Near Field Optic Patents (Class 369/13.33)
  • Publication number: 20150036469
    Abstract: A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Seagate Technology LLC
    Inventors: Michael Thomas Johnson, Manuel Charles Anaya-Dufresne, Zoran Jandric
  • Patent number: 8947986
    Abstract: A TAMR head is disclosed wherein a heat sink with a bilayer configuration surrounds the main pole. There is a planar plasmon generator (PPG) with a front peg portion and a larger back portion between a waveguide and a main pole bottom surface. The PPG generates a surface plasmon mode and heats a spot on a magnetic medium during a write process. A first heat sink layer made of Au contacts a back section of the top surface in the PPG back portion to enable efficient dissipation of heat away from the PPG. The second heat sink layer may be Ru and serves as a barrier between the main pole and first heat sink layer to prevent Au migration into magnetic material, and is thermally stable to at least 450° C. to prevent a thermal breakdown of the heat sink material in proximity to the PPG front end.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: February 3, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Seiichiro Tomita, Yukinori Ikegawa
  • Patent number: 8947985
    Abstract: A heat assisted magnetic recording (HAMR) write transducer has an air-bearing surface (ABS) configured to reside in proximity to a media during use and is coupled with a laser that provides energy. The HAMR transducer includes a main pole, at least one additional pole adjacent to the main pole in a down track direction, a waveguide and at least one coil for energizing the main pole. The main pole is configured to write to a region of the media and is recessed from the ABS by a first distance. The additional pole(s) are recessed from the ABS by a second distance greater than the first distance. The waveguide is optically coupled with the laser and directs a portion of the energy toward the ABS at an acute angle from the ABS. A portion of the waveguide resides between the additional pole(s) and the ABS.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: February 3, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Michael V. Morelli, Lisha Wang, Zhigang Bai, Hongxing Yuan, Yunfei Li, Zhanjie Li, Matthew R. Gibbons, Samuel W. Yuan
  • Publication number: 20150016234
    Abstract: An apparatus includes a transducer including a plasmonic funnel having first and second ends with the first end having a smaller cross-sectional area than the second end, and a first section positioned adjacent to the first end of the plasmonic funnel, and a first waveguide having a core, positioned to cause light in the core to excite surface plasmons on the transducer.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 15, 2015
    Inventors: Amit Vasant Itagi, Jie Zou, Kaizhong Gao, Michael Allen Seigler
  • Patent number: 8929180
    Abstract: A disk drive includes a write head that includes a slider, a write transducer disposed on the slider, and a laser device affixed to the slider. The write transducer is driven by a first electrical signal that is carried on at least one of a plurality of conductive traces of a laminated flexure to which the write head is attached. The laser device is driven by a second electrical signal that is also carried by the same at least one of the plurality of conductive traces. The first signal is characterized by a first frequency, and the second electrical signal is characterized by a second frequency that is different from the first frequency.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 6, 2015
    Assignee: Western Digital Technologies, Inc.
    Inventors: William D. Huber, Michael L. Mallary
  • Patent number: 8929181
    Abstract: An apparatus includes a waveguide core having an elongated edge parallel to a substrate plane of the apparatus. An output end of the waveguide core faces a media-facing surface of the apparatus. A plate-like portion of a plasmonic material has a major surface facing the elongated edge of the waveguide core, and the major surface has a narrowed output end facing the media-facing surface. An elongated ridge of the plasmonic material is disposed on at least part of the plate-like portion between an input end and the narrowed output end.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: January 6, 2015
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Edward Charles Gage, Yongjun Zhoa
  • Patent number: 8929016
    Abstract: A magnetic recording head includes a magnetic writer comprising a main write pole and a return write pole. The magnetic recording head includes a write heater assembly comprising at least one first heater subassembly and at least one second heater subassembly. At least part of the magnetic write head is disposed between the first heater subassembly and the second heater subassembly. When the first heater subassembly, the second heater subassembly, and the magnetic writer are energized, a variation in the thermal protrusion of the head media interface of the magnetic recording head may be less than about 20 nm along the down track and/or cross track directions.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Raul Horacio Andruet, Xiaobin Wang
  • Publication number: 20150003222
    Abstract: A transducer is configured to interact with a magnetic storage medium, a first channel comprises a first sensor and first circuitry configured to adjust a plurality of first channel parameters, and a second channel comprises a second sensor and second circuitry configured to adjust a plurality of second channel parameters. The first and second channel parameters are independently adjustable by the first and second circuitry, respectively. A detector is coupled to the first and second channels, and configured to detect a head-medium interface event.
    Type: Application
    Filed: August 12, 2014
    Publication date: January 1, 2015
    Inventors: Housan Dakroub, Edward Charles Gage, Tim Rausch
  • Publication number: 20150003218
    Abstract: A near-field transducer includes an enlarged transducer portion of plasmonic material extending from an input end to an output end, a surface of the transducer portion including a trench running between two raised portions of the plasmonic material, the trench extending at least partially from the input end to the output end. A peg of the plasmonic material is disposed on the output end of the transducer portion and extends from the output end toward the air bearing surface of a heat assisted magnetic recording slider.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Chubing Peng, Yongjun Zhao
  • Publication number: 20150003223
    Abstract: An apparatus includes a near-field transducer at or near an air bearing surface of the apparatus. A write pole is disposed at or near the air bearing surface and proximate the near-field transducer, respectively. A thermal sensor is disposed at the air bearing surface and within a protrusion region of the air bearing surface defined relative to at least one of the near-field transducer and the write pole. The thermal sensor is configured to produce a signal indicative of a temperature at the protrusion region.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Declan Macken, James Dillon Kiely, Manuel Charles Anaya-Dufresne
  • Patent number: 8923100
    Abstract: An apparatus (e.g., a heat assisted magnetic recording write heat) includes a magnetic write pole having a tip portion proximate a media-facing surface. A near-field transducer is proximate the tip portion of the magnetic write pole. A first heat sink portion is provided along a first side of the tip portion that faces away from the near field transducer. The first heat sink portion includes a highly reflective, thermally conductive metal and is spaced away from the media facing surface. A second heat sink portion is provided along the first side of the tip portion between the media facing surface and the first heat sink portion. The second heat sink portion includes a relatively hard material.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: December 30, 2014
    Assignee: Seagate Technology LLC
    Inventors: James Gary Wessel, Zoran Jandric, Chris Cote
  • Patent number: 8923099
    Abstract: Provided is a structure of a heat assisted magnetic recording head gimbal assembly that allows common inexpensive TE-mode LDs to be utilized. The heat assisted magnetic recording head gimbal assembly comprises: a light source unit having a light emitting element mounted on a parabolic solid submount; a heat assisted magnetic recording head comprising a magnetic recording element, a read element, a near field transducer, and a waveguide for guiding light from the light emitting element into the near field transducer; a slider including the heat assisted magnetic recording head and which flies above a disk; and a suspension for supporting the slider.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 30, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Irizo Naniwa, Takuya Matsumoto, Satoshi Arai
  • Patent number: 8923098
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited surface plasmons in a plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The optical radiation is transmitted to the plasmon generator by means of a waveguide, whose optical axis (centerline) is tilted relative to either or both the backside surface normal and ABS surface normal in order to eliminate back reflections of the optical radiation that can adversely affect the properties and performance of the laser. Variations of the disclosure include tilting the plasmon generator, the waveguide and the laser diode.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 30, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Xiaohua Lou, Joe Smyth, Moris Dovek
  • Patent number: 8923101
    Abstract: An apparatus includes a slider body, a write element, and a laser chip. The write element is disposed on the slider body and is configured to apply a magnetic field to write data on a portion of a heat-assisted magnetic recording media in response to an energizing current. The laser chip has a laser diode with an active region configured to produce light. The laser diode adapted to inject the light to the proximate the read/write element. The laser chip additionally has a photodetector The photodetector is adapted to monitor light from the laser diode. The photodetector shares a same active region as the laser diode and the laser diode and photodetector are integrated together on the same laser chip.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Seagate Technology LLC
    Inventors: Karim Tatah, Michael Allen Seigler
  • Patent number: 8923102
    Abstract: A heat-assisted magnetic recording (HAMR) transducer is coupled with a laser for providing energy and has an air-bearing surface (ABS) configured to reside in proximity to a media during use. The HAMR transducer includes a write pole, at least one coil, a waveguide optically coupled with the laser and a grating. The write pole is configured to write to a region of the media. The coil(s) energize the write pole. The waveguide includes arms that have an optical path difference. The grating is optically coupled with the laser. The waveguide is optically coupled with the grating and receives light from the grating.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: December 30, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Zhong Shi, Michael L. Mallary
  • Publication number: 20140376339
    Abstract: An apparatus having at least an air bearing surface (ABS), the apparatus including a near field transducer (NFT) positioned adjacent the ABS of the apparatus, wherein the NFT includes a plasmonic material; and not greater than about 200 ppm of one or more microalloy dopants.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Philip G. Pitcher, Sami C. Antrazi
  • Publication number: 20140376352
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Publication number: 20140376350
    Abstract: Devices that include a near field transducer (NFT); a gas barrier layer positioned on at least a portion of the NFT; and a wear resistance layer positioned on at least a portion of the gas barrier layer wherein the gas barrier layer includes tantalum oxide (TaO), titanium oxide (TiO), chromium oxide (CrO), silicon oxide (SiO), aluminum oxide (AlO), titanium oxide (TiO), zirconium oxide (ZrO), yttrium oxide (YO), magnesium oxide (MgO), beryllium oxide (BeO), niobium oxide (NbO), hafnium oxide (HfO), vanadium oxide (VO), strontium oxide (SrO), or combinations thereof; silicon nitride (SiN), aluminum nitride (Al), boron nitride (BN), titanium nitride (TiN), zirconium nitride (ZrN), niobioum nitride (NbN), hafnium nitride (HfN), chromium nitride (CrN), or combinations thereof silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), niobioum carbide (NbC), chromium carbide (CrC), vanadium carbide (VC), boron carbide (BC), or combinations thereof or combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Scott Franzen, Ed F. Rejda, Kurt W. Wierman, Michael Allen Seigler
  • Publication number: 20140376353
    Abstract: A device including a magnetic structure, the magnetic structure having a substrate adjacent surface and a second, opposing surface, the magnetic structure having a near field transducer (NFT), wherein the NFT includes gold or an alloy thereof, and is positioned at the second surface an overcoat structure; and a film structure, the film structure positioned between the magnetic structure and the overcoat structure, the film structure having a total thickness of not greater than about 100 ?, and the film structure including: a first interfacial structure having a first and a second opposing surface; a second interfacial structure having a first and a second opposing surface; and an intermediate structure wherein the first surface of the first interfacial structure is positioned adjacent the NFT of the magnetic structure, and the second surface of the second interfacial structure is positioned adjacent the overcoat structure, and the intermediate structure is positioned between the first interfacial structure an
    Type: Application
    Filed: August 26, 2014
    Publication date: December 25, 2014
    Inventors: Philip G. Pitcher, Sami C. Antrazi
  • Publication number: 20140376351
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Publication number: 20140376340
    Abstract: An apparatus for a heat assisted magnetic recording device that includes a write pole, a near-field transducer, and a heat sink. The near-field transducer is comprised only of a peg disposed adjacent the write pole. The heat sink is disposed between the write pole and at least a portion of the near-field transducer.
    Type: Application
    Filed: November 1, 2013
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: Yuhang Cheng, Chubing Peng
  • Publication number: 20140376344
    Abstract: Apparatuses, systems, and methods are disclosed related to heat assisted magnetic recording. According to one embodiment, an apparatus that includes a heat sink region and a near field transducer region is disclosed. The near field transducer region is thermally coupled to the heat sink region. At least one of the heat sink region and the near field transducer region includes both an inner core and an outer shell. The inner core can be comprised of a non-plasmonic material and the outer shell can be comprised of a plasmonic material. In further embodiments, the inner core is comprised of a material having a relatively higher electron-phonon coupling constant and the outer shell is comprised of a material having a relatively lower electron-phonon coupling constant.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: Tong Zhao, John C. Duda, Michael Christopher Kautzky
  • Publication number: 20140376345
    Abstract: A method fabricating a near field transducer for a heat assisted magnetic recording head including forming a peg region of a near field transducer along a first portion of a substrate of a heat assisted magnetic recording head, removing a first portion of the peg region, fabricating a barrier material along a surface of the peg region created by the removal of the first portion of the peg region; and forming an enlarged region adjacent the surface such that the barrier material is disposed at least between the surface of the peg region and the enlarged region.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: David C. Seets, Yongjun Zhao, Mark Ostrowski
  • Publication number: 20140376348
    Abstract: Devices that include a near field transducer (NFT), the NFT including a peg having five exposed surfaces, the peg including a first material; an overlying structure; at least one intermixing layer, positioned between the peg and the overlying structure, the at least one intermixing layer positioned on at least one of the five surfaces of the peg, the intermixing layer including at least the first material and a second material.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Michael Allen Siegler
  • Publication number: 20140376342
    Abstract: A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.
    Type: Application
    Filed: March 20, 2014
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: James Gary Wessel, Sarbeswar Sahoo, Michael Christopher Kautzky
  • Publication number: 20140376346
    Abstract: A method including depositing a plasmonic material at a temperature of at least 150° C.; and forming at least a peg of a near field transducer (NFT) from the deposited plasmonic material.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Sarbeswar Sahoo, Tong Zhao, Michael C. Kautzky
  • Publication number: 20140376343
    Abstract: An apparatus for a heat assisted magnetic recording device that includes a write pole, a near-field transducer, and a heat sink. The near-field transducer is comprised only of a peg disposed adjacent the write pole. The heat sink is disposed between the write pole and at least a portion of the near-field transducer.
    Type: Application
    Filed: May 13, 2014
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: Yuhang Cheng, Chubing Peng
  • Publication number: 20140376341
    Abstract: A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.
    Type: Application
    Filed: November 19, 2013
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: James Gary Wessel, Sarbeswar Sahoo
  • Publication number: 20140376349
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Publication number: 20140376347
    Abstract: Disclosed herein are near field transducers (NFTs) that include either silver, copper, or aluminum and one or more secondary elements.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Justin Glen Brons, Tong Zhao, Sethuraman Jayashankar, Steve C. Riemer, Michael C. Kautzky
  • Patent number: 8917581
    Abstract: Articles of manufacture and methods of manufacturing such articles of manufacture are disclosed. The articles of manufacture may include a heat assisted magnetic recording (HAMR) transducer having a near field transducer (NFT) and a chimney thermally coupled to the NFT. The articles of manufacture may also include an electrical conductor having section with a reduced width that is thermally coupled to the chimney. The methods include applying an electrical current to the electrical conductor to generate heat in the section and annealing the chimney and the NFT from the heat generated.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: December 23, 2014
    Assignee: Western Digital Technologies, Inc.
    Inventor: Michael L. Mallary
  • Publication number: 20140369174
    Abstract: An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Inventors: Chubing Peng, Kaizhong Gao, Lien Lee, Amit Itagi, Michael Allen Seigler, Yimin Niu, Sethuraman Jayashankar
  • Patent number: 8913468
    Abstract: An apparatus includes a near field transduce (NFT), a waveguide core, and a dielectric resonator. The waveguide core is configured to propagate electromagnetic radiation. The dielectric resonator is disposed between the waveguide core and the NFT and is configured to transfer energy of the electromagnetic radiation to the NFT.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: December 16, 2014
    Assignee: Seagate Technology LLC
    Inventor: Chubing Peng
  • Publication number: 20140362674
    Abstract: A system includes a magnetic head, a magnetic medium, a drive mechanism for passing the magnetic medium over the magnetic head, and a controller electrically coupled to the magnetic head for controlling operation of the magnetic head, wherein the magnetic head has a write element, a read element, a substrate that is an alloy material having greater than about 50 at. % TiC, and a heater element positioned between the read element and the write element, the write element being positioned nearer to the substrate than the read element such that heat generated by the write element during write operations is dissipated by the substrate, and the heater element being adapted for inducing protrusion of portions of an air bearing surface (ABS) of the magnetic head to adjust a clearance between the portions of the ABS and the magnetic medium.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Koji Tanaka, Yoshinori Takeuchi
  • Patent number: 8908482
    Abstract: The embodiments disclosed herein generally relate to a HAMR head in which the SSC is fabricated adjacent the NFT where the SSC is formed on a substrate that has been protected from NFT fabrication processing conditions. As such, the substrate remains smooth so that the SSC formed thereover, is not negatively impacted by the NFT process conditions.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: December 9, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Thomas William Clinton, Jui-Lung Li, Juraj Topolancik
  • Patent number: 8908481
    Abstract: In one embodiment, a device includes a laser unit configured to produce laser light, the laser unit having a laser resonator with a length in a direction parallel to laser light emission and a slider having a length in a direction perpendicular to a media-facing surface of the slider, the slider including a main magnetic pole configured to write data to a magnetic medium, a near-field light-generating element configured to produce near-field light when laser light is provided thereto to assist the main magnetic pole in writing data to the magnetic medium by heating a local region of the magnetic medium, and a waveguide configured for guiding the laser light to the element, the waveguide including a cladding surrounding a core, wherein an interval of a longitudinal mode of the laser resonator is equal to within about 5% of an integer multiplier of an optical interference period of the waveguide.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 9, 2014
    Assignee: HGST Netherlands B.V.
    Inventor: Harukazu Miyamoto
  • Patent number: 8908483
    Abstract: A method, apparatus, and system for implementing contact sensing are provided using a near field transducer (NFT) and in-drive NFT characterization diagnostics for heat-assisted magnetic recording (HAMR) hard disk drives (HDDs). NFT resistance is monitored and used to determine head to disk contact and spacing. NFT resistance is used to detect NFT head wear.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: December 9, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Shen Ren, Erhard Schreck, Barry Cushing Stripe
  • Patent number: 8908331
    Abstract: This thermally-assisted magnetic recording head includes: a waveguide having a first end surface included in an air bearing surface; a magnetic pole having a second end surface included in the air bearing surface; a plasmon generator having a third end surface included in the air bearing surface; a first film covering the first end surface of the waveguide and the second end surface of the magnetic pole, and having an opening in a region corresponding to the third end surface of the plasmon generator; and a second film filling the opening and covering the third end surface of the plasmon generator.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: December 9, 2014
    Assignee: TDK Corporation
    Inventor: Koji Shimazawa
  • Publication number: 20140355402
    Abstract: An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 4, 2014
    Inventors: Neil Zuckerman, Chris Rea, Scott E. Olson, Zoran Jandric
  • Publication number: 20140355399
    Abstract: In one embodiment, a system includes a magnetic head having a write portion having a main pole, a near field transducer comprising a conductive metal film having outer regions extending from an active region, and an optical waveguide for illumination of the near field transducer, wherein the conductive metal film extends in a cross track direction for a width at least 200% greater than a width of the active region of the conductive metal film, wherein a portion of the main pole extends along the conductive metal film in a cross track direction for a width at least 200% greater than the width of the active region of the conductive metal film.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Lidu Huang, Barry C. Stipe, Petrus A. Van Der Heijden
  • Patent number: 8902720
    Abstract: A heat-assisted magnetic recording (HAMR) head has a protective film confined to a window of the disk-facing surface of the slider than surrounds the near-field transducer (NFT) and write pole end. Materials for the protective film include TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, Sc2O3, Y2O3, MgO SiN, BN, SiBN and SiBNC. The slider overcoat is located in the non-window region on the slider's disk-facing surface and optionally also on the window region, with the outer surface of the overcoat forming the slider's ABS. An optional recess may be formed on the disk-facing surface of the slider in the window region, with the protective film located in the recess.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Erhard Schreck, Matteo Staffaroni, Barry Cushing Stipe
  • Patent number: 8902719
    Abstract: Disclosed herein is an apparatus that includes a near field transducer positioned adjacent to an air bearing surface of the apparatus; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes a first and second portion, with the first portion being adjacent the near field transducer and the second portion being adjacent the first magnetic pole, the first portion including a plasmonic material, and the second portion including a diffusion blocking material.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 2, 2014
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Ibro Tabakovic, Michael C. Kautzky, Venkatram Venkatasamy, Jie Gong
  • Patent number: 8897104
    Abstract: A method and system test a heat assisted magnetic recording (HAMR) transducer. The HAMR transducer is optically coupled to at least one laser and has an air-bearing surface. The HAMR transducer includes at least one waveguide, at least one near-field transducer (NFT) and a pole. A portion of the NFT(s) resides at the ABS. The laser(s) are optically coupled to the NFT(s). The method and system include energizing the laser(s) at power(s) while the HAMR transducer is not in proximity to a media. The method and system also include measuring an off-disk protrusion of the portion of the NFT(s) at the ABS while the laser(s) are energized and the HAMR transducer is not in proximity to the media.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: November 25, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wentao Yan, Yu Lo
  • Patent number: 8897105
    Abstract: An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Neil Zuckerman, Chris Rea, Scott E. Olson, Zoran Jandric
  • Patent number: 8891341
    Abstract: A method and system provide a heat assisted magnetic recording (HAMR) disk drive including a media. The HAMR disk drive also includes a slider, at least one laser, at least one HAMR head on the slider and at least one electro-optical modulator (EOM) optically coupled with the laser(s) and coupled with the slider. The at least one laser and the at least one EOM are coupled to provide a modulated energy output. The at least one EOM controls the modulated energy output to have a characteristic waveform shape. The at least one HAMR head includes at least one waveguide, a write pole, and at least one coil for energizing the write pole. The at least one waveguide receives the modulated energy output and directs the modulated energy output toward the media.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 18, 2014
    Assignee: Western Digital Technologies, Inc.
    Inventors: Alexander Krichevsky, Michael L. Mallary, Fenghua Zong
  • Publication number: 20140334277
    Abstract: A light delivery system in a slider includes a channel waveguide, a mode-index refractive surface, a solid immersion mirror, and a near field transducer. The mode-index refractive surface shapes the angular spectrum of the light on its path to the solid immersion mirror in a manner so as to change the distribution of light energy focused on to the near field transducer.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: Seagate Technology LLC
    Inventors: Bernard W. Bell, Chubing Peng
  • Patent number: 8885449
    Abstract: A process sequence for forming a waveguide structure with a light polarization rotator section that converts transverse electric light from a TE light source to transverse magnetic light which is subsequently coupled to a plasmon generator (PG) is disclosed. The light polarization rotator section has a length determined by TE LD light wavelength, and the effective mode index of the two orthogonal fundamental modes, and a slope is formed in one side of the symmetric structure with a 45 degree angle with respect to a bottom surface. Offsets that narrow the cross-track width may be formed on the two sides of the light polarization rotator section to improve symmetry for higher TE to TM polarization conversion efficiency.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: November 11, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Hiroyuki Ito, Yoshitaka Sasaki, Shigeki Tanemura
  • Patent number: 8885448
    Abstract: A magnetic write head is disclosed that includes a slider that includes a laser diode having a light-emitting edge or surface of a laser diode and an optical waveguide. The disclosed magnetic write head also includes a dielectric layer disposed in a gap between the laser diode and an input to the optical waveguide. The dielectric layer fills the gap completely and provides a low-loss optical pathway for the laser diode to the input of the optical waveguide. Also disclosed is a method that includes spinning on a dielectric in a gap between the light-emitting surface and the optical waveguide coupler, wherein after the spinning on, the laser diode is optically coupled to the optical waveguide coupler through the dielectric.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 11, 2014
    Assignee: Seagate Technology LLC
    Inventors: Seung-Yeul Yang, Xiaoyue Huang, Michael Christopher Kautzky
  • Patent number: 8873349
    Abstract: A waveguide including a top cladding layer, the top cladding layer including a material having an index of refraction, n1; an assistant layer, the assistant layer positioned adjacent the top cladding layer, the assistant layer including a material having an index of refraction, n2; a core layer, the core layer positioned adjacent the assistant layer, the core layer including a material having an index of refraction, n3; and a bottom cladding layer, the bottom cladding layer positioned adjacent the core layer, the bottom cladding layer including a material having an index of refraction, n4, wherein n1 is less than both n2 and n3, n3 is greater than n1 and n4, and n4 is less than n3 and n2.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 28, 2014
    Assignee: Seagate Technology LLC
    Inventor: Chubing Peng
  • Patent number: 8873352
    Abstract: An apparatus has a near-field transducer located proximate a media-facing surface of a slider magnetic recording heat. A waveguide is configured to couple light to the near-field transducer and includes a top cladding layer facing the near-field transducer, a bottom cladding layer, and a core layer between the top and bottom cladding layers. The apparatus includes a write pole with a flat portion substantially parallel to the core layer and a sloped portion extending from the flat portion of the write pole towards the media-facing surface at an angle to the core layer and to the media-facing surface. A light mitigation layer is located between the top cladding layer and the write pole.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 28, 2014
    Assignee: Seagate Technology LLC
    Inventors: Zoran Jandric, Chris Rea, Pierre Asselin, Michael Thomas Johnson, Manuel Charles Anaya-Dufresne, John C. Duda