Having One Film Pinned (e.g., Spin Valve) Patents (Class 360/324.1)
  • Patent number: 11925120
    Abstract: Embodiments of the present disclosure generally relate to spintronic devices, and more specifically to self-cooling spintronic devices. In an embodiment, a device is provided. The device includes a spintronic device having a first side and a second side opposite the first side, a first layer disposed on the first side, and a second layer disposed on the second side, the first layer having a Seebeck coefficient that is different from a Seebeck coefficient of the second layer.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: March 5, 2024
    Assignee: Western Digital Technologies, Inc.
    Inventors: Susumu Okamura, Christian Kaiser, Xinjiang Shen, Yongchul Ahn, James Mac Freitag
  • Patent number: 11895928
    Abstract: A three terminal spin-orbit-torque (SOT) device is disclosed wherein a free layer (FL) with a switchable magnetization is formed on a Spin Hall Effect (SHE) layer comprising a Spin Hall Angle (SHA) material. The SHE layer has a first side contacting a first bottom electrode (BE) and an opposite side contacting a second BE where the first and second BE are separated by a dielectric spacer. A first current is applied between the two BE, and the SHE layer generates SOT on the FL thereby switching the FL magnetization to an opposite perpendicular-to-plane direction. The SHE layer is a positive or negative SHA material, and may be a topological insulator such as Bi2Sb3. A top electrode is formed on an uppermost hard mask in each SOT device. A single etch through the FL and SHE layer ensures a reliable first current pathway that is separate from a read current pathway.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: February 6, 2024
    Assignee: Headway Technologies, Inc.
    Inventors: Jesmin Haq, Tom Zhong, Luc Thomas, Zhongjian Teng, Dongna Shen
  • Patent number: 11804242
    Abstract: A read head is disclosed wherein a Spin Hall Effect (SHE) layer is formed on a free layer (FL) in a sensor and between the FL and top shield (S2). Preferably, the sensor has a seed layer, an AP2 reference layer, antiferromagnetic coupling layer, AP1 reference layer, and a tunnel barrier sequentially formed on a bottom shield (S1). When the stripe heights of the FL and SHE layer are equal, a two terminal configuration is employed where a current flows between one side of the SHE layer to a center portion thereof and then to S1, or vice versa. As a result, a second spin torque is generated by the SHE layer on the FL that opposes a first spin torque from the AP1 reference layer on the FL.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: October 31, 2023
    Assignee: Headway Technologies, Inc.
    Inventors: Wenyu Chen, Yan Wu
  • Patent number: 11782103
    Abstract: In one aspect, a dual double-pinned spin valve element includes a first spin valve that includes a first pinned layer and a second pinned layer and a second spin valve disposed on the first spin valve and comprising a third pinned layer and a fourth pinned layer. The first, second, third and fourth pinned layers each have a magnetization in a first direction.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: October 10, 2023
    Assignee: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Paolo Campiglio, Noémie Belin, Damien Dehu, Jeffrey Eagen
  • Patent number: 11770977
    Abstract: A method for fabricating magnetic tunnel junction (MTJ) pillars is provided. The method includes following operations. A MTJ stack of layers including a first magnetic layer, a tunnel barrier layer overlying the first magnetic layer, and a second magnetic layer overlying the tunnel barrier layer is provided. A first patterning step is carried out by using a reactive ion etching. In the first patterning step, the second magnetic layer and the tunnel barrier layer are etched to form one or more pillar structures and a protection layer is formed and covers sidewalk of the pillar structures.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jiann-Horng Lin, Kun-Yi Li, Han-Ting Lin, Huan-Just Lin, Chen-Jung Wang, Sin-Yi Yang
  • Patent number: 11579209
    Abstract: A three-axis magnetic sensor apparatus is described that is processed together into a single chip, with high performance, low cost, as well as small size. The three-axis magnetic sensor apparatus include a substrate, a two-axis magnetic sensing structure and a single-axis sensing structure. The two-axis sensing magnetic structure consisting of two shielded Wheatstone bridge configurations in conjunction with an annular or semi annular magnetic flux-guiding structure, and the single-axis sensing structure consisting of a push-pull Wheatstone bridge in conjunction with a flux guide that is capable of generating a fringe field whose horizontal component is proportional to the vertical component of an external magnetic field. The two-axis magnetic sensing structure and the single-axis structure are processed together into a single chip, and can be used to measure respectively X, Y and Z components of external magnetic fields.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 14, 2023
    Inventors: Zhenghong Qian, Ru Bai
  • Patent number: 11574667
    Abstract: A magnetic memory device including a magnetic tunnel junction (MTJ) pillar containing a stable resonant synthetic antiferromagnet (SAF) reference layered structure in which the ferromagnetic resonance characteristics of a polarizing magnetic layer of the SAF reference layered structure are substantially matched to at least a first magnetic reference layer within the SAF reference layered structure. By substantially matching the ferromagnetic resonance characteristics of the polarizing magnetic layer to at least the first magnetic reference layer, a MTJ pillar is provided in which the dynamic stability of the polarizing magnetic layer can be improved, and undesirable magnetic reference layer instability related write-errors can be mitigated.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: February 7, 2023
    Assignee: International Business Machines Corporation
    Inventors: Christopher Safranski, Jonathan Zanhong Sun
  • Patent number: 11563169
    Abstract: A magnetic tunnel junction element (10) includes a configuration in which a reference layer (14) that includes a ferromagnetic material, a barrier layer (15) that includes O, a recording layer (16) that includes a ferromagnetic material including Co or Fe, a first protective layer (17) that includes O, and a second protective layer (18) that includes at least one of Pt, Ru, Co, Fe, CoB, FeB, or CoFeB are layered.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 24, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Hideo Sato, Yoshihisa Horikawa, Shunsuke Fukami, Shoji Ikeda, Fumihiro Matsukura, Hideo Ohno, Tetsuo Endoh, Hiroaki Honjo
  • Patent number: 11532667
    Abstract: Provided are a magnetic stacked film that is capable of improving a write efficiency, and a magnetic memory element and a magnetic memory using the magnetic stacked film. A magnetic stacked film 1 is a stacked film for a magnetic memory element 100, and includes: a heavy metal layer 2 that contains ? phase W1-xTax (0.00<x?0.30); and a recording layer 10 that includes a ferromagnetic layer 18 having a reversible magnetization direction and is adjacent to the heavy metal layer 2, in which a thickness of the heavy metal layer 2 is 2 nm or more and 8 nm or less.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 20, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Yoshiaki Saito, Shoji Ikeda, Hideo Sato, Tetsuo Endoh
  • Patent number: 11522126
    Abstract: A film stack for a magnetic tunnel comprises a substrate, a magnetic reference layer disposed over the substrate, and a tunnel barrier layer disposed over the magnetic reference layer. The film stack further comprises a magnetic storage layer disposed over the tunnel barrier layer, and a capping layer disposed over the magnetic storage layer. Further, the film stack comprises at least one protection layer disposed between the magnetic reference layer and the tunnel barrier layer and disposed between the magnetic storage layer and the capping layer. Additionally, a material forming the at least one protection layer differs from at least one of a material forming the magnetic reference layer and a material forming the magnetic storage layer.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: December 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Jaesoo Ahn, Sahil Patel, Chando Park, Mahendra Pakala
  • Patent number: 11514936
    Abstract: The present disclosure relates to read head apparatus, and methods of forming read head apparatus, for magnetic storage devices, such as magnetic tape drives (e.g., tape drives). In one implementation, a read head for magnetic storage devices includes a lower shield, an upper shield, one or more lower leads, and a plurality of upper leads. The read head includes a plurality of read sensors, each read sensor of the plurality of read sensors including a first antiferromagnetic (AFM) layer. The read head includes a plurality of soft bias side shields disposed between and outwardly of the plurality of read sensors. The read head includes a plurality of second AFM layers disposed below the plurality of soft bias side shields along a downtrack direction.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Hongquan Jiang, Cherngye Hwang, Hisashi Takano
  • Patent number: 11476414
    Abstract: An exchange coupling film in which a magnetic field (Hex) at which the magnetization direction of a pinned magnetic layer is reversed is high, in which stability under high-temperature conditions is high, and which is excellent in strong-magnetic field resistance. The exchange coupling film includes an antiferromagnetic layer and a pinned magnetic layer including a ferromagnetic layer, the antiferromagnetic layer and the pinned magnetic layer being stacked together. The antiferromagnetic layer has a structure including a PtCr layer, a PtMn layer, and an IrMn layer stacked in this order. The IrMn layer is in contact with the pinned magnetic layer. The thickness of the PtMn layer is 12 ? or more, and the thickness of the IrMn layer is 6 ?. The sum of the thickness of the PtMn layer and the thickness of the IrMn layer is 20 ? or more.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 18, 2022
    Assignee: ALPS ALPINE CO., LTD.
    Inventors: Masamichi Saito, Hiroaki Endo, Fumihito Koike
  • Patent number: 11456411
    Abstract: A method for fabricating a magnetic tunneling junction (MTJ) element is disclosed. A substrate is provided. A reference layer is formed on the substrate. A tunnel barrier layer is formed on the reference layer. A free layer is formed on the tunnel barrier layer. A composite capping layer is formed on the free layer. The composite capping layer comprises an amorphous layer, a light-element sink layer, and/or a diffusion-stop layer. The reference layer, the tunnel barrier layer, the free layer, and the composite capping layer constitute an MTJ stack.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: September 27, 2022
    Assignee: HeFeChip Corporation Limited
    Inventors: Qinli Ma, Wei-Chuan Chen, Youngsuk Choi, Shu-Jen Han
  • Patent number: 11423929
    Abstract: A reader includes a bearing surface and a free layer having a front surface that forms a portion of the bearing surface. The reader also includes a synthetic antiferromagnetic (SAF) structure below the free layer, the SAF structure has a narrow portion with a front surface that forms a portion of the bearing surface and a wide portion behind the narrow portion. The reader further includes an antiferromagnetic (AFM) layer in contact with the wide portion of the SAF structure. The SAF structure is configured to prevent switching from one magnetic state to another magnetic state in the wide portion under thermal fluctuations.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: August 23, 2022
    Assignee: Seagate Technology LLC
    Inventors: Victor Sapozhnikov, Taras Grigorievich Pokhil, Andrzej Adam Stankiewicz, Mohammed Shariat Ullah Patwari
  • Patent number: 11410689
    Abstract: A magnetoresistance effect element includes a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer positioned between the first ferromagnetic layer and the second ferromagnetic layer, and at least one of the first ferromagnetic layer and the second ferromagnetic layer is a Heusler alloy represented by the following General Formula (1): Co2Fe?X???(1) (in Formula (1), X represents one or more elements selected from the group consisting of Mn, Cr, Si, Al, Ga and Ge, and ? and ? represent numbers that satisfy 2.3??+?, ?<?, and 0.5<?<1.9).
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: August 9, 2022
    Assignee: TDK CORPORATION
    Inventors: Kazuumi Inubushi, Katsuyuki Nakada, Tetsuya Uemura
  • Patent number: 11385305
    Abstract: A tunneling magnetoresistance (TMR) sensor device is disclosed that includes one or more TMR sensors. The TMR sensor device comprises a first resistor comprising a first TMR film, a second resistor comprising a second TMR film different than the first TMR film, a third resistor comprising the second TMR film, and a fourth resistor comprising the first TMR film. The first TMR film comprises a reference layer having a first magnetization direction anti-parallel to a second magnetization direction of a pinned layer. The second TMR film comprises a reference layer having a first magnetization direction parallel to a second magnetization direction of a first pinned layer, and a second pinned layer having a third magnetization direction anti-parallel to the first magnetization direction of the reference layer and the second magnetization direction of the first pinned layer.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: July 12, 2022
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Yuankai Zheng, Christian Kaiser, Zhitao Diao, Chih-Ching Hu, Chen-Jung Chien, Yung-Hung Wang, Dujiang Wan, Ronghui Zhou, Ming Mao, Ming Jiang, Daniele Mauri
  • Patent number: 11328743
    Abstract: Provided is a precursor of a current-perpendicular-to-plane giant magnetoresistive element having a laminated structure of ferromagnetic metal layer/nonmagnetic metal layer/ferromagnetic metal layer, the precursor having a nonmagnetic intermediate layer containing a non-magnetic metal and an oxide in a predetermined ratio such that the distribution thereof is nearly uniform at the atomic level. Also provided is a current-perpendicular-to-plane giant magnetoresistive element having a current-confinement structure (CCP) which has: a current confinement structure region made of a conductive alloy and obtained by heat-treating a laminated structure of a ferromagnetic metal layer and a nonmagnetic intermediate layer at a predetermined temperature; and a high-resistance metal alloy region containing an oxide and surrounding the current confinement structure region.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 10, 2022
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tomoya Nakatani, Taisuke Sasaki, Takao Furubayashi, Kazuhiro Hono
  • Patent number: 11201189
    Abstract: A semiconductor device includes a first rare earth oxide layer, a first magnetic layer adjacent to the first rare earth oxide layer, a second rare earth oxide layer, a second magnetic layer adjacent to the second rare earth oxide layer, and a nonmagnetic layer. The first magnetic layer is disposed between the first rare earth oxide layer and the nonmagnetic layer and is oriented in a crystal surface which is the same as a crystal surface of the nonmagnetic layer. The second magnetic layer is disposed between the second rare earth oxide layer and the nonmagnetic layer and is oriented in a crystal surface which is the same as a crystal surface of the nonmagnetic layer. The nonmagnetic layer is disposed between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: September 9, 2018
    Date of Patent: December 14, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Youngmin Eeh, Toshihiko Nagase, Daisuke Watanabe, Kazuya Sawada, Kenichi Yoshino, Tadaaki Oikawa, Hiroyuki Ohtori
  • Patent number: 11145807
    Abstract: An electronic device may include a semiconductor memory, and the semiconductor memory may include a substrate; a magnetic tunnel junction (MTJ) structure including a free layer, a pinned layer, and a tunnel barrier layer, the free layer having a variable magnetization direction, the pinned layer having a fixed magnetization direction, the tunnel barrier layer being interposed between the free layer and the pinned layer; and an interface layer and a damping constant enhancing layer interposed between the tunnel barrier layer and the pinned layer, wherein the interface layer may be structured to reduce metal diffusion and the damping constant enhancing layer includes a material having a relatively high damping constant to suppress switching of the magnetization direction of the pinned layer.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 12, 2021
    Assignee: SK hynix Inc.
    Inventors: Jongkoo Lim, Gukcheon Kim, Soogil Kim, Jeongmyeong Kim
  • Patent number: 11127894
    Abstract: This spin-orbit-torque magnetization rotating element includes a spin-orbit torque wiring extending in a first direction and a first ferromagnetic layer laminated on the spin-orbit torque wiring, wherein the spin-orbit torque wiring includes a compound represented by XYZ or X2YZ with respect to a stoichiometric composition.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 21, 2021
    Assignee: TDK CORPORATION
    Inventors: Katsuyuki Nakada, Yohei Shiokawa
  • Patent number: 11120856
    Abstract: An example article includes a composite free layer and a conductive channel. The composite free layer includes a high-anisotropy ferromagnetic layer, a non-magnetic transition metal layer adjacent to the high-anisotropy ferromagnetic layer, and an ultra-low damping magnetic insulator. The non-magnetic transition metal layer is between the ultra-low damping magnetic insulator and the high-anisotropy ferromagnetic layer. An example spin-orbit torque (SOT) stack may include the example article. Techniques for forming and switching example articles and SOT stacks are described.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 14, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Randall H. Victora, Roy C. Bell
  • Patent number: 11120933
    Abstract: A magnetoresistive sensor includes a free layer and a cap over the free layer. The cap includes an upper layer and an insertion layer between the upper layer and the free layer. The insertion layer includes a non-magnetic alloy formed of at least one refractory metal and at least one ferromagnetic metal.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 14, 2021
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Liwen Tan, Jae-Young Yi, Eric W. Singleton
  • Patent number: 10998491
    Abstract: A magnetoresistance effect element is provided, which can, even in a region where the element size of the magnetoresistance effect element is small, implement stable record holding at higher temperatures, and moreover which has higher thermal stability. The magnetoresistance effect element has a configuration including reference layer (B1)/first non-magnetic layer (1)/first magnetic layer (21)/first non-magnetic insertion layer (31)/second magnetic layer (22). A magnetostatic coupling is established between the first magnetic layer (21) and the second magnetic layer (22) due to magnetostatic interaction becoming dominant.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: May 4, 2021
    Assignee: TOHOKU UNIVERSITY
    Inventors: Kyota Watanabe, Shunsuke Fukami, Hideo Sato, Hideo Ohno, Tetsuo Endoh
  • Patent number: 10937951
    Abstract: A magnetoresistance effect element according to an aspect of the present disclosure includes a first ferromagnetic layer as a magnetization fixed layer including a ferromagnetic Heusler alloy, a second ferromagnetic layer as a magnetization free layer including a ferromagnetic Heusler alloy, and a nonmagnetic spacer layer provided between the first ferromagnetic layer and the second ferromagnetic layer, and the nonmagnetic spacer layer includes a nonmagnetic Fe group, Co group, or Ni group Heusler alloy.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 2, 2021
    Assignee: TDK CORPORATION
    Inventors: Katsuyuki Nakada, Kazuumi Inubushi
  • Patent number: 10916283
    Abstract: A magnetic domain wall movement element includes a first ferromagnetic layer, a magnetic recording layer, a nonmagnetic layer, a first electrode, and a second electrode. The magnetic recording layer includes: a first region which overlaps with the first electrode and the first ferromagnetic layer in a first direction; a second region which overlaps with the second electrode and the first ferromagnetic layer in the first direction; and a third region which is located between the first region and the second region. An area of a first section in the first region facing the first electrode is larger than an area of a second section in the second region facing the second electrode. The first ferromagnetic layer overlaps with a part of the first electrode and a part of the second electrode in the first direction.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 9, 2021
    Assignee: TDK CORPORATION
    Inventors: Takuya Ashida, Tomoyuki Sasaki, Tatsuo Shibata
  • Patent number: 10868235
    Abstract: A synthetic antiferromagnetic structure for a spintronic device is disclosed and has an FL2/Co or Co alloy/antiferromagnetic coupling/Co or Co alloy/CoFeB configuration where FL2 is a ferromagnetic free layer with intrinsic PMA. Antiferromagnetic coupling is improved by inserting a Co or Co alloy dusting layer on top and bottom surfaces of the antiferromagnetic coupling layer. The FL2 layer may be a L10 ordered alloy, a rare earth-transition metal alloy, or an (A1/A2)n laminate where A1 is one of Co, CoFe, or an alloy thereof, and A2 is one of Pt, Pd, Rh, Ru, Ir, Mg, Mo, Os, Si, V, Ni, NiCo, and NiFe, or A1 is Fe and A2 is V. A method is also provided for forming the synthetic antiferromagnetic structure.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 10832847
    Abstract: An embodiment includes an apparatus comprising: a substrate; a magnetic tunnel junction (MTJ), on the substrate, comprising a fixed layer, a free layer, and a dielectric layer between the fixed and free layers; and a first synthetic anti-ferromagnetic (SAF) layer, a second SAF layer, and an intermediate layer, which includes a non-magnetic metal, between the first and second SAF layers; wherein the first SAF layer includes a Heusler alloy. Other embodiments are described herein.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 10, 2020
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Patent number: 10790441
    Abstract: A switching device, comprising an anti-ferromagnet structure having an upper layer and a lower layer, the upper layer and lower layer anti-ferromagnetically coupled by an exchange coupling layer, the upper and lower layer formed of a similar material but having differing volumes, and wherein the device is configured to inject symmetrically spin-polarized currents through the upper and lower layers to achieve magnetic switching of the anti-ferromagnet structure.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: September 29, 2020
    Assignee: Purdue Research Foundation
    Inventors: Kerem Y. Camsari, Ahmed Zeeshan Pervaiz, Rafatul Faria, Esteban E Marinero-Caceres, Supriyo Datta
  • Patent number: 10755733
    Abstract: A read head includes a first ferromagnetic layer, a second ferromagnetic layer, a first diffusion-assist nonmagnetic metallic layer located between the first ferromagnetic layer and the second ferromagnetic layer, a second diffusion-assist nonmagnetic metallic layer located between the first ferromagnetic layer and the second ferromagnetic layer, and a semiconductor spacer layer located between the first diffusion-assist nonmagnetic metallic layer and the second diffusion-assist nonmagnetic metallic layer.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 25, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yuankai Zheng, Christian Kaiser, Zhitao Diao
  • Patent number: 10756257
    Abstract: Provided is a magnetoresistance effect device comprising a magnetoresistance effect element including a first ferromagnetic layer, a second ferromagnetic layer and a spacer layer and a high-frequency signal line. The high-frequency signal line includes an overlapping part disposed at a position overlapping the magnetoresistance effect element and a non-overlapping part disposed at a position not overlapping the magnetoresistance effect element in a plan view from a stacking direction. At least a part of the non-overlapping part is formed to be thicker than at least a part of the overlapping part. A distance in the stacking direction between a virtual plane including a surface on the side of the overlapping part of the first ferromagnetic layer and a center line in the high-frequency signal line in the stacking direction is shorter in at least a part of the overlapping part than in at least a part of the non-overlapping part.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 25, 2020
    Assignee: TDK CORPORATION
    Inventor: Naomichi Degawa
  • Patent number: 10749105
    Abstract: To provide a key monocrystalline magnetoresistance element necessary for accomplishing mass production and cost reduction for applying a monocrystalline giant magnetoresistance element using a Heusler alloy to practical devices. A monocrystalline magnetoresistance element of the present invention includes a silicon substrate 11, a base layer 12 having a B2 structure laminated on the silicon substrate 11, a first non-magnetic layer 13 laminated on the base layer 12 having a B2 structure, and a giant magnetoresistance effect layer 17 having at least one laminate layer including a lower ferromagnetic layer 14, an upper ferromagnetic layer 16, and a second non-magnetic layer 15 disposed between the lower ferromagnetic layer 14 and the upper ferromagnetic layer 16.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 18, 2020
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jiamin Chen, Yuya Sakuraba, Jun Liu, Hiroaki Sukegawa, Kazuhiro Hono
  • Patent number: 10741318
    Abstract: A spin current magnetization rotational element is provided in which deterioration in the degree of integration is prevented from being caused and a magnetization rotation can be easily realized. A spin current magnetization rotational element includes a spin-orbit torque wiring which extends in a first direction, a first ferromagnetic layer which is laminated in a second direction intersecting the first direction; and a first magnetic field applying layer which is disposed to be separated from the first ferromagnetic layer in the first direction and configured to apply an assistant magnetic field assisting a magnetization rotation of the first ferromagnetic layer to the first ferromagnetic layer.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 11, 2020
    Assignee: TDK CORPORATION
    Inventors: Yugo Ishitani, Tomoyuki Sasaki
  • Patent number: 10720570
    Abstract: Magnetic sensors using spin Hall effect and methods for fabricating same are provided. One such magnetic sensor includes a spin Hall layer including an electrically conductive, non-magnetic material, a magnetic free layer adjacent to the spin Hall layer, a pair of push terminals configured to enable an electrical current to pass through the magnetic free layer and the spin Hall layer in a direction that is perpendicular to a plane of the free and spin Hall layers, and a pair of sensing terminals configured to sense a voltage when the electrical current passes through the magnetic free layer and the spin Hall layer, where each of the push and sensing terminals is electrically isolated from the other terminals.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: July 21, 2020
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Quang Le, David John Seagle, Xiaoyong Liu, Daniele Mauri, Yongchul Ahn, Hongquan Jiang, Guangli Liu, David Patrick Druist, Jui-Lung Li
  • Patent number: 10714130
    Abstract: An MTJ or MR read sensor is formed by depositing a stack in a reverse order with a free layer (FL) deposited on a lower shield, followed by a tunneling barrier layer (for an MTJ) or a conducting spacer layer (for an MR) and, finally, an antiferromagnetically coupled pinning structure and an upper shield. This reverse order permits a series of etching processes to be accurately performed on the lower shield and the stack together with the formation of biasing layers that are coupled to the lower shield and the stack, without adversely affecting the stability of the pinning structure. Further, the distance between the FL and the shield is accurately determined and repeatable even down to the sub-nm regime. An upper shield can then be formed and also coupled to the biasing layers.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: July 14, 2020
    Assignee: Headway Technologies, Inc.
    Inventors: Wenyu Chen, Yan Wu
  • Patent number: 10707005
    Abstract: A spin current magnetization rotational element is provided in which deterioration in the degree of integration is prevented from being caused and a magnetization rotation can be easily realized. A spin current magnetization rotational element includes a spin-orbit torque wiring which extends in a first direction, a first ferromagnetic layer which is laminated in a second direction intersecting the first direction; and a first magnetic field applying layer which is disposed to be separated from the first ferromagnetic layer in the first direction and configured to apply an assistant magnetic field assisting a magnetization rotation of the first ferromagnetic layer to the first ferromagnetic layer.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 7, 2020
    Assignee: TDK CORPORATION
    Inventors: Yugo Ishitani, Tomoyuki Sasaki
  • Patent number: 10622552
    Abstract: A magnetoresistive stack includes a seed region formed above a base region, a fixed magnetic region formed above the seed region and an intermediate region positioned between the fixed magnetic region and a free magnetic region. The base region may be formed of a material having a lower standard free energy of oxidation than iron.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: April 14, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Sumio Ikegawa, Jon Slaughter, Renu Whig
  • Patent number: 10622546
    Abstract: A magnetic memory device includes a substrate, a tunnel barrier pattern on the substrate, a first magnetic pattern and a second magnetic pattern spaced apart from each other with the tunnel barrier pattern therebetween, and a short preventing pattern spaced apart from the tunnel barrier pattern with the second magnetic pattern therebetween. The short preventing pattern includes at least two oxide layers and at least two metal layers, which are alternately stacked.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 14, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Chul Lee, Se Chung Oh, Sangjun Yun, Jae Hoon Kim, KyungTae Nam, Eunsun Noh
  • Patent number: 10388854
    Abstract: According to one embodiment, a magnetic memory device includes a stacked structure, the stacked structure including a first magnetic layer having a variable magnetization direction, a second magnetic layer having a fixed magnetization direction and a nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, wherein the nonmagnetic layer comprises a structure in which a first oxide layer formed of a first metal oxide and a second oxide layer formed of a second metal oxide having a relative dielectric constant greater than a relative dielectric constant of the first metal oxide are stacked.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 20, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Masatoshi Yoshikawa, Shuichi Tsubata
  • Patent number: 10381550
    Abstract: A magnetic junction, a memory using the magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes first and second reference layers, a main barrier layer having a first thickness, a free layer, an engineered secondary barrier layer and a second reference layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The main barrier layer is between the first reference layer and the free layer. The secondary barrier layer is between the free layer and the second reference layer. The engineered secondary barrier layer has a resistance, a second thickness less than the first thickness and a plurality of regions having a reduced resistance less than the resistance. The free and reference layers each has a perpendicular magnetic anisotropy energy and an out-of-plane demagnetization energy less than the perpendicular magnetic anisotropy energy.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 13, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zheng Duan, Dmytro Apalkov, Vladimir Nikitin
  • Patent number: 10312436
    Abstract: A method for fabricating artificial skyrmions and skyrmion lattices with a stable ground state at room temperature and in the absence of magnetic fields is provided. The lattices are formed by patterning vortex-state nanodots over macroscopic areas on top of an underlayer with perpendicular magnetic anisotropy (PMA); and preparing artificial skyrmion lattices using ion irradiation to suppress PMA in the underlayer and allow imprinting of the vortex structure from the nanodots to form the skyrmion lattices. Alternatively the skyrmions can be formed by ion-irradiating select asymmetric nanodot regions of the PMA underlayer, leading to planar skyrmions without nanodot protrusions. These artificial skyrmions can be used for low dissipation information storage, such as magnetic memory, logic devices and sensors.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: June 4, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dustin Gilbert, Kai Liu
  • Patent number: 10190923
    Abstract: The disclosure relates to a strain sensing element provided on a deformable substrate. The strain sensing element includes: a first magnetic layer; a second magnetic layer; and an intermediate layer. The second magnetic layer includes Fe1-yBy (0<y?0.3). Magnetization of the second magnetic layer changes according to deformation of the substrate. The intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 29, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiori Kaji, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 10126262
    Abstract: A nanopore measurement circuit is disclosed. The nanopore measurement circuit includes a nanopore electrode, a first analog memory and a second analog memory. The nanopore measurement circuit also includes a switch network that selectively connects the nanopore electrode to at least one of the first analog and the second analog memory.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 13, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Bill Maney, Hui Tian, Santiago Fernandez-Gomez
  • Patent number: 10128435
    Abstract: There is disclosed an information storage element including a first layer including a ferromagnetic layer with a magnetization direction perpendicular to a film face; an insulation layer coupled to the first layer; and a second layer coupled to the insulation layer opposite the first layer, the second layer including a fixed magnetization so as to be capable of serving as a reference of the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material, and the magnetization state is configured to be changed by a spin injection. A magnitude of an effective diamagnetic field which the first layer receives is smaller than a saturated magnetization amount of the first layer.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: November 13, 2018
    Assignee: Sony Corporation
    Inventors: Kazutaka Yamane, Masanori Hosomi, Hiroyuki Ohmori, Kazuhiro Bessho, Yutaka Higo, Hiroyuki Uchida, Tetsuya Asayama
  • Patent number: 10090007
    Abstract: An oscillation mechanism comprises a first spin-polarization layer having a first magnetic moment; a second spin-polarization layer having a second magnetic moment, wherein an orientation of the second magnetic moment is configured to oppose an orientation of the first magnetic moment; and a field-generating layer disposed between the first spin-polarization layer and the second spin-polarization layer for generating a magnetic field that oscillates around one or more of the first and second magnetic moment orientations.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: October 2, 2018
    Assignee: Carnegie Mellon University
    Inventor: Jian-Gang Zhu
  • Patent number: 10060992
    Abstract: A magnetic sensor includes an MR element and a bias magnetic field generation unit. The MR element includes a magnetization pinned layer, a nonmagnetic layer and a free layer stacked along Z direction. The bias magnetic field generation unit includes a first antiferromagnetic layer, a ferromagnetic layer and a second antiferromagnetic layer stacked along the Z direction. The bias magnetic field generation unit has a first end face and and a second end face located at opposite ends in the Z direction. The MR element is placed such that the entirety of the MR element is contained in a space formed by shifting an imaginary plane equivalent to the first end face of the bias magnetic field generation unit away from the second end face along the Z direction.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 28, 2018
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Patent number: 10049710
    Abstract: A nonvolatile memory cell includes: a first fixed magnetic layer; a first nonmagnetic electrode disposed on the first magnetic layer; a memory storage layer disposed on the first nonmagnetic electrode; a tunnel barrier layer disposed on the memory storage layer; a second fixed magnetic layer disposed on the tunnel barrier layer; and a second nonmagnetic electrode disposed on the second fixed magnetic layer.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: August 14, 2018
    Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, UNIVERSITY OF DENVER
    Inventors: Thomas Silva, Justin Shaw, Eric Edwards, Xin Fan, Hans Nembach
  • Patent number: 10002903
    Abstract: Implementations of the disclosed technology provide an electronic device including a semiconductor memory, wherein the semiconductor memory includes: a magnetic tunnel junction (MTJ) structure including a free layer having a changeable magnetization direction, a pinned layer having a pinned magnetization direction, and a tunnel barrier layer sandwiched between the free layer and the pinned layer; and an under layer located under the MTJ structure, wherein the under layer includes a first under layer including a silicon-based alloy, and a second under layer located on the first under layer and including a metal.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: June 19, 2018
    Assignee: SK hynix Inc.
    Inventors: Jong-Koo Lim, Guk-Cheon Kim, Yang-Kon Kim, Ku-Youl Jung, Won-Joon Choi
  • Patent number: 9941464
    Abstract: A semiconductor device includes a resistance variable element including a free magnetic layer, a tunnel barrier layer and a pinned magnetic layer; and a magnetic correction layer disposed over the resistance variable element to be separated from the resistance variable element, and having a magnetization direction which is opposite to a magnetization direction of the pinned magnetic layer.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: April 10, 2018
    Assignee: SK hynix Inc.
    Inventors: Seok-Pyo Song, Se-Dong Kim, Hong-Ju Suh
  • Patent number: 9910106
    Abstract: A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 6, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Bradley Neal Engel, Guido De Sandre
  • Patent number: 9865799
    Abstract: Provided is an electronic device including a semiconductor memory. The semiconductor memory may include: a pinned layer having a pinned magnetization direction; a free layer having a changeable magnetization direction; a tunnel barrier layer interposed between the pinned layer and the free layer, and including a metal oxide; and a carbon-based compound patch positioned at one or more of between the pinned layer and the tunnel barrier layer, between the free layer and the tunnel barrier layer, and in the tunnel barrier layer.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: January 9, 2018
    Assignee: SK hynix Inc.
    Inventors: Jeong-Myeong Kim, June-Seo Kim, Jong-Koo Lim, Jung-Hwan Moon, Sung-Joon Yoon