Bias Control Signal From Input Of Amplifier Patents (Class 330/136)
  • Patent number: 8957728
    Abstract: Embodiments of circuitry, which includes an operational transconductance amplifier and a passive circuit, are disclosed. The passive circuit is coupled to the operational transconductance amplifier. Further, the passive circuit receives an input signal and the operational transconductance amplifier provides an output current, such that the passive circuit and the OTA high-pass filter and integrate the input signal to provide the output signal.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 17, 2015
    Assignee: RF Micro Devices, Inc.
    Inventor: Philippe Gorisse
  • Patent number: 8952753
    Abstract: A highly efficient, high control bandwidth and high-speed power supply with a linear driver and a switching regulator for regulating an output based on a control signal. The linear driver has a first input for receiving the control signal and a second input connected to the output for receiving negative feedback. The driver's output is controlled by its two inputs and has a capacitor connected in series with it to generate a capacitor voltage VC responsive to the DC and low frequency components in the driver's output. The switching regulator has a control input and a regulator output connected in a regulator feedback loop. The control input receives capacitor voltage VC and the regulator feedback loop minimizes capacitor voltage VC. Thus, switching regulator takes over the generation of DC and low frequency components, while the linear driver provides high frequency output current components.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 10, 2015
    Assignee: Quantance, Inc.
    Inventors: David C. G. Tournatory, Martin A. Tomasz
  • Patent number: 8947162
    Abstract: An amplification stage comprising: an input scaling block for scaling an input signal based on an input scaling factor to generate a scaled version of the input signal; a power amplifier for receiving the scaled version of the input signal and for generating an amplified version of said signal; an envelope detector for generating a signal representing the envelope of the input signal; an envelope scaling block for scaling the envelope signal based on an envelope scaling factor to generate a scaled version of the envelope signal; a non-linear mapping block for generating a voltage representative of the supply voltage based on the scaled envelope signal; a modulator for generating a power supply voltage for the amplifier based on the voltage generated by the non-linear mapping block; and a power control block for maintaining a linear relationship between the envelope scaling factor and the input scaling factor.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: February 3, 2015
    Assignee: Nujira Limited
    Inventors: Gerard Wimpenny, Robert Henshaw
  • Patent number: 8947161
    Abstract: Circuitry, which includes a linear amplifier and a linear amplifier power supply, is disclosed. The linear amplifier at least partially provides an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: February 3, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Nadim Khlat, Philippe Gorisse
  • Patent number: 8928403
    Abstract: The invention relates to a method of calibrating an envelope path and an input path of an amplification stage of an envelope tracking power supply, the method comprising matching the envelope path to at least one characteristic of at least one element of the input path.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Nujira Limited
    Inventor: Ben Bartram
  • Patent number: 8917142
    Abstract: A switching circuit 33 comprises a connection circuit cascade-connecting control terminals for controlling switching of n number of transistors M1-Mn via n?1 number of coils L1 respectively (n is an integer equal to or more than 2; and coils L3 respectively connected between one end of each of the transistors M1-Mn and other end of a coil L2, one end of the coil L2 being electrically connected to a DC power source. The transistors M1-Mn is sequentially switched with PWM signals inputted to an input terminal of the connection circuit. The switching circuit 33 further comprises a transistor M0 inserted at the one end or the other end of the coil L2 in cascade-connection.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 23, 2014
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Toyohashi University of Technology
    Inventors: Satoshi Hatsukawa, Kazuhiro Fujikawa, Takashi Tsuno, Nobuo Shiga, Takashi Ohira, Kazuyuki Wada, Tuya Wuren, Kotaro Tanimura
  • Patent number: 8909179
    Abstract: A method and an apparatus for controlling a transmit signal of a radio frequency power amplifier are provided. The method includes: adjusting a power supply voltage of the power amplifier to an efficiency point power supply voltage under designated transmit power; querying correspondence between an input voltage and transmit power at each power level under the efficiency point power supply voltage; and adjusting, according to the correspondence, an input voltage to an input voltage corresponding to the designated transmit power. The embodiments of the present invention, the power amplifier is enabled to work at an optimum efficiency point while the transmit power of the power amplifier is under control, which improves efficiency of the power amplifier.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Huawei Device Co., Ltd.
    Inventor: Gang Zhang
  • Patent number: 8902002
    Abstract: There is provided a bias arrangement for an amplifier adapted to amplify a varying input signal, the arrangement comprising a control circuit arranged to adaptively vary a bias current to the amplifier in dependence on an envelope of the varying input signal.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: December 2, 2014
    Assignee: Nujira Limited
    Inventor: Russell Fagg
  • Patent number: 8902005
    Abstract: Apparatus and methods reduce increase the common mode range of a difference amplifier. A circuit uses one or more floating powers and one or more floating grounds coupled to an input stage of an amplifier to increase the common mode range of a difference amplifier. The floating power can be configured to select from the greater of the voltage level of one of the differential signals and the system power high source. The floating ground can be configured to select from the lesser of the voltage level of one of the differential signals and the system power low source.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 2, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Quan Wan
  • Patent number: 8902013
    Abstract: A dynamic range compression circuit includes an attenuator that attenuates a signal at a predetermined node in an amplifier to reduce a gain of the amplifier and a gain controller that reduces the gain of the amplifier by the attenuator so that an amplitude of an output signal of the amplifier becomes an arbitrary output limit voltage in a case where an input signal having the same amplitude as that of an input-stage maximum voltage of the amplifier is input into the amplifier, and increases the gain of the amplifier by reducing a degree of attenuation of the attenuator according to a decrease of the amplitude of the input signal of the amplifier from the input-stage maximum voltage in a case where the amplitude of the input signal of the amplifier is smaller than the input-stage maximum voltage.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: December 2, 2014
    Assignee: Yamaha Corporation
    Inventors: Hirotoshi Tsuchiya, Shinji Yaezawa
  • Patent number: 8896375
    Abstract: Provided is a hybrid envelope amplifier having improved efficiency, and more particularly, to an envelope amplifier using a dual switching amplifier and having improved efficiency in which power consumption is reduced by controlling a switching current of a switching region according to a magnitude of an envelope input signal, thereby improving efficiency compared to a conventional hybrid envelope amplifier. The envelope amplifier using a dual switching amplifier and having improved efficiency comprises a linear amplifier and a switching amplifier, wherein the switching amplifier includes two or more switching stages that are selectively operated according to a magnitude of an input signal.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 25, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: ChulSoon Park, HyukSu Son, WooYoung Kim, JooYoung Jang, HaeJin Lee
  • Patent number: 8897727
    Abstract: Power detectors with temperature compensation and having improved accuracy over temperature are disclosed. In an aspect of the disclosure, variations of a power detector gain over temperature is reduced by varying both the gate and drain voltages of MOS transistors within a power detector. In an exemplary design, an apparatus includes at least one MOS transistor, which receives an input signal, detects the power of the input signal based on a power detection gain, and provides an output signal indicative of the power of the input signal. The at least one MOS transistor is applied a variable gate bias voltage and a variable drain bias voltage in order to reduce variations of the power detection gain over temperature. At least one additional MOS transistor may receive a second variable gate bias voltage and provide the variable drain bias voltage for the at least one MOS transistor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Xinwei Wang, Yongrong Zuo, Xiangdong Zhang, Marc Gerald DiCicco
  • Patent number: 8891641
    Abstract: In an orthogonal frequency division multiplex (OFDM) modulated wave transmitter apparatus, a symbol mapping circuit and a serial/parallel (S/P) converter generate an OFDM symbol signal from transmission data. An inverse fast Fourier transform (IFFT) circuit, a parallel/serial (P/S) converting and guard interval (GI) adding circuit, a timing adjusting circuit, a digital/analog (D/A) converter, a frequency converter, a local oscillator and an analog filter generate an OFDM modulated wave signal from the OFDM symbol signal. A power amplifier (PA) control circuit limits a band of the OFDM symbol signal and generates a PS control signal and a PA control signal. A PA designates a voltage supplied from a DC/DC converter as a PS voltage and amplifies and outputs the OFDM modulated wave signal based on the PA control signal.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 18, 2014
    Assignee: Lenovo Innovations Limited (Hong Kong)
    Inventor: Toshiyuki Oga
  • Patent number: 8884697
    Abstract: An efficient amplifying device is achieved. An amplifying device that amplifies a signal subject to amplification is configured as follows. That is, an amplifier (PA 5) that amplifies a signal is provided. Level control means 1 converts a level of the signal subject to amplification according to the level of this signal. Power supply control means 6 and 8 supply the amplifier (PA 5) with a power supply voltage determined according to the level of the signal subject to amplification. The amplifier (PA 5) amplifies a signal at the level converted by the level control means 1 with the power supply voltage supplied from the power supply control means 6 and 8.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: November 11, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventor: Naoki Hongo
  • Patent number: 8884695
    Abstract: There is disclosed an arrangement comprising: a driver stage connected to receive an input signal and generate a drive signal; a transformer comprising: a first winding of a first side of the transformer, across which winding a voltage signal is developed in dependence on the drive signal; and a second winding of the first side of the transformer, coupled to the first winding, which exhibits across it a voltage signal related to the voltage across the first winding, by swingback; and a first controller for comparing the voltage exhibited in the second winding to a first threshold voltage, and for selecting a first or a second supply voltage for the arrangement in dependence on the comparison.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 11, 2014
    Assignee: Nujira Limited
    Inventor: Gerard Wimpenny
  • Patent number: 8878604
    Abstract: A switching circuit according to one embodiment has: N switching elements; a connection circuit including N?1 first inductance elements that are connected in series; a second inductance element; and N third inductance elements. Control terminals of the N switching elements are connected to ends of the connection circuit and connection contacts, respectively. One end of the second inductance element is connected to a power supply. The N third inductance elements electrically connects one ends of the N switching elements and the other end of the second inductance element with each other, respectively.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: November 4, 2014
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Toyohashi University of Technology
    Inventors: Takashi Ohira, Kazuyuki Wada, Mitsutoshi Nakata, Kazushi Sawada, Satoshi Hatsukawa, Nobuo Shiga, Kazuhiro Fujikawa
  • Patent number: 8878607
    Abstract: A signal processing circuit has a first circuit, a digital-to-analog converter (DAC) and a second circuit. The first circuit receives a digital input signal with a non-zero direct current (DC) component, and subtracts at least a portion of the DC) component of the received digital input signal from the received digital input signal. The DAC is operably coupled to the first circuit, and arranged to perform a digital-to-analog conversion upon an output of the first circuit. The second circuit is operably coupled to the DAC, and arranged to add a DC component to an analog output signal derived from an output of the DAC. The signal processing circuit may be part of an integrated circuit or a wireless communication unit.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: November 4, 2014
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Jonathan Richard Strange, Paul Fowers
  • Patent number: 8872582
    Abstract: An amplifier circuit includes: a first filter that receives input of amplitude information of an input signal, and performs filtering so that a gain of a frequency component higher than a first cutoff frequency becomes greater than a gain of a frequency component lower than the first cutoff frequency; a power supply circuit that has a low-pass filter characteristic that a gain of a frequency component lower than a second cutoff frequency is greater than a gain of a frequency component higher than the second cutoff frequency, and receives input of amplitude information outputted from the first filter and generates a power supply voltage corresponding to the amplitude information outputted from the first filter; and an amplifier that receives supply of the power supply voltage generated by the power supply circuit, and amplifies a signal based on the input signal.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Limited
    Inventor: Kazuaki Oishi
  • Patent number: 8866548
    Abstract: A power supply system includes a high-speed power supply providing a first output, operating in conjunction with an externally supplied DC source or low frequency power supply which provides a second output. A frequency blocking power combiner circuit combines the first and second outputs to generate a third output in order to drive a load, while providing frequency-selective isolation between the first and second outputs. A feedback circuit coupled to the combined, third output compares this combined, third output with a predetermined control signal and generates a control signal for controlling the high-speed power supply, based on a difference between the third output and the predetermined control signal. The feedback circuit does not control the DC source or the low frequency power supply, but controls only the high-speed power supply.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: October 21, 2014
    Assignee: Quantance, Inc.
    Inventors: Serge Francois Drogi, Martin A. Tomasz
  • Patent number: 8867668
    Abstract: A data receiver, a method of operating a data receiver, and an integrated coupling system in a data receiver are disclosed. In one embodiment, the data receiver comprises an input terminal for receiving an input data signal, an input amplifier for amplifying selected components of the input data signal, and an input signal path for transmitting specified high-frequency components and a baseline component of the input data signal from the input terminal to the input amplifier. The data receiver further comprises a feed-forward resistive network connected to the input terminal and to the input amplifier. This feed forward resistive network is used to forward a low-frequency drift compensation signal from the input terminal to the input amplifier, using a passive resistive network, to compensate for low frequency variations in the input data signal, and to develop a desired bias voltage at the input amplifier.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Troy J. Beukema, Gautam Gangasani, Thomas H. Toifl
  • Patent number: 8868011
    Abstract: Embodiments of apparatuses, methods, and systems for a radio frequency amplification circuit providing for fast loadline modulation are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 21, 2014
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Peter V. Wright
  • Patent number: 8854128
    Abstract: Signal timing adjustment in an amplifying device is appropriately performed by phase adjustment by a digital filter. The amplifying device includes an amplifier; an amplitude-voltage converting unit 12 that performs a desired process on a signal relating to operation of the amplifier, whereby the signal is band-broadened; and a timing adjusting unit 15a that performs timing adjustment of the signal to be provided to the amplifier, by phase adjustment by a digital filter. The timing adjusting unit 15a performs the timing adjustment of the signal at a stage before the signal is band-broadened by the amplitude-voltage converting unit 12.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masahiko Onishi
  • Patent number: 8856857
    Abstract: This technique relates to a receiving device, a receiving method, and a program that can demodulate transmitted signals with high accuracy. A receiving device of this disclosure includes: an amplifying unit that amplifies a received signal; an adjusting unit that adjusts gain of the amplifying unit in accordance with power of the signal; a demodulating unit that demodulates the amplified signal; and a detecting unit that detects an interval from the signal, information having the same content continuously appearing in the interval. The adjusting unit restricts the process of adjusting the gain of the amplifying unit in accordance with a result of the detection of the interval. This disclosure can be applied to receiving devices that receive broadcast signals compliant with DVB-C2 via a CATV network.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: October 7, 2014
    Assignee: Sony Corporation
    Inventors: Kenichi Kobayashi, Naoki Yoshimochi
  • Patent number: 8854127
    Abstract: Embodiments provide a DC-DC converter (DC-DC=direct current to direct current) for envelope tracking. The DC-DC converter includes a digital control stage and a driving stage. The digital control stage is configured to provide a digital control signal based on digital information describing an amplitude of a digital baseband transmit signal. The driving stage is configured to provide a supply voltage for an RF amplifier (RF=radio frequency) based on the digital control signal.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: October 7, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventor: Franz Kuttner
  • Patent number: 8854129
    Abstract: There is disclosed a method, in an amplifier stage comprising an amplifier and a modulated supply, the amplifier being arranged to amplify an input signal and the modulated supply being arranged to generate a supply voltage for the amplifier by tracking an envelope of the signal to be amplified, the method comprising: comparing the relative timing of a signal representing the current drawn by the amplifier from the modulated supply and a signal representing the voltage generated at the output of the modulated supply; and in dependence upon a difference in the relative timing, adjusting the timing of either the input signal to be amplified or the generated supply voltage to reduce the difference in the relative timing.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 7, 2014
    Assignee: Nujira Limited
    Inventor: Martin Paul Wilson
  • Patent number: 8841967
    Abstract: A radio frequency (RF) power amplifier system that comprises a power amplifier configured to amplify an RF input signal to generate an RF output signal. The power amplifier has a gain that is controlled by a supply voltage to the power amplifier. An amplitude detector is configured to generate an amplitude signal indicative of an amplitude of the RF input signal. A power supply generates the supply voltage to the power amplifier based on the amplitude signal indicative of the amplitude of the RF input signal. The gain of the power amplifier is allowed to have variations over the amplitude range of the RF input signal in favor of having a supply voltage that is monotonic relative to the amplitude of the RF input signal across an amplitude range of the RF input signal.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: September 23, 2014
    Assignee: Quantance, Inc.
    Inventor: Serge Francois Drogi
  • Patent number: 8831138
    Abstract: The circuit is provided for the transmission of data amplitude modulated radio frequency signals. The circuit includes a local oscillator for generating an oscillating signal at a determined carrier frequency, a unit for shaping data pulses to supply a data amplitude modulation control signal (Vmod), and a power amplifier receiving the oscillating signal and the data amplitude modulation control signal (Vmod) for the transmission of data amplitude modulated radio frequency signals by an antenna or an antenna arrangement. The data pulse shaping unit (13) includes a pulse shaper (21) for digitally adapting the data transition edges on the basis of an incoming digital data signal (d), and a digital-analog conversion stage (26, 27) for converting a digital data signal shaped in the unit, in order to supply the data amplitude modulation control signal (Vmod) to the power amplifier.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 9, 2014
    Assignee: EM Microelectronic-Marin SA
    Inventor: Michel Moser
  • Patent number: 8829993
    Abstract: Circuits and methods for achieving high linearity, high efficiency power amplifiers, including digital predistortion (DPD) and pulse cancellation in switched-state RF power amplifier systems are described.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 9, 2014
    Assignee: Eta Devices, Inc.
    Inventors: Mark A. Briffa, Joel L. Dawson, John E. DeRoo, Krenar Komoni, David J. Perreault, Oguzhan Uyar
  • Patent number: 8816768
    Abstract: A power module for envelope tracking includes a linear amplifier and a DC-to-DC (Direct Current to Direct Current) converter. The linear amplifier has a positive input terminal for receiving a first control signal, a negative input terminal, and an output terminal for outputting a first adaptive supply voltage, wherein the output terminal is fed back to the negative input terminal. The DC-to-DC converter receives a second control signal, and supplies a second adaptive supply voltage to the linear amplifier according to the second control signal. The first control signal is related to the second control signal.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Mediatek Inc.
    Inventors: Chun-Yen Tseng, Yen-Hsun Hsu
  • Patent number: 8810314
    Abstract: An envelope tracking power amplifier uses signal cancellation techniques to provide isolation between RF signals and envelope signals, without the use of filters. In this manner, the envelope tracking power amplifiers are capable of operating with envelope signals that are at or near the frequency of the corresponding RF signals. In at least one embodiment, a double balanced power amplifier is provided that includes a balanced RF input port, a balanced RF output port, and a balanced envelope input port. The balanced nature of the amplifier results in ports of the amplifier forming virtual grounds with respect to signals at other ports. In some other embodiments, a single balanced amplifier is provided that provides isolation between ports thereof.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: August 19, 2014
    Assignee: Auriga Measurement Systems, LLC
    Inventors: Steven A. Mulawski, Yusuke Tajima
  • Patent number: 8803606
    Abstract: An apparatus for amplifying power is provided. The apparatus includes a supply modulator for generating a supply voltage based on an amplitude component of a transmission signal, and a power amplify module for amplifying power of the transmission signal using the supply voltage, wherein the power amplify module includes a first power amplifier and a second power amplifier, and when an output power of the transmission signal is greater than a reference power, the first power amplifier amplifies the power of the transmission signal using the supply voltage, and when the output power of the transmission signal is equal to or less than the reference power, the second power amplifier amplifies the power of the transmission signal using the supply voltage.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Sun Lim, Hee-Sang Noh, Young-Eil Kim, Bok-Ju Park, Sang-Hyun Baek, Ji-Seon Paek, Jun-Seok Yang
  • Patent number: 8803605
    Abstract: An integrated circuit is described for providing a power supply to a radio frequency (RF) power amplifier (PA). The integrated circuit includes a low-frequency power supply path including a switching regulator and a high-frequency power supply path arranged to regulate an output voltage of a combined power supply at an output port of the integrated circuit for coupling to a load. The combined power supply is provided by the low-frequency power supply path and high-frequency power supply path. The high-frequency power supply path includes: an amplifier including a voltage feedback and arranged to drive a power supply signal on the high-frequency power supply path; and a capacitor operably coupled to the output of the amplifier and arranged to perform dc level shifting of the power supply signal.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: August 12, 2014
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Paul Fowers, Patrick Stanley Riehl
  • Patent number: 8797113
    Abstract: A power amplifier comprises: polar modulator that receives modulated signal including amplitude-modulated component and phase-modulated component, outputs the amplitude-modulated component, superimposes the modulated signal on carrier wave to generate signal output as RF-modulated signal, and delays at least one of the amplitude-modulated component and the RF-modulated signal; first amplitude modulator that receives the amplitude-modulated component, pulse-modulates the amplitude-modulated component to generate signal output as pulse-modulated signal, and amplifies the amplitude-modulated component with the amplitude-modulated component and the pulse-modulated signal as control signals; second amplitude modulator that receives the amplitude-modulated component and the pulse-modulated signal, and amplifies the amplitude-modulated component with the amplitude-modulated component and the pulse-modulated signal as control signals; and first RF amplifier that receives the RF-modulated signal, amplifies the RF-modu
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 5, 2014
    Assignee: NEC Corporation
    Inventor: Shingo Yamanouchi
  • Patent number: 8798559
    Abstract: The present disclosure generally relates to predistortion that compensates for non-linearity of a power amplifier as well as short-term and long-term memory effects of the power amplifier. In one embodiment, a transmitter includes a power amplifier that amplifies a power amplifier input signal to provide a power amplifier output signal, a predistortion sub-system that effects predistortion of the power amplifier input signal to compensate for non-linearity of the power amplifier and memory effects of the power amplifier, and a adaptation sub-system that adaptively configures the predistortion sub-system. The predistortion sub-system includes a memory-less predistortion component that compensates for the non-linearity of the power amplifier, a Finite Impulse Response (FIR) filter that compensates for short-term memory effects of the power amplifier, and an Infinite Impulse Response (IIR) filter that compensates for long-term memory effects of the power amplifier.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 5, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Sai Mohan Kilambi, Yuxing Zhang, Chunlong Bai
  • Patent number: 8779851
    Abstract: A circuit for linearizing a power amplifier. The circuit includes a main signal path comprising a digital-to-analog converter, wherein a main signal is transmitted through the main signal path to said power amplifier; and a digital pre-distortion path disposed outside of the main signal path, wherein the digital pre-distortion path includes a digital pre-distorter for digitally pre-distorting the main signal.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: July 15, 2014
    Assignee: Integrated Device Technology, Inc.
    Inventor: Kiomars Anvari
  • Patent number: 8781414
    Abstract: An envelope detector includes an input receiving a digital input signal indicative of a magnitude of a signal to be amplified by a power amplifier. A circuit is provided for generating an analog envelope signal based on the digital input signal. The envelope detector includes an output for outputting the analog envelope signal.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 15, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Krzysztof Dufrene, Harald Pretl, Patrick Ossmann
  • Patent number: 8766716
    Abstract: An apparatus of a hybrid power modulator using interleaving switching is provided. The apparatus includes a linear switching unit for generating an output signal by comparing an envelope input signal and a feedback signal, an interleaving signal generator for generating an interleaving switching signal arranged not to supply the signal to input stages of P-type Metal-Oxide-Semiconductor (MOS) Field Effect Transistors (FETs) and N-type MOS FETs of power cells at the same time by comparing the output signal and a reference signal, and a switching amplifying unit for determining a level of the switching signal using the interleaving switching signal. Hence, the hybrid power modulator using the interleaving switching method in the envelope signal of the wide bandwidth maintains high efficiency and high linearity. In addition, the buck converter can use the single inductor by preventing the simultaneous on/off of the power cells.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Seon Paek, Dong-Ki Kim, Hee-Sang Noh, Hyung-Sun Lim, Jun-Seok Yang, Young-Eil Kim
  • Patent number: 8744382
    Abstract: A fast tracking power supply device, a fast tracking power supply control method, and communication equipment are provided. The fast tracking power supply device includes: a basic voltage output unit, configured to output a basic voltage; a basic current unit, configured to output a basic current; a linear amplifier, configured to output a compensation current and a compensation voltage, the linear amplifier is connected in parallel with the basic current output unit, and then is connected in series with the basic voltage output unit. The device can output signal with high efficiency and bandwidth.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhaozheng Hou, Xujun Liu
  • Patent number: 8742844
    Abstract: A power amplifier device includes an input terminal for a RF input signal. The power amplifier device includes an output terminal a RF output signal. The power amplifier device includes a first power amplifier connected to the input terminal, amplifies the RF input signal with a first gain, and outputs a first amplified signal. The power amplifier device includes a second power amplifier that amplifies a signal on the basis of the first amplified signal and outputs a second amplified signal with a second gain. The power amplifier device includes a low-pass filter or a band-pass filter that filters the second amplified signal. The power amplifier device includes an amplitude comparator to compare the first amplitude of the first comparison signal generated from the RF input signal with the second amplitude of the second comparison signal generated from the filtered signal and to output an amplitude comparison signal.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shouhei Kousai
  • Publication number: 20140132345
    Abstract: An amplification stage comprising: an input scaling block for scaling an input signal based on an input scaling factor to generate a scaled version of the input signal; a power amplifier for receiving the scaled version of the input signal and for generating an amplified version of said signal; an envelope detector for generating a signal representing the envelope of the input signal; an envelope scaling block for scaling the envelope signal based on an envelope scaling factor to generate a scaled version of the envelope signal; a non-linear mapping block for generating a voltage representative of the supply voltage based on the scaled envelope signal; a modulator for generating a power supply voltage for the amplifier based on the voltage generated by the non-linear mapping block; and a power control block for maintaining a linear relationship between the envelope scaling factor and the input scaling factor.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 15, 2014
    Applicant: Nujira Limited
    Inventors: Gerard Wimpenny, Robert Henshaw
  • Patent number: 8710925
    Abstract: A radio frequency (RF) power amplifier system adjusts the supply voltage provided to a power amplifier (PA) adaptively, responsive to the measured or estimated power of the RF output signal of the PA. The RF PA system includes a power amplifier (PA) which receives and amplifies an RF input signal to generate an RF output signal at a level suitable for transmission to an antenna. A PA supply voltage controller generates a supply voltage control signal, which is used to control the supply voltage to the final stage of the PA. The supply voltage control signal is generated responsive to the measured or estimated power of the PA RF output signal, and also may be responsive to a parameter indicative of impedance mismatch experienced at the PA output. By controlling this supply voltage to the RF PA, the efficiency of the PA is improved.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: April 29, 2014
    Assignee: Quantance, Inc.
    Inventors: Serge Francois Drogi, Martin A. Tomasz
  • Patent number: 8704594
    Abstract: A drain modulator circuit for operation with a radio frequency (RF) amplifier, includes a pair of AC signal sources each of the AC signal sources having an output at which an AC signal is provided. The drain modulator circuit further includes a pair of tapped delay elements, each of which is configured to receive an AC signal from a respective one of the AC signal sources and a control element coupled to provide one or more control signals to the pair of tapped delay elements such that the tapped delay elements provide a selected instantaneous differential voltage to the RF amplifier.
    Type: Grant
    Filed: June 9, 2012
    Date of Patent: April 22, 2014
    Assignee: Auriga Measurement Systems, LLC
    Inventor: Steven A. Mulawski
  • Patent number: 8698558
    Abstract: Techniques for efficiently generating a power supply are described. In one design, an apparatus includes an envelope amplifier and a boost converter. The boost converter generates a boosted supply voltage having a higher voltage than a first supply voltage (e.g., a battery voltage). The envelope amplifier generates a second supply voltage based on an envelope signal and the boosted supply voltage (and also possibly the first supply voltage). A power amplifier operates based on the second supply voltage. In another design, an apparatus includes a switcher, an envelope amplifier, and a power amplifier. The switcher receives a first supply voltage and provides a first supply current. The envelope amplifier provides a second supply current based on an envelope signal. The power amplifier receives a total supply current including the first and second supply currents. In one design, the switcher detects the second supply current and adds an offset to generate a larger first supply current than without the offset.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: April 15, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Lennart K Mathe, Thomas Domenick Marra, Todd R Sutton
  • Publication number: 20140097893
    Abstract: The switching frequency in an envelope amplifier is set below that of a transmission RF signal. A transmitter according to the present invention includes a transmission amplifier (3) that amplifies an input signal and generates an output signal, a voltage control amplifier (6) that controls a power supply voltage of the transmission amplifier (3), and an envelope calculation unit (4) that calculates an approximate envelope signal that is an envelope signal of the input signal and is sampled at a lower frequency than the input signal. The voltage control amplifier (6) controls the power supply voltage of the transmission amplifier (3) based on the approximate envelope signal.
    Type: Application
    Filed: May 31, 2012
    Publication date: April 10, 2014
    Applicant: KYOCERA CORPORATION
    Inventor: Hiromi Ajima
  • Patent number: 8686792
    Abstract: A supply voltage controller 11 includes a simplified envelope creating unit 111 that calculates an envelope of an input audio signal according to an input audio signal from an external device, creates a supply voltage control signal so that a waveform of the supply voltage control signal follows a waveform of the envelope, and outputs the supply voltage control signal to a voltage variable power supply 12 a constant time before the input audio signal is amplified by the amplifier 14. Accordingly, an amplifying device can be provided which can reduce the distortion of the output signal not depending on a change in the slew rate of the voltage variable power supply 12 and suppress the deterioration of power efficiency.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Rintaro Sukegawa, Seigo Ozaki
  • Patent number: 8680921
    Abstract: A power amplifying apparatus has a GaN device for RF amplification, a GaN device for monitoring, an Idq detecting circuit, and a gate bias control (GBC) circuit. The GaN device for RF amplification amplifies an input signal to output the resultant. The GaN device for monitoring is an amplification device for monitoring an input/output signal of the GaN device for RF amplification. The Idq detecting circuit detects an output signal output by the GaN device for monitoring, corresponding to an input signal, which is diverged from the input signal to be input to the GaN device for RF amplification, and is input to the GaN device for monitoring. The gate bias control circuit controls a gate voltage to be applied to the GaN device for RF amplification in accordance with the output signal detected by the Idq detecting circuit.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 25, 2014
    Assignee: Fujitsu Limited
    Inventors: Hirotake Honda, Hiroaki Maeda, Yousuke Okazaki, Yoshinobu Shizawa
  • Patent number: 8675725
    Abstract: An integrated circuit comprises a digitally-controlled power generation stage (DPA) for converting an input signal to a radio frequency (RF) carrier, the DPA comprising a plurality of selectable switching devices capable of adjusting an envelope of the RF carrier; and a pulse width modulator (PWM) generator arranged to generate a PWM control signal and operably coupleable to the plurality of selectable switching devices of the DPA. The PWM generator inputs the PWM control signal to a subset of the plurality of the selectable switching devices such that a PWM signal adjusts the envelope RF carrier output from the DPA.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 18, 2014
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Robert Bogdan Staszewski, Min Park
  • Patent number: 8669811
    Abstract: A radio-frequency power amplifier with envelope tracking, comprising: a power RF amplifying device for amplifying a RF signal; and a switching DC/DC converter, comprising a switching device and a rectifying device, for providing said power RF amplifying device with a DC power supply at a voltage level proportional to an envelope of said RF signal; wherein said switching device is a RF power transistor; characterized in that said rectifying device, and preferably also said power RF amplifying device, is also a transistor of a same technology, connected as a two-terminal device. Preferably, said power RF amplifying device is also a transistor of said same technology. A low-pass filter can also be provided for reducing the bandwidth of the envelope signal on which the PWM signal driving the DC/DC converter depends.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 11, 2014
    Assignee: Agence Spatiale Europeenne
    Inventors: Nicolas Le Gallou, Christophe Delepaut, David Sardin, Michel Campovecchio
  • Publication number: 20140064523
    Abstract: In accordance with an embodiment, a system for amplifying a signal provided by a capacitive signal source includes an impedance converter having an input node configured to be coupled to a first terminal of the capacitive signal source, and an adjustable capacitive network having a first node configured to be coupled to a second terminal of the capacitive signal source and a second node coupled to an output node of the impedance converter.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Michael Kropfitsch, Andreas Wiesbauer
  • Patent number: 8665016
    Abstract: A power amplifier includes generation, tracking and usage of an envelope of an input RF signal. To improve upon the efficiency of the power amplifier, various configurations include using the tracked envelope, for example, an OFDM signal, to improve the average efficiency. Suitable hardware/software in the form of circuitry, logic gates, and/or code functions to generate and track an envelope of an input RF signal and modulate one or more of the input supply voltage, cascode gate bias or parallel PA branches using the tracked envelope.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 4, 2014
    Assignee: Broadcom Corporation
    Inventors: Debopriyo Chowdhury, Ali Afsahi