Field-effect Transistor Patents (Class 327/427)
  • Patent number: 8669793
    Abstract: A driving circuit has output terminal connected to an ultrasonic transducer and provides an output voltage. The driving circuit includes an output transistor coupled between a voltage reference and the output terminal, a high voltage comparator coupled to said output terminal and to a threshold voltage reference), a start-up circuit controlled by a setting signal; and a switching ON/OFF circuit having an input coupled to the start-up circuit an input coupled to the comparator, and an output coupled to a control terminal of the output transistor. The start-up circuit provides an ON signal to the switching on/off circuit and the comparator provides an OFF signal to the switching on/off circuit which switches off the output transistor. The high voltage comparator generates the switching off signal in response to the output voltage reaching a desired supply voltage value which depends on the value of the first threshold voltage reference.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 11, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giulio Ricotti, Sandro Rossi
  • Publication number: 20140062577
    Abstract: A radio frequency (RF) switch includes a common port, a first port, and a second port, a first semiconductor switching element disposed in a first RF pathway between the common port and the first port, a second semiconductor switching element disposed in a second RF pathway between the common port and the second port, a first pair of direct current (DC) blocking capacitors disposed to isolate the first semiconductor switching element in the first RF pathway, and a second pair of DC blocking capacitors disposed to isolate the second semiconductor switching element in the second RF pathway. The respective pairs of DC blocking capacitors allow for different bias voltages to be applied to the respective RF pathways. A charge-discharge circuit may also be employed to decrease transient switching time of the RF switch.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: RICHWAVE TECHNOLOGY CORP.
    Inventor: Chen Chih-Sheng
  • Publication number: 20140062578
    Abstract: A semiconductor structure comprising a substrate, an active device, a field oxide layer and a poly-silicon resistor is disclosed. The active device is formed in a surface area of the substrate. The active device has a first doped area, a second doped area and a third doped area. The second doped area is disposed on the first doped area. The first doped area is between the second and the third doped areas. The first doped area has a first type conductivity. The third doped area has a second type conductivity. The first and the second type conductivities are different. The field oxide layer is disposed on a part of the third doped area. The poly-silicon resistor is disposed on the field oxide layer and is electrically connected to the third doped area.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Wing-Chor Chan, Li-Fan Chen
  • Publication number: 20140055191
    Abstract: Disclosed is a low power RF switch, and more particularly, disclosed is a low power RF switch which does not use a negative voltage when being driven. The low power RF switch includes: a switch unit which including a transistor which receives a high (H) control signal or a low (L) control signal and switches a signal flowing from one end to the other end thereof; a first voltage maintenance unit maintaining a constant voltage to one end of the transistor; and a second voltage maintenance unit maintaining a constant voltage to the other end of the transistor.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: HiDeep Inc
    Inventors: Bonkee Kim, Youngho Cho, Donggu Im, Bumkyum Kim
  • Patent number: 8659345
    Abstract: A switch level circuit (110) with dead time self-adapting control, which minimizes the switching loss in a switching power supply converter with synchronous rectification by changing a dead time between a high-side control transistor (10) and a low-side synchronous rectifying transistor (11). The switch level circuit (110) includes the high-side control transistor (10) and the low-side synchronous rectifying transistor (11) which are controlled to be on and off by external control signals, and a waveform with a given duty cycle is outputted at a node (LX) between the two transistors. The switch level circuit (110) also includes a control module for adjusting the dead time.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 25, 2014
    Assignee: Southeast University
    Inventors: Shen Xu, Weifeng Sun, Miao Yang, Sichao Liu, Youshan Jin, Shengli Lu, Longxing Shi
  • Publication number: 20140049312
    Abstract: A radio frequency (RF) switch including a common port, a first port, a second port, a first RF pathway extending between the common port and the first port, a second RF pathway extending between the common port and the second port, a first shunt path extending between the first RF pathway and ground, a second shunt path extending between the second RF pathway and ground, and a respective semiconductor switching element disposed in each of the first RF pathway, the second RF pathway, the first shunt path and the second shunt path configured to control whether the given RF pathway or shunt path is enabled or disabled at a given time, wherein a selected combination of conductivity types and control signals for the respective semiconductor switching elements are employed.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: RICHWAVE TECHNOLOGY CORP.
    Inventor: Chen Chih-Sheng
  • Publication number: 20140049311
    Abstract: Embodiments provide a switching device including one or more field-effect transistors (FETs) and bias circuitry. The one or more FETs may transition between an off state and an on state to facilitate switching of a transmission signal. The one or more FETs may include a drain terminal, a source terminal, a gate terminal, and a body. The biasing circuitry may bias the drain terminal and the source terminal to a first DC voltage in the on state and a second DC voltage in the off state. The first and second DC voltages may be non-negative. The biasing circuitry may be further configured to bias the gate terminal to the first DC voltage in the off state and the second DC voltage in the on state.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventors: Xiaomin Yang, James P. Furino, JR.
  • Patent number: 8653881
    Abstract: A circuit includes a high-side switch, a low-side switch, a diode, a transformer having a primary winding and a secondary windowing, and an input connected to a first terminal of the primary winding. The high-side switch has a source, a gate connected to a drive source and a drain connected to a second terminal of the primary winding. The low-side switch has a source connected to ground, a gate connected to a drive source and a drain connected to the source of the high-side switch. The diode is connected between the gate of the high-side switch and the first terminal of the primary winding. The diode forms a current loop with the primary winding and the high-side switch to circulate current when low side switch is off until the high side switch turns off.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 18, 2014
    Assignee: Infineon Technologies Austria AG
    Inventor: Mladen Ivankovic
  • Patent number: 8653880
    Abstract: A switch circuit includes: first, second, and third input-output terminals; a first switching element connected between the first and second input-output terminals; a second switching element connected between the third input-output terminal and a grounding point; a third switching element connected between the first and third input-output terminals; a fourth switching element connected between the second input-output terminal and the grounding point; a first control voltage applying terminal connected to control terminals of the first and second switching elements; a second control voltage applying terminal connected to control terminals of the third and fourth switching elements; first and second resistors connected between the control terminals of the first and second switching elements and the first control voltage applying terminal, respectively; and first and second diodes connected in parallel with the first and second resistors, respectively, and having cathodes connected to the first control voltage
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshihiro Tsukahara
  • Patent number: 8648644
    Abstract: The switch control device controls a switching operation of a power switch. The switch control device includes an auxiliary power device. The auxiliary power device includes a parasitic capacitor, and charges the parasitic capacitor by receiving a power voltage to generate an auxiliary power voltage. The switch control device includes a control pulse generator driven by the auxiliary power voltage and generating a set pulse and a reset pulse according to an input signal that is input for controlling the switching operation of the power switch. The switch control device generates a gate signal that turns on the power switch by being synchronized with the set pulse and generates a gate signal that turns off the power switch by being synchronized with the reset pulse.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 11, 2014
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Kunhee Cho, Sung-Yun Park, Donghwan Kim
  • Patent number: 8648642
    Abstract: A switch for an analog signal may include a main MOS transistor whose source forms an input terminal of the switch and whose drain forms an output terminal of the switch, a capacitor having a first terminal permanently connected to the source of the main transistor, a circuit for charging the capacitor, and a first auxiliary transistor configured to connect the second terminal of the capacitor to the gate of the main transistor in response to a control signal. The charge circuit may include a resistor permanently connecting the second terminal of the capacitor to a power supply line. The capacitor and the resistor may form a high-pass filter having a cutoff frequency lower than the frequency of the analog signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: February 11, 2014
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Hugo Gicquel, Beatrice Lafiandra, Christophe Forel
  • Patent number: 8643423
    Abstract: A communication circuit facilitating communication between a first equipment and a second equipment including a conversion circuit, an input port, an output port, and a communication port is disclosed. The conversion circuit converts an input signal to a first intermediate signal, and converts a second intermediate signal to an output signal. The input port inputs the input signal to the first conversion circuit. The output port outputs the output signal to the control unit. The communication port inputs the second intermediate signal to the conversion circuit, and outputs the first intermediate signal to the second equipment. A voltage of the first intermediate signal is determined based on a voltage of a power source if the first intermediate signal is logic high, and a voltage of the second intermediate signal is determined based on the voltage of the power source if the second intermediate signal is logic high.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 4, 2014
    Assignee: O2Micro Inc.
    Inventors: Wei Zhang, Jiulian Dai, Wenhua Cui
  • Patent number: 8643427
    Abstract: A switching device includes: a first switching circuit, having a control node coupled to a first control signal, and arranged to selectively couple a signal node to a first amplifying circuit according to the first control signal; and a first control circuit, having a first control node and a second control node coupled to the control node of the first switching circuit and the signal node, respectively, wherein when the first switching circuit is controlled to electrically disconnect the signal node from the first amplifying circuit and a voltage level of the signal node reaches a first predetermined voltage level, the first control circuit is arranged to make the control node of the first switching circuit electrically connected to the signal node.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: February 4, 2014
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Ying-Chow Tan, Osama K A Shana'a
  • Publication number: 20140028375
    Abstract: A semiconductor device includes a high breakdown voltage, high Gm first transistor and a low breakdown voltage, low Gm second transistor connected in series between first and second nodes, and a low breakdown voltage, high Gm third transistor connected to the second transistor in parallel. When the second transistor is turned on, the first transistor turns on, and furthermore, when the third transistor is turned on, an electrically conducting state is established between the first and second nodes. The second, low breakdown voltage transistor is turned on to turn on the first, high breakdown voltage transistor, and a turn-on time with only limited variation can be achieved.
    Type: Application
    Filed: April 5, 2012
    Publication date: January 30, 2014
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Kenji Komiya, Shuji Wakaiki, Kohtaroh Kataoka, Masaru Nomura, Yoshiji Ohta, Hiroshi Iwata
  • Patent number: 8638133
    Abstract: Disclosed is an electronic circuit. The electronic circuit includes a transistor having a control terminal to receive a drive signal, and a load path between a first and a second load terminal. A voltage protection circuit is coupled to the transistor, has a control input, is configured to assume one of an activated state and a deactivated state as an operation state dependent on a control signal received at the control input, and is configured to limit a voltage between the load terminals or between one of the load terminals and the control terminal. A control circuit is coupled to the control input of the voltage protection circuit and is configured to deactivate the voltage protection circuit dependent on at least one operation parameter of the transistor and when a voltage across the load path or a load current through the load path is other than zero.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Steffen Thiele, Andreas Peter Meiser, Franz Hirler
  • Patent number: 8638159
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: January 28, 2014
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Patent number: 8629709
    Abstract: A switch circuit device includes a switch circuitry and a driver circuitry. The switch circuitry switches an electrical connection between first and second terminals between the on-state and the off-state in response to a set of control signals. The driver circuitry is configured to generate the control signals and includes an N-latch circuit and a leakage current suppression circuitry. The N-latch circuit selectively outputs lower one of two input voltages fed thereto as one of the control signals. The leakage current suppression circuitry suppresses the leakage current through the N-latch circuit.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 14, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Tomoyuki Iraha, Tatsuhiko Maruyama
  • Publication number: 20140009214
    Abstract: Radio-frequency (RF) switch circuits are disclosed providing improved switching performance. An RF switch system includes a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate and a body. A compensation network including a gate-coupling circuit couples the gates of each pair of neighboring FETs. The compensation network may further including a body-coupling circuit that couples the bodies of each pair of neighboring FETs.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Fikret Altunkilic, Guillaume Alexandre Blin, Haki Cebi, Hanching Fuh, Mengshu Hsu, Jong-Hoon Lee, Anuj Madan, Nuttapong Srirattana, Chuming Shih, Steven Christopher Sprinkle
  • Publication number: 20140009210
    Abstract: Radio-frequency (RF) switch circuits are disclosed providing improved switching performance. An RF switch system includes at least one field-effect transistor (FET) disposed between a first node and a second node, each having a respective source, drain, gate, and body. The system includes a coupling circuit including a first path and a second path, the first path being between the respective source or the respective drain and the respective gate of the at least one FET, the second path being between the respective source or the respective drain and the respective body of the at least one FET. The coupling circuit may be configured to allow discharge of interface charge from either or both of the coupled gate and body.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Anuj Madan, Fikret Altunkilic, Guillaume Alexandre Blin
  • Publication number: 20140009212
    Abstract: Radio-frequency (RF) switch circuits are disclosed having one or more transistors coupled to provide improved switching performance. RF switches include at least one field-effect transistor (FET) disposed between first and second nodes, each the at least one FET having a respective body and a corresponding gate. A coupling circuit couples the respective body and corresponding gate of the at least one FET. The coupling circuit may include a diode in series with a resistor and may be configured to facilitate removal of excess charge from the respective body.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Fikret Altunkilic, Anuj Madan, Steven Christopher Sprinkle, Guillaume Alexandre Blin
  • Publication number: 20140009209
    Abstract: Radio-frequency (RF) switch circuits having switchable transistor coupling for providing improved switching performance. An RF switch system includes at least one first field-effect transistor (FET) disposed between first and second nodes, each FET having a body and gate. A coupling circuit couples the respective body and gate of the at least one first FET. The coupling circuit may be configured to be switchable between a resistive-coupling mode and a body-floating mode.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Haki Cebi, Fikret Altunkilic
  • Publication number: 20140009211
    Abstract: Radio-frequency (RF) switch circuits are disclosed having transistor gate voltage compensation to provide improved switching performance. RF switch circuits include a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate. A compensation network including a coupling circuit couples the gates of each pair of neighboring FETs.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Anuj Madan, Fikret Altunkilic, Guillaume Alexandre Blin
  • Publication number: 20140009213
    Abstract: Radio-frequency (RF) switch circuits are disclosed having one or more transistors coupled to provide improved harmonic management. The RF switch circuits including at least one field-effect transistor (FET) disposed between first and second nodes, each of the at least one FET having a respective body and gate. A coupling circuit can be configured to couple the respective body and gate of each of the at least one FET. The coupling circuit can include a capacitor electrically parallel with a diode.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Steven Christopher Sprinkle, Mengshu Hsu, Chuming Shih, Jong-Hoon Lee
  • Patent number: 8624663
    Abstract: In one general aspect, an apparatus can include a complementary switch circuit including a first portion and a second portion, and a first driver circuit coupled to the first portion of the complementary switch circuit. The apparatus can include a positive charge pump device coupled to the first driver, and a second driver circuit coupled to the second portion of the complementary switch circuit. The apparatus can also include a negative charge pump device coupled to the second driver circuit.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 7, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Nickole Gagne, Kenneth P Snowdon
  • Patent number: 8624662
    Abstract: An electronic component includes a high-voltage depletion-mode transistor and a low-voltage enhancement-mode transistor both encased in a single package. A source electrode of the high-voltage depletion-mode transistor is electrically connected to a drain electrode of the low-voltage enhancement-mode transistor, a drain electrode of the high-voltage depletion-mode transistor is electrically connected to a drain lead of the single package, a gate electrode of the low-voltage enhancement-mode transistor is electrically connected to a gate lead of the single package, a gate electrode of the high-voltage depletion-mode transistor is electrically connected to an additional lead of the single package, and a source electrode of the low-voltage enhancement-mode transistor is electrically connected to a conductive structural portion of the single package.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: January 7, 2014
    Assignee: Transphorm Inc.
    Inventors: Primit Parikh, James Honea, Carl C. Blake, Jr., Robert Coffie, Yifeng Wu, Umesh Mishra
  • Publication number: 20140002105
    Abstract: There is provided a semiconductor switch apparatus that can handle a wide range of input voltages. The switch apparatus includes a main switch that is provided between a first terminal and a second terminal, and a switch controller that, to turn on the main switch, supplies the same gate-source voltage to the main switch irrespective of a direction of a current flowing through the main switch. To turn on the main switch, the switch controller supplies the gate-source voltage that is determined based on at least one of a voltage of the first terminal and a voltage of the second terminal to a gate of the main switch.
    Type: Application
    Filed: April 19, 2013
    Publication date: January 2, 2014
    Applicant: ADVANTEST CORPORATION
    Inventors: Yoshiyuki HATA, Makoto NAKANISHI, Masahiko TAKIKAWA
  • Patent number: 8618864
    Abstract: The active rectifier circuit and related method of operation disclosed herein is self-powered and improves the efficiency and reliability of photovoltaic solar power systems by replacing the conventional bypass and blocking rectifiers used in such systems. The circuit includes a power MOSFET used as a switch between the anode and cathode terminals, and control circuitry that turns on the MOSFET when the anode voltage is greater than the cathode voltage. The method of operation utilizes resonance to produce a large periodic voltage waveform from the small anode-to-cathode dc voltage drop, and then converts the period voltage waveform to a dc voltage to drive the gate of the power MOSFET.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 31, 2013
    Inventor: Steven Andrew Robbins
  • Patent number: 8618860
    Abstract: A circuit and method are provided for switching in a semiconductor based high power switch. Complementary p-type based transistors are utilized along insertion loss insensitive paths allowing biasing voltages to alternate between supply and ground, allowing for negative voltage supplies and blocking capacitors to be dispensed with, while improving performance.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 31, 2013
    Assignee: SiGe Semiconductor Inc.
    Inventors: Lui Lam, Hanching Fuh
  • Publication number: 20130333741
    Abstract: Described herein is a low-voltage unidirectional bypass element connected across a solar cell and operable to allow current to flow when the operation of the solar cell is suspended. The bypass element includes a single field effect transistor connected between first and second terminals as a switch, and a detection circuit for detecting suspension of the solar cell's operation and activating the switch to bypass the solar cell in the event of its operation suspension. Diodes are connected in parallel with the normally-open switch and receive current, when the solar cell's operation is suspended, to trigger operation of the detection circuit. The detection circuit includes a charge pump, a timer circuit, a control generation unit and a switch control circuit. The switch control circuit generates a control signal to close the switch and to allow current to bypass the solar cell.
    Type: Application
    Filed: April 10, 2013
    Publication date: December 19, 2013
    Applicants: Universiteit Gent, IMEC
    Inventors: IMEC, Universiteit Gent
  • Patent number: 8610469
    Abstract: A switching circuit for switching a time-varying input signal, the switching circuit comprising: at least one switch including a N-channel MOSFET and a P-channel MOSFET, each having a gate configured to receive a drive signal to change the ON/OFF state of the switch; and a drive circuit configured and arranged so as to selectively apply a pair of drive signals to change the ON/OFF state of the switch, the drive circuit being configured and arranged to generate the drive signals as a function of (a) a pair DC signal components sufficient to change the ON/OFF state of the switch and (b) a pair of time-varying signal components as at least a partial replica of the signal present on the source terminal of each MOSFET so that when applied with the DC signals to the gates of the re-channel MOSFET and p-channel MOSFET respectively, the drive signals will be at the appropriate level to maintain the ON/OFF state of the switch and keep the gate-source voltages of each MOSFET within the gate-source breakdown limit of th
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: December 17, 2013
    Assignee: THAT Corporation
    Inventor: Gary K. Hebert
  • Patent number: 8610489
    Abstract: This document discloses, among other things, a switch circuit that includes a depletion-mode field-effect transistor (DMFET) having an ON-state and an OFF-state, wherein the DMFET is configured to couple a first node to a second node in the ON-state, and wherein the DMFET is configured to isolate the first node from the second node in the OFF-state, a negative charge pump that is coupled to a gate terminal of the DMFET, the charge pump configured to supply a negative charge pump voltage to the gate terminal of the DMFET, and a negative discriminator coupled to the charge pump, the discriminator configured to compare a first voltage at the first node and a second voltage at the second node and determine the negative charge pump voltage based on the comparison.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: December 17, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Tyler Daigle, Julie Lynn Stultz, Kenneth P. Snowdon
  • Patent number: 8610490
    Abstract: Voltage switches, memory devices, memory systems, and methods for switching are disclosed. One such voltage switch uses a pair of switch circuits coupled in series, each switch circuit being driven by a level shift circuit. Each switch circuit uses a group of series coupled transistors with a parallel control transistor where the number of transistors in each group may be determined by an expected switch input voltage and a maximum allowable voltage drop for each transistor. A voltage of a particular state of an enable signal is shifted up to the switch input voltage by the level shift circuits. The particular state of the enable signal turns on the voltage switch such that the switch output voltage is substantially equal to the switch input voltage.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Giulio G. Marotta, Carlo Musilli, Stefano Perugini, Alessandro Torsi, Tommaso Vali
  • Patent number: 8610485
    Abstract: A gate drive circuit includes a turn-on circuit having an upper limiter for receiving a gate drive signal. The upper limiter has an output terminal. The turn-on circuit also has a transistor having a base connected to the output terminal of the upper limiter. In addition, the terminal has a terminal connected to a gate of a power switching device. The upper limiter limits a voltage input to the base of the transistor to not exceed a first predetermined value.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 17, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuaki Hiyama
  • Publication number: 20130328613
    Abstract: Circuitry, which includes a first switching transistor element having a first gate, a second switching transistor element having a second gate, a third switching transistor element having a third gate, and a fourth switching transistor element having a fourth gate, is disclosed. The first switching transistor element and the third switching transistor element are coupled in series between a first power source and a first downstream circuit. The second switching transistor element and the fourth switching transistor element are coupled in series between a second power source and the first downstream circuit. A voltage swing at the first gate and a voltage swing at the second gate are both about equal to a first voltage magnitude. A voltage swing at the third gate and a voltage swing at the fourth gate are both about equal to a second voltage magnitude.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Inventors: Michael R. Kay, Manbir Singh Nag, Philippe Gorisse
  • Patent number: 8604865
    Abstract: A RFID transponder includes an electronic circuit and an antenna, the electronic circuit being integrated in a p-type substrate and comprising a modulator formed by a PMOS transistor whose drain, electrically connected to a pad of the antenna, and source, connected to the ground of the electronic circuit, are arranged in an n-type well provided in the p-type substrate. The PMOS transistor has a gate driven by a driving circuit which is arranged for providing at least a negative voltage, this negative voltage being low enough for turning on this PMOS transistor in response to a control signal provided by a logical unit of the electronic circuit.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 10, 2013
    Assignee: EM Microelectronic-Marin S.A.
    Inventors: Nicolas Pillin, David A. Kamp
  • Patent number: 8604841
    Abstract: An exemplary apparatus and method for using intelligent gate driver units with distributed intelligence to control antiparallel power modules or parallel-connected electrical switching devices like IGBTs is disclosed. The intelligent gate drive units use the intelligence to balance the currents of the switching devices, even in dynamic switching events. The intelligent gate driver units can use master-slave or daisy chain control structures and instantaneous or time integral differences of the currents of parallel-connected switching devices as control parameters. Instead of balancing the currents, temperature can also be balanced with the intelligent gate driver units.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 10, 2013
    Assignee: ABB Research Ltd
    Inventors: Yanick Lobsiger, Dominik Bortis, Johann Walter Kolar, Matti Laitinen
  • Patent number: 8604864
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Patent number: 8604842
    Abstract: The high-side switch circuit includes a first output MOS transistor that is connected, at a first end thereof, to a power supply terminal. The high-side switch circuit includes a second output MOS transistor that is connected to a second end of the first output MOS transistor at a first end thereof and to a voltage output terminal at a second end thereof. The high-side switch circuit includes a current detecting circuit that detects a current flowing through the first output MOS transistor and outputs a detection signal. The high-side switch circuit includes a first gate driver that applies a first control voltage to a gate of the first output MOS transistor. The high-side switch circuit includes a second gate driver that applies a second control voltage to a gate of the second output MOS transistor.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: December 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuki Sato, Hiroyuki Tsurumi
  • Patent number: 8604866
    Abstract: A method and system for bandwidth enhancement using hybrid inductors are disclosed and may include a complementary metal oxide semiconductor (CMOS) transceiver providing an electrical impedance that increases with frequency via hybrid inductors comprising a transistor, a capacitor, an inductor, and a resistor. A first terminal of the hybrid inductors may comprise a first terminal of the transistor. A second terminal of the transistor may be coupled to a first terminal of the resistor and a first terminal of the capacitor. A second terminal of the resistor may comprise a second terminal of the hybrid inductors. A third terminal of the transistor may be coupled to a first terminal of an inductor, and a second terminal of the inductor may be coupled to a second terminal of the capacitor. The hybrid inductors may be configured by varying transconductance, resistance, and/or capacitance and may be utilized as an amplifier load.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: December 10, 2013
    Assignee: Luxtera, Inc.
    Inventor: Daniel Kucharski
  • Patent number: 8598938
    Abstract: A power switch includes first and second MOS transistors in series between first and second nodes. Both the first and second transistors have a gate coupled to its substrate. First and second resistive elements are coupled between the gate of the first transistor and the first node, and between the gate of the second transistor and the second node, respectively. A triac is coupled between the first and second nodes. The gate of the triac is coupled to a third node common to the first and second transistors. A third MOS transistor has a first conduction electrode coupled to the gate of the first transistor and a second conduction electrode coupled to the gate of the second transistor.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: December 3, 2013
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Johan Bourgeat
  • Patent number: 8598935
    Abstract: A system and method for providing an accurate current reference using a low-power current source is disclosed. A preferred embodiment comprises a system comprises a first section and a second section. The first section comprises a first simple current reference, an accurate current reference, and a circuit that generates a digital error signal based upon a comparison of an output of the first simple current reference and an output of the accurate current reference. The second section comprises a second simple current reference providing a second reference current, an adjustment circuit providing an adjustment current based upon the digital error signal, and a circuit biased with current equivalent to a summation of the second reference current and the adjustment current. The first simple current reference and the second simple current reference may be equivalent circuits.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 3, 2013
    Assignee: Infineon Technologies AG
    Inventor: Paolo Del Croce
  • Patent number: 8598937
    Abstract: An electronic component includes a depletion-mode transistor, an enhancement-mode transistor, and a resistor. The depletion-mode transistor has a higher breakdown voltage than the enhancement-mode transistor. A first terminal of the resistor is electrically connected to a source of the enhancement-mode transistor, and a second terminal of the resistor and a source of the depletion-mode transistor are each electrically connected to a drain of the enhancement-mode transistor. A gate of the depletion-mode transistor can be electrically connected to a source of the enhancement-mode transistor.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: December 3, 2013
    Assignee: Transphorm Inc.
    Inventors: Rakesh K. Lal, Robert Coffie, Yifeng Wu, Primit Parikh, Yuvaraj Dora, Umesh Mishra, Srabanti Chowdhury, Nicholas Fichtenbaum
  • Patent number: 8593210
    Abstract: A peripheral region of a display panel includes a signal distribution device (4) for time-dividing and distributing, to output terminals (7), an output signal from a source driver. The signal distribution device (4) includes switching elements (20) for the output terminals (7). Each switching element (20) is controlled by a selection signal supplied to a control line (9) connected with a gate electrode. Each switching element (20) includes a source electrode and the drain electrode each having a comb-like shape having a stem part and branch parts extending therefrom. In at least one switching element (20), only all of or part of the branch parts overlap the control line (9) and a semiconductor layer (10). This suppresses abnormal heat generation of a source driver in a display device including the signal distribution circuit by which an output signal from the source driver is distributed to pixels in time series.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 26, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mayuko Sakamoto, Yoshihisa Takahashi, Yasuaki Iwase
  • Patent number: 8593209
    Abstract: A resonant tank circuit has an output port configured to be coupled to a load comprising a current-controlled semiconductor device, such as a diode, thyristor, transistor or the like. A voltage generator circuit is configured to intermittently apply voltages to an input port of the resonant tank circuit in successive intervals having a duration equal to or greater than a resonant period of the resonant tank circuit. Such an arrangement may be used, for example, to drive a static switch.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: November 26, 2013
    Assignee: Eaton Corporation
    Inventors: George W. Oughton, Jr., Anthony Olivo
  • Patent number: 8593211
    Abstract: A half-bridge power circuit comprises a first gallium nitride field effect transistor (GaN FET); a first driver coupled to a gate of the first GaN FET; an anode of a capacitor coupled to an output of the driver and a source of the first GaN FET; a diode having a cathode coupled to the cathode of the capacitor; and a bootstrap capacitor clamp (BCC) controller, including: a field effect transistor (FET) coupled to an anode of the diode, and a comparator coupled to a gate of the FET, the comparator configured to receive as inputs: a) a signal representative of an input voltage (VDRV) applied to the FET; b) a ground; c) a boot signal representative of a voltage at the anode of the capacitor (Boot); and d) a signal representative of a voltage at the source of the first GaN FET (SW).
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 26, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Hassan Pooya Forghani-Zadeh, Luis A. Huertas-Sanchez
  • Patent number: 8587363
    Abstract: There is provided a high frequency switching circuit reducing power consumption at the time of signal reception and signal transmission. The high frequency switching circuit includes a pulse generation unit generating a clock selecting pulse signal having a predetermined active period; a clock selection unit selecting a reference clock signal when the clock selecting pulse signal is in an active state and selecting a low-speed clock signal having a frequency lower than that of the reference clock signal when the clock selecting pulse signal is not in an active state; a voltage down unit accumulating negative charges in a capacitor to generate predetermined negative voltage; and a switching unit including at least one switch holding a turned-off state by being applied with the predetermined negative voltage.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 19, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Eiichiro Otobe
  • Patent number: 8587361
    Abstract: An RF switch circuit for switching RF signals includes a first terminal and a second terminal and a series connection of a plurality of transistors between the first terminal of the RF switch circuit and the second terminal of the RF switch circuit. Furthermore, the RF switch circuit includes a control circuit configured to conductively couple, in a high impedance state of the RF switch circuit, the first terminal of the RF switch circuit to a control terminal of a first transistor in a series of the series connection of the plurality of transistors. The second terminal of the RF switch circuit is conductively coupled to a control terminal of a last transistor in the series of the series connection of the plurality of transistors.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans Taddiken, Thomas Boettner
  • Patent number: 8587362
    Abstract: A gate driver for driving a gate of a switching element Tr7 includes a driving part that drives the switching element according to a control signal and an active clamp circuit to clamp the voltage between the first and second main terminals of the switching element through the driving part. If a voltage applied between a first main terminal (drain) and a second main terminal (source) of the switching element exceeds a predetermined voltage, the active clamp circuit forcibly blocks a driving operation of the driving part from driving the switching element.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 19, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Osamu Machida, Hironori Aoki
  • Patent number: 8581638
    Abstract: The present invention provides a high-side driver circuit including a power transistor, the first transistor, the second transistor, the second capacitor, the second diode, a start-up circuit. The start-up circuit is coupled between a resistor and the second capacitor to complete a gate driving circuit. And, the aforementioned resistor can either be the gate resistance of the power transistor or an external resistor. The design of start-up circuit enables the functionality of the bootstrap capacitor of being charged to a designate voltage level. Thus, the depletion-mode transistor can be controlled to turn on/off without a floating voltage source or a negative voltage source.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: November 12, 2013
    Assignee: National Chiao Tung University
    Inventors: Tsung-Lin Chen, Edward Yi Chang, Wei-Hua Chieng, Stone Cheng, Shyr-Long Jeng, Che-Wei Chang
  • Patent number: 8581656
    Abstract: A transmission gate includes first and second transmission path terminals, a series connection of first and second field effect transistors (FETs), and a control circuit. The channels of the first and second FETs are coupled in series between the first transmission path terminal and the second transmission path terminal, such that a channel contact of the first FET is coupled to the second transmission path terminal and a channel contact of the second FET is coupled to the first transmission path terminal.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: November 12, 2013
    Assignee: Infineon Technologies AG
    Inventor: Giacomo Curatolo