal to a stage of a shift register, the buffer including two inverters, one of the two inverters being included in a multi-buffer.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: October 15, 2019
    Assignees: LG Display Co., Ltd., Ewha University—Industry Collaboration Foundation
    Inventors: Jiah Kim, Juyoung Lee, Byeongseong So, Seungjun Lee