Resistive Patents (Class 365/100)
  • Publication number: 20130308366
    Abstract: Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has an OTP element coupled to a diode in a memory cell. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for suitable duration of time, a current flows through an OTP element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI/LOCOS isolations.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 21, 2013
    Inventor: Shine C. Chung
  • Patent number: 8587983
    Abstract: A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 19, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: ChiaHua Ho, Erh-Kun Lai, Kuang Yeu Hsieh
  • Patent number: 8580586
    Abstract: A memory array includes a plurality of memory cells, each of which receives a bit line, a first word line, and a second word line. Each memory cell includes a cell selection circuit, which allows the memory cell to be selected. Each memory cell also includes a two-terminal switching device, which includes first and second conductive terminals in electrical communication with a nanotube article. The memory array also includes a memory operation circuit, which is operably coupled to the bit line, the first word line, and the second word line of each cell. The circuit can select the cell by activating an appropriate line, and can apply appropriate electrical stimuli to an appropriate line to reprogrammably change the relative resistance of the nanotube article between the first and second terminals. The relative resistance corresponds to an informational state of the memory cell.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: November 12, 2013
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Frank Guo, Thomas Rueckes, Steven L. Konsek, Mitchell Meinhold, Max Strasburg, Ramesh Sivarajan, X. M. Henry Huang
  • Patent number: 8582355
    Abstract: According to one embodiment, a magnetic memory element includes a stacked body including first and second stacked units. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. A magnetization of the first ferromagnetic layer is fixed in a direction perpendicular to the first ferromagnetic layer. A magnetization of the second ferromagnetic layer is variable. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit stacked with the first stacked unit includes third and fourth ferromagnetic layers and a second nonmagnetic layer. A magnetization of the third ferromagnetic layer is variable. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. A magnetization of the fourth ferromagnetic layer is fixed in a direction perpendicular to the fourth ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Saida, Minoru Amano, Junichi Ito
  • Patent number: 8576654
    Abstract: A non-volatile memory device includes a plurality of memory blocks. Each of memory blocks includes a main area including a plurality of first memory cells having a phase-change material and a spare area including at least one second memory cell for storing initial information about the plurality of first memory cells. In the non-volatile memory device, a circuit of the at least one second memory cell is cut off according to the initial information, and the initial information is defective block information that is information about a defect of the plurality of memory blocks.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-shik Shin, Ji-won Jung
  • Patent number: 8576608
    Abstract: A memory apparatus includes: a plurality of memory cells which includes a first resistance change element; and a read-out circuit which determines the size of a resistance value of the first resistance change element by comparing the resistance state of a memory cell selected among the plurality of memory cells to the resistance state of a reference memory cell, wherein the reference memory cell includes a second resistance change element, a resistance value of the second resistance change element with respect to an applied voltage is smaller than that in a high resistance state of the first resistance change element, and the second resistance change element shows the same resistance change characteristic as the first resistance change element.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventors: Tomohito Tsushima, Makoto Kitagawa, Tsunenori Shiimoto, Chieko Nakashima, Hiroshi Yoshihara, Kentaro Ogata
  • Patent number: 8576605
    Abstract: A nonvolatile semiconductor memory device according to an embodiment includes a memory cell array configured by plural memory cells each including a variable resistor and each provided between first and second lines. A control circuit applies to a memory cell through the first and second lines a writing voltage for writing data or a reading voltage for reading data. A sense amplifier circuit senses data retained in a memory cell based on a current flowing through the first line. In a data writing operation, the control circuit applies a writing voltage to each of n number of memory cells configuring one unit such that the memory cells may be supplied with different resistance values. In a data reading operation, the sense amplifier circuit compares level relationship of the resistance values of n number of memory cells configuring one unit and reads out n! patterns of data from the one unit.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takahiko Sasaki
  • Patent number: 8559239
    Abstract: The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 15, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Yantao Ma, Jun Liu
  • Patent number: 8559205
    Abstract: A nonvolatile semiconductor memory apparatus including a substrate, lower-layer electrode wires provided on the substrate, an interlayer insulating layer provided with contact holes at locations respectively opposite to the lower-layer electrode wires, resistance variable layers which are respectively connected to the lower-layer electrode wires; and non-ohmic devices which are respectively provided on the resistance variable layers. The non-ohmic devices each has a laminated-layer structure including plural semiconductor layers, a laminated-layer structure including a metal electrode layer and an insulator layer, or a laminated-layer structure including a metal electrode layer and a semiconductor layer.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 15, 2013
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Takeshi Takagi
  • Patent number: 8559211
    Abstract: A memory device includes a substrate and a plurality of cell arrays stacked above the substrate. The cell arrays have bit lines coupled to first ends of memory cells and word lines coupled to the other ends. Each of the memory cells includes a variable resistance element to be set at a resistance value. While a selected bit line is set at a certain potential, word lines coupled to different memory cells, which are coupled in common to the selected bit line, are sequentially driven, so that different memory cells are accessed in a time-divisional mode.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Haruki Toda
  • Patent number: 8553446
    Abstract: A nonvolatile memory element of the present invention comprises a first electrode (103), a second electrode (108); a resistance variable layer (107) which is interposed between the first electrode (103) and the second electrode (107) and is configured to switch a resistance value reversibly in response to an electric signal applied between the electrodes (103) and (108), and the resistance variable layer (107) has at least a multi-layer structure in which a first hafnium-containing layer having a composition expressed as HfOx (0.9?x?1.6), and a second hafnium-containing layer having a composition expressed as HfOy (1.8<y<2.0) are stacked together.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: October 8, 2013
    Assignee: Panasonic Corporation
    Inventors: Satoru Mitani, Yoshihiko Kanzawa, Koji Katayama, Takeshi Takagi
  • Patent number: 8547724
    Abstract: A nonvolatile memory device comprises a one-time-programmable (OTP) lock bit register. The nonvolatile memory device comprises a variable-resistance memory cell array comprising an OTP block that store data and a register that stores OTP lock state information indicating whether the data is changeable. The register comprises a variable memory cell. An initial value of the OTP lock state information is set to a program protection state.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Jun Lee, Kwang Jin Lee, Joon Min Park, Huik Won Seo
  • Patent number: 8542522
    Abstract: One embodiments of the present invention is directed to a single-bit memory cell comprising transistor-based bit latch having a data state and a memristor, coupled to the transistor-based bit latch, in which the data state of the transistor-based bit latch is stored by a store operation and from which a previously-stored data state is retrieved and restored into the transistor-based bit latch by a restore operation. Another embodiment of the present invention is directed to a single-bit memory cell comprising a master-slave flip flop and a slave flip flop, and a power input, a memristor, a memory-cell power input, a first memory-cell clock input, a second memory-cell clock input, a memory-cell data input, a memory-cell data output, and two or more memory-cell control inputs.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: September 24, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Gregory Stuart Snider
  • Patent number: 8536675
    Abstract: A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Eric A. Joseph, Chung H. Lam, Bipin Rajendran, Alejandro G. Schrott, Yu Zhu
  • Patent number: 8531861
    Abstract: One time programming memory and methods of storage and manufacture of the same are provided. Examples relate to microelectronic memory technology and manufacture. The one time programming memory includes a diode (10) having a unidirectional conducting rectification characteristic and a variable-resistance memory (20) having a bipolar conversion characteristic. The diode (10) having the unidirectional conducting rectification characteristic and the variable-resistance memory (20) having the bipolar conversion characteristic are connected in series. The one time programming memory device of this example takes the bipolar variable-resistance memory (20) as a storage unit, programming the bipolar variable-resistance memory (20) into different resistance states so as to carry out multilevel storage, and takes the unidirectional conducting rectification diode (10) as a gating unit.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 10, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Ming Liu, Qingyun Zuo, Shibing Long, Changqing Xie, Zongliang Huo
  • Publication number: 20130229870
    Abstract: A semiconductor random access memory device includes a memory cell including a resistor whose resistance varies by formation and disappearance of a filament due to an oxidation-reduction reaction of metal ions, a memory area configured to include a first memory area operable in a nonvolatile mode in which a stored content thereof is not lost by a power-off event, and a second memory area operable in a volatile mode in which the stored content thereof is lost by the power-off event, each of the first memory area and the second memory area including the plurality of the memory cells, a register circuit that stores information including a first address information indicating the first memory area, and a second address information indicating the second memory area, and a control circuit that controls the nonvolatile mode, and the volatile mode, with reference to the information stored in the register circuit.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 5, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Kazuhiko KAJIGAYA
  • Publication number: 20130215663
    Abstract: Junction diodes fabricated in standard CMOS logic processes can be used as program selectors with at least one heat sink or heater to assist programming for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The heat sink can be at least one thin oxide area, extended OTP element area, or other conductors coupled to the OTP element to assist programming. A heater can be at least one high resistance area such as an unsilicided polysilicon, unsilicided active region, contact, via, or combined in serial, or interconnect to generate heat to assist programming. The OTP device has at least one OTP element coupled to at least one diode in a memory cell. The diode can be constructed by P+ and N+ active regions in a CMOS N well, or on an isolated active region as the P and N terminals of the diode.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 22, 2013
    Inventor: Shine C. Chung
  • Patent number: 8514606
    Abstract: Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has an OTP element coupled to a diode in a memory cell. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for suitable duration of time, a current flows through an OTP element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI/LOCOS isolations.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: August 20, 2013
    Inventor: Shine C. Chung
  • Publication number: 20130208526
    Abstract: Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has at least one OTP element coupled to at least one diode in a memory cell. The diode can be constructed by P+ and N+ active regions in a CMOS N well, or on an isolated active region as the P and N terminals of the diode. The isolation between P+ and the N+ active regions of the diode in a cell or between cells can be provided by dummy MOS gate, SBL, or STI/LOCOS isolations. The OTP cell can have a MOS in series with the OTP element as a read selector. The OTP element can be polysilicon, silicided polysilicon, silicide, polymetal, metal-0, metal, metal alloy, local interconnect, thermally isolated active region, CMOS gate, or combination thereof.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventor: Shine C. Chung
  • Publication number: 20130201748
    Abstract: Programmable resistive memory using at least one diodes as program selectors can be data protected by programming protection bits in a non-volatile protection bit register. The data stored in the protection bit register can be used to enable or disable reading or writing in part or the whole programmable resistive memory. The data stored in the protection bit register can also be used to enable or enable scrambling the addresses to allow accessing the programmable resistive memory array. Similarly, the data stored in the protection bit register can be used to scramble data when writing into and descramble data when reading from the programmable resistive memory. Keys can be provided for address or data scrambling. The non-volatile protection bit register can be built with the kind of cells as the main array and/or integrated with the main array in the programmable resistive memory.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 8, 2013
    Inventor: Shine C. Chung
  • Patent number: 8503215
    Abstract: A memory cell is provided that includes a steering element, and a non-volatile state change element coupled in series with the steering element. The steering element and state change element are disposed in a vertically-oriented pillar. Other aspects are also provided.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: August 6, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald, James M. Cleeves
  • Patent number: 8476612
    Abstract: A method of manufacturing a phase change memory (PCM) includes forming a pinch plate layer transversely to a PCM layer that is insulated from the pinch plate layer by a dielectric layer. Biasing the pinch plate layer causes a depletion region to form in the PCM layer. During a read of the PCM in a reset or partial reset state the depletion region increases the resistance of the PCM layer significantly.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 2, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventor: John M. Peters
  • Patent number: 8466446
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 18, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiag
  • Patent number: 8456890
    Abstract: According to one embodiment, a multi-level resistance change memory includes a memory cell includes first and second resistance change films connected in series, and a capacitor connected in parallel to the first resistance change film, a voltage pulse generating circuit generating a first voltage pulse with a first pulse width to divide a voltage of the first voltage pulse into the first and second resistance change films based on a resistance ratio thereof, and generating a second voltage pulse with a second pulse width shorter than the first pulse width to apply a voltage of the second voltage pulse to the second resistance change film by a transient response of the capacitor, and a control circuit which is stored multi-level data to the memory cell by using the first and second voltage pulses in a writing.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: June 4, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Reika Ichihara
  • Patent number: 8456888
    Abstract: A semiconductor memory device with a variable resistance element includes a plurality of active areas isolated from one another by an isolation layer formed in a substrate, a plurality of word lines crossing over the plurality of active areas, an auxiliary source line disposed between two selected word lines and commonly connected to at least two active areas among the plurality of active areas between the two selected word lines, and a plurality of contact plugs each connected to a corresponding active area.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: June 4, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hyun Lee
  • Patent number: 8456884
    Abstract: Both decreasing access time and power consumption and improving storage bit count per one word line are compatibly attained. A memory cell array 1 has a configuration in which at least one row of memory cells MC having a fuse device F with a resistance value variable according to a flowing current and a plurality of cell transistors (TRB1 and TRB2) connected in parallel with respect to the fuse device F is arranged. In the relevant semiconductor device, out of the plurality of cell transistors (TRB1 and TRB2), the number of cell transistors turned ON is controllable by a writing control signal (WRITE) inputted from outside and an internal logic circuit 5 (and a word line drive circuit 4).
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: June 4, 2013
    Assignee: Sony Corporation
    Inventor: Yuji Torige
  • Patent number: 8455855
    Abstract: Some embodiments include apparatus and methods having a memory cell with a first electrode, a second electrode, and a dielectric located between the first and second electrodes. The dielectric may be configured to allow the memory cell to form a conductive path in the dielectric from a portion of a material of the first electrode to represent a first value of information stored in the memory cell. The dielectric may also be configured to allow the memory cell to break the conductive path to represent a second value of information stored in the memory cell.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: June 4, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8441846
    Abstract: A semiconductor memory device includes a memory cell array configured to include a plurality of memory cells, a plurality of bit lines respectively coupled to the plurality of memory cells, a first power-supply voltage supplying circuit configured to provide a first power-supply voltage to the memory cell array through the plurality of bit lines, a second power-supply voltage supplying circuit configured to provide a second power-supply voltage to the memory cell array through the plurality of bit lines, a first address selection circuit configured to couple a bit line selected by a first selection address to the first power-supply voltage supplying circuit, and a second address selection circuit configured to couple a bit line selected by a second selection address to the second power-supply voltage supplying circuit.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyu Sung Kim
  • Patent number: 8441838
    Abstract: Nonvolatile memory elements are provided comprising switching metal oxides. The nonvolatile memory elements may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or a Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 14, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sean Barstow, Tony Chiang, Sandra G. Malhotra
  • Patent number: 8431922
    Abstract: A lateral phase change memory includes a pair of electrodes separated by an insulating layer. The first electrode is formed in an opening in an insulating layer and is cup-shaped. The first electrode is covered by the insulating layer which is, in turn, covered by the second electrode. As a result, the spacing between the electrodes may be very precisely controlled and limited to very small dimensions. The electrodes are advantageously formed of the same material, prior to formation of the phase change material region.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 30, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Richard Dodge, Guy Wicker
  • Patent number: 8427203
    Abstract: An apparatus for reconfigurable computing logic implemented by an innovative memristor based computing architecture. The invention employs a decoder to select memristor devices whose ON/OFF impedance state will determine the reconfigurable logic output. Thus, the resulting circuit design can be electronically configured and re-configured to implement any multi-input/output Boolean logic computing functionality. Moreover, the invention retains its configured logic state without the application of a current or voltage source.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 23, 2013
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Robinson E. Pino, Youngok K. Pino
  • Patent number: 8422271
    Abstract: Method and apparatus for transferring data in a memory. A semiconductor memory includes a plurality of memory cells each having a resistive sense element (RSE) in series with a switching device. A conductive word line extends in a first direction adjacent the memory cells and is connected to a gate structure of each of the switching devices. A plurality of conductive bit lines extend in a second direction adjacent the memory cells, each bit line providing a connection node that interconnects a respective pair of the memory cells. A control circuit senses a programmed state of a selected memory cell by setting each of the bit lines on a first side of the selected memory cell to a first voltage level, setting each of the remaining bit lines on an opposing second side of the selected memory cell to a second voltage level, and setting the word line to a third voltage level.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: April 16, 2013
    Assignee: Seagate Technology LLC
    Inventors: Andrew John Carter, Yong Lu
  • Patent number: 8416604
    Abstract: The present invention relates to a memristor, and more particularly, to a method of implementing a memristor-based multilevel memory using a reference resistor array and a write-in circuit and a read-out/restoration circuit for the memristor-based multilevel memory, in which a memristor can be used as a multilevel memory. In the present invention, a reference resistance value is written in a selected memristor of a memristor array by applying repeatedly the current pulses of which widths are proportional to the difference between the resistances of the selected memristor and the selected node of the reference resistor array.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: April 9, 2013
    Assignees: Industrial Cooperation Foundation Chonbuk National University, The Regents of the University of California
    Inventors: Hyongsuk Kim, Leon O. Chua
  • Patent number: 8416631
    Abstract: An internal voltage generator circuit is disclosed. The internal voltage generator circuit includes a comparator configured to compare a first voltage with a reference voltage and to output a comparison signal. The circuit further includes an internal voltage driver configured to receive an external voltage and the comparison signal and to output an internal voltage at an internal voltage output terminal, based on the comparison signal. The circuit further includes a voltage divider circuit including first and second resistor units and a first voltage output terminal between the first and second resistor units, configured to receive the internal voltage, and configured to output the first voltage based on the resistance values of the first and second resistor units, the first and second resistor units connected in series, and the first voltage being output through the first voltage output terminal.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hoon Kim, Nam-Jong Kim
  • Patent number: 8416606
    Abstract: According to one embodiment, an information recording and reproducing device includes a recording layer and a driving unit. The recording layer includes a first layer containing a first compound. The first compound includes a first positive ion element. The first positive ion element is made of a transition metal element and serves as a first positive ion. The second positive ion element serves as a second positive ion. The driving unit is configured to generate a phase change in the recording layer and to record information by at least one of application of a voltage and application of a current to the recording layer. The coordination number of the first positive ion element at a position of a second coordination of the second positive ion element is 80% or more and less than 100% of the coordination number when the first compound is assumed to be a perfect crystal.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Tsukamoto, Tsukasa Nakai, Chikayoshi Kamata, Mariko Hayashi, Fumihiko Aiga, Takeshi Yamaguchi
  • Patent number: 8411486
    Abstract: According to one embodiment, there is provided a method of manufacturing a nonvolatile memory device. In this method, a first voltage may be applied to a variable resistive element having a resistance value which is electrically rewritable in a high resistance and in a low resistance. In this method, a second voltage may be applied to the variable resistive element in a case where the resistance value of the variable resistive element to which the first voltage has been applied is greater than a resistance value of the low resistance and is not greater than a resistance value of the high resistance. Further, in this method, the applying of the second voltage to the variable resistive element may be repeated until the resistance value of the variable resistive element to which the second voltage has been applied falls within a range of the resistance value of the low resistance.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Ryota Fujitsuka, Yoshio Ozawa
  • Patent number: 8405076
    Abstract: A nonvolatile memory element (100) includes a variable resistance layer (107) including a first metal oxide MOx and a second metal oxide MOy, and reaction energy of chemical reaction related to the first metal oxide, the second metal oxide, oxygen ions, and electrons is 2 eV or less. The chemical reaction is expressed by a formula 13, where a combination (MOx, MOy) of MOx and MOy is selected from a group including (Cr2O3, CrO3), (Co3O4, Co2O3), (Mn3O4, Mn2O3), (VO2, V2O5), (Ce2O3, CeO2), (W3O8, WO3), (Cu2O, CuO), (SnO, SnO2), (NbO2, Nb2O5), and (Ti2O3, TiO2).
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: March 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Takeki Ninomiya, Takeshi Takagi, Zhiqiang Wei
  • Patent number: 8385101
    Abstract: Methods and means related to memory resistors are provided. A memristor includes at least two different active materials disposed between a pair of electrodes. The active materials are selected to exhibit respective and opposite changes in electrical resistance in response to changes in oxygen ion content. The active materials are subject to oxygen ion reconfiguration under the influence of an applied electric field. An electrical resistance of the memristor is thus adjustable by way of applied programming voltages and is non-volatile between programming events.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 26, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Minxian Max Zhang, R. Stanley Williams
  • Patent number: 8363447
    Abstract: A storage device capable of reducing a number of cycles necessary for a verify at a time of multi-bit recording is provided. An initial value of a potential difference VGS between a gate and a source of a switching transistor at the time of the verify is set to a value varied based on a resistance value level of multi-bit information. In the case of recording 2 bits when “01” is the information, an initial value VGS01 is set to be smaller than VGS=1.7 V corresponding to the target resistance value level “01”, and when “00” is the information, a value is set to be lower than VGS=2.2 V corresponding to the target resistance value level “00” and higher than the above-described VGS01. This can reduce the number of cycles necessary for the verify process.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Tomohito Tsushima, Tsunenori Shiimoto, Shuichiro Yasuda
  • Patent number: 8363464
    Abstract: For example, one memory cell is configured using two memory cell transistors and one phase change element by disposing a plurality of diffusion layers in parallel to a bit-line, disposing gates between the diffusion layers so as to cross the bit-line, disposing bit-line contacts and source contacts alternately to the plurality of diffusion layers arranged in a bit-line direction for each diffusion layer, and providing a phase change element on the source contact. Also, the phase change element can be provided on the bit-line contact instead of the source contact. By this means, for example, increase in drivability of the memory cell transistors and reduction in area can be realized.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Riichiro Takemura, Kenzo Kurotsuchi, Takayuki Kawahara
  • Patent number: 8355274
    Abstract: A current steering element which can prevent occurrence of write disturb even when electric pulses having different polarities are applied and can cause large current to flow through a variable resistance element, and with which data can be written without problem. In a storage element (3) including: a variable resistance element (1) whose electric resistance value changes in response to application of electric pulses having a positive polarity and a negative polarity and which maintains the changed electric resistance value; and the current steering element (2) that steers current flowing through the variable resistance element (1) when the electric pulses are applied, the current steering element (2) includes: a first electrode (32); a second electrode (31); and a current steering layer (33) interposed between the first electrode (32) and the second electrode (31). When the current steering layer (33) includes SiNx (0<x?0.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: January 15, 2013
    Assignee: Panasonic Corporation
    Inventors: Koji Arita, Takumi Mikawa, Mitsuteru IIjima, Kenji Tominaga
  • Patent number: 8351291
    Abstract: A semiconductor device has an e-fuse module and a programming current generator. The e-fuse module includes an array of electrically programmable e-fuse elements. The programming current generator has a set of reference transistor elements, a selector for actuating the reference transistor elements to generate a selected reference current, and a current mirror for applying a programming current that is a function of the selected reference current to a selected e-fuse element of the array to program the resistance of the e-fuse element.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Freescale Semiconductor, Inc
    Inventors: Lini Lee, Yen Hau Lee
  • Patent number: 8351245
    Abstract: The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 8, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Yantao Ma, Jun Liu
  • Publication number: 20130003436
    Abstract: A non-volatile memory device includes a resistive switching device having a first electrode, a second electrode, and a resistive switching element, wherein the resistive switching element comprises a silicon material disposed in an overlapping region between the first electrode and the second electrode, wherein the second electrode comprises at least a metal material physically and electrically in contact with the resistive switching material, wherein the resistive switching element is characterized by a resistance depending on an electric field in the resistive switching element, and a non-linear device coupled between the first electrode and the resistive switching element, wherein the non-linear device is configured to conduct electric current when a voltage greater than a first voltage is applied to the second electrode, wherein the resistive switching device is configured to change from a first state to a second state in response to the first voltage.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: Crossbar, Inc.
    Inventor: Tanmay KUMAR
  • Patent number: 8339832
    Abstract: A write-once memory can be written only once to each memory cell; therefore, a defective bit cannot be detected by an actual inspection of writing. Accordingly, as described above, the measures, in which a redundant circuit is provided and the defective bit is modified before shipping, cannot be taken; thus, it is difficult to provide a memory with few defects. It is an object of the present invention to provide a write-once memory where the probability of a defect is reduced considerably. A nonvolatile memory that can be written only once includes a redundant memory cell, a first circuit which allocates an address to the redundant memory cell, a second circuit which outputs a determination signal that expresses whether writing is performed normally or not, and a third circuit, to which the determination signal is inputted, which controls the first circuit and the second circuit.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kiyoshi Kato
  • Publication number: 20120320657
    Abstract: A method and system for a programmable resistive memory to improve yield and reliability has a plurality of programmable resistive units. Each programmable resistive unit can have at least one programmable resistive cell. Each programmable resistive cell can have a programmable resistive element with a first end coupled to a first supply voltage line and a second end coupled to at least one diode serving as program selector. Each diode can have at least first and second terminals with first and second types of dopants, with the second terminal being coupled to a second supply voltage line. The first and second terminals of the diode can be fabricated from source/drain of MOS in a well for MOS devices or fabricated on the same polysilicon structure.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 20, 2012
    Inventor: Shine C. Chung
  • Publication number: 20120320656
    Abstract: A method and system of a programmable resistive memory having a plurality of programmable resistive memory units is disclosed. At least one of the programmable resistive memory units has at least one data cell and at least one reference cell. The data cell can have one programmable resistive element coupled to at least one diode as a program selector and also coupled to a bitline (BL). The reference cell can have a reference resistive element coupled to at least one reference diode as reference program selector and also coupled to a reference bitline (BLR). In one embodiment, the reference resistive element can have substantially the same material, structure, or shape of the programmable resistive element. In one embodiment, the reference diode can have the same material, structure, or shape of the diode serving as the program selector diode.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 20, 2012
    Inventor: Shine C. Chung
  • Publication number: 20120314473
    Abstract: A circuit, method, and system for using multiple-state One-Time Programmable (OTP) memory to function as a multiple-bit programmable (MTP) memory are disclosed. The OTP memory can have N(N>2) distinct resistance states, that can be differentiated by at least N?1 reference resistances, can be functionally equivalent programmed N?1 times. The multiple-state OTP memory can have a plural of multiple-state OTP cells that can be selectively programmed to a resistance state. The reference resistance can be set to determine a state of the from the programmed multiple-state OTP cells.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Inventor: Shine C. Chung
  • Publication number: 20120314472
    Abstract: A method and system for multiple-bit programmable resistive cells having a multiple-bit programmable resistive element and using diode as program selector are disclosed. The first and second terminals of the diode having a first and second types of dopants can be fabricated from source/drain of MOS in a well for MOS devices or fabricated on the same polysilicon structure. If a multiple-bit programmable resistive cell has 2n (n>1) distinct resistance levels to store n-bit data, at least 2n?1 reference resistance levels can be designated to differential resistances between two adjacent states. Programming multiple-bit programmable resistive elements can start by applying a program pulse with initial program voltage (or current) and duration. A read verification cycle can follow to determine if the desirable resistance level is reached. If the desired resistance level has not been reached, additional program pulses can be applied.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Inventor: Shine C. Chung
  • Patent number: 8331128
    Abstract: A memory device may include a plurality of memory cells each having elements with at least one solid ion conductor programmable between at least two different impedance states for at least two different data retention times, the plurality of memory cells being dividable into a plurality of portions, each portion being separately configurable for one of the data retention times.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 11, 2012
    Assignee: Adesto Technologies Corporation
    Inventors: Narbeh Derhacobian, Shane Charles Hollmer