With Frequency Detector And Phase Detector Patents (Class 375/375)
  • Patent number: 8218708
    Abstract: A phase splitter uses digital delay locked loop (DLL) to receive complementary input clock signals to generate a plurality of output signals having different phase shifts. When the DLL is locked, the delay resolution of the phase splitter is equal to two delay stages of the DLL.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 10, 2012
    Assignee: Round Rock Research, LLC
    Inventors: Feng Lin, R. Jacob Baker
  • Patent number: 8208595
    Abstract: An apparatus that reduces sampling errors for data communicated between devices uses phase information acquired from a timing reference signal such as a strobe signal to align a data-sampling signal for sampling a data signal that was sent along with the timing reference signal. The data-sampling signal may be provided by adjustably delaying a clock signal according to the phase information acquired from the strobe signal. The data-sampling signal may also have an improved waveform compared to the timing reference signal, including a fifty percent duty cycle and sharp transitions. The phase information acquired from the timing reference signal may also be used for other purposes, such as aligning received data with a local clock domain, or transmitting data so that it arrives at a remote device in synchronism with a reference clock signal at the remote device.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 26, 2012
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, Richard E. Warmke, David B. Roberts, Frank Lambrecht
  • Patent number: 8208594
    Abstract: A method for the recovery of a clock signal from a data signal is provided where the edges of the signals are each represented as a chronologically-ordered sequence of timing points. In one procedural stage, a plurality of timing points of the data signal are processed in parallel as follows: resolving the timing points of the data signal by a nominal clock pulse; estimating the bit-period deviations for the adjusted timing points; and injecting the nominal clock pulse to the estimated bit-period deviations.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 26, 2012
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Rubén Villarino-Villa, Markus Freidhof, Thomas Kuhwald
  • Patent number: 8204159
    Abstract: Circuitry for decoding data from a pulsed signal received on a single line, the circuitry comprising receiving means for receiving a first edge and a second edge on the single line, the first and second edges being separated by a time period, the time period representing said data; decode circuitry comprising determining means arranged to determine a value of the time period and decoding means arranged to decode said data based on said determined value of the time period; a memory arranged to store a reference value; and calibration means for calibrating said decode circuitry based on a comparison between said determined value of the time period and said reference value, wherein the determining means comprises a plurality of sampling units for sampling said pulsed signal at different times, and selection means for selecting the output of one of said sampling units to decoded.
    Type: Grant
    Filed: November 25, 2006
    Date of Patent: June 19, 2012
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventor: Robert Warren
  • Patent number: 8199868
    Abstract: The phase detector compares the phase of a synchronous clock signal from the clock interpolator with the phase of serial data and outputs a phase error signal corresponding to a comparison result. The first integrator performs integration of the phase error signal and obtains a phase correction control signal for tracking phase shift of the serial data. The second integrator further performs integration of the phase correction control signal and obtains an up/down signal. The pattern generator generates a frequency correction control signal for tracking frequency shift of the serial data from the up/down signal. The product of the pattern length of the pattern generator and the count width of the second integrator is equal to or larger than a threshold that becomes larger as the count width of the first integrator is larger.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: June 12, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Morishige Aoyama
  • Patent number: 8194811
    Abstract: Embodiments of a clock repeater and phase-error correcting circuit are generally described herein. Other embodiments may be described and claimed. In some embodiments, a clock repeater and phase-error correcting circuit may include a polyphase network having a non-symmetrical frequency response selected to reduce static phase error from a multi-phase clock signal, and an output buffer to buffer and to amplify the phase-corrected multi-phase clock signal.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 5, 2012
    Assignee: Intel Corporation
    Inventors: Hongjiang Song, Yan Song
  • Patent number: 8188731
    Abstract: A controller includes a control circuit. The control circuit includes a forward path that includes an input and an output, a feedback path coupled to the output and to the input, and a sensor that is between the input and the output. The sensor generates a sensor signal based on an input signal applied to the input. The forward path generates an output signal based on the sensor signal. The output signal is sent along the feedback path to the input of the forward path. The controller also includes a detector that obtains an intermediate signal from the forward path between the input and the output. The detector generates a control signal using the intermediate signal. The forward path includes a control device that limits the output signal to a predetermined value. The detector controls the control device using the control signal.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: May 29, 2012
    Assignee: Austriamicrosystems AG
    Inventors: Gerhard Oberhoffner, Colin Steele, Kurt Riedmuller
  • Patent number: 8184761
    Abstract: A method and apparatus for controlling phase locked loop are provided. The apparatus includes a voltage controlled oscillator configured to generate an output signal with a frequency proportional to a control voltage fed into the oscillator. The apparatus also includes an analog loop filter connected to the oscillator and configured to form the control voltage for the oscillator, and a charge pump configured to generate a current pulse into the loop filter. The apparatus includes a phase-frequency detector operationally connected to the charge pump and configured to form waveforms, based on a reference signal and a feedback signal, the feedback signal being proportional to the output signal of the oscillator. The apparatus further includes a controller configured to modulate the feedback signal on the basis of the frequency or phase error of the output signal of the voltage controlled oscillator and the reference signal.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 22, 2012
    Assignee: Nokia Corporation
    Inventor: Paavo Väänänen
  • Patent number: 8184686
    Abstract: According to a first aspect, there is provided a circuit for recovering data received over a communication channel. The circuit includes an adaptive equalizer operable to remove ISI (intersymbol interference) from a received signal and a timing recovery circuit operable to sample recovered data. The timing recovery circuit includes a detector based on a Hogge Phase detector. According to another aspect, there is provided a module in which the circuit may be implemented. According to another aspect, there is provided a method for recovering data received over a communication channel. The method involves removing ISI from a received signal using an adaptive equalizer, and sampling recovered data using a detector based on a Hogge phase detector. According to another aspect, the timing recovery circuit includes a plurality of phase detectors, each one being operable to sample recovered data. A selector is provided for selecting which sampled recovered data is to be output.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: May 22, 2012
    Assignee: Cortina Systems, Inc.
    Inventors: Brian Wall, Stephane Dallaire, Stephen Alie, Kenji Suzuki
  • Patent number: 8180004
    Abstract: A received signal delivered through a transmission line can be compensated for carrier frequency offset and direct-current offset to improve the signal-to-noise ratio of the received signal, eventually resulting in an effective improvement in the error rate. The received signal has convoluted influences through the transmission line, so that observation of continual symbols of periodic pilot signals on the frequency axis shows just a phase shift by the carrier frequency offset. Therefore, the carrier frequency offset can be analytically found from the continual symbols of periodic pilot signals, thereby allowing the direct-current offset to be estimated and both the carrier frequency offset and the direct-current offset to be compensated for.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 15, 2012
    Assignee: Osaka Prefecture University Public Corporation
    Inventors: Hai Lin, Katsumi Yamashita
  • Patent number: 8175208
    Abstract: A method of reducing d.c. offset comprises comparing the a first variable signal with a second variable signal, producing a control signal in dependence upon the comparison, providing the control signal to a charge pump for generation of a feedback signal, and varying the first signal and/or the second signal in dependence upon the feedback signal thereby reducing any difference between the d.c. level of the first signal and the d.c. level of the second signal.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 8, 2012
    Assignee: Future Waves UK Limited
    Inventor: Mark Dawkins
  • Patent number: 8170199
    Abstract: In a speech communication device capable of bidirectional communication, a clock deviation between the speaker side (the receiving side) and the microphone side (the transmitting side) is detected, and based on the above deviation, either a first frequency signal (speaker signal (reference signal)) or a second frequency signal (microphone signal) is frequency-shifted in the frequency domain, and therefore, an influence caused by the clock deviation can simply be corrected without an increased processing amount, and thus, an echo can be suppressed effectively.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: May 1, 2012
    Assignee: Fujitsu Limited
    Inventors: Masanao Suzuki, Takeshi Otani, Masakiyo Tanaka
  • Patent number: 8164308
    Abstract: There is provided an apparatus for capturing cosmic background radiation and for converting cosmic background radiation into electricity. An antenna is configured so as to capture cosmic background radiation. An electrostatic electron multiplier is connected to the antenna. A high voltage power supply is connected to the electrostatic electron multiplier whereby cosmic background radiation is converted to electricity.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 24, 2012
    Inventor: Stefan Juchnowycz
  • Patent number: 8160195
    Abstract: Methods for processing a signal of interest in an electrical power system are provided, as well as systems and computer program products for carrying out the methods. The methods include obtaining a representative window of data points from the signal of interest; obtaining a window of interest containing data points from the signal of interest; and comparing a phase drift compensated window to the representative window, wherein the compensated window is calculated in accordance with the window of interest and a phase drift that is present in the window of interest relative to the representative window.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: April 17, 2012
    Assignee: The Texas A & M University System
    Inventors: Karthick Muthu-Manivannan, Carl L. Benner, Peng Xu, Billy Don Russell
  • Patent number: 8155256
    Abstract: A time to digital converter is used to determine which edge of the higher frequency clock (oversampling clock) is farther away from the edge of the lower frequency timing signal. At the same time, the oversampling clock performs sampling of the timing signal by two registers: one on the rising edge and the other on the falling edge. Then, the register of “better quality” retiming, as determined by the fractional phase detector decision, is selected to provide the retimed output.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Kenneth J. Maggio, Dirk D. Leipold
  • Patent number: 8149979
    Abstract: A receiver for a serial link port that is enhanced by a clock-data-recovery loop connected to the forwarded clock signal lane. The receiver includes a phase interpolation means controlled by a phase position logic which gets its update signal from local phase update signals of the clock-data-recovery loop via a digital low pass filter. The receiver also provides a global phase update source selection logic to control which clock-data-recovery loop is distributing phase update information, and which clock-data-recovery loop is receiving phase update information based on the clock analysis block.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Peter Buchmann, Martin Leo Schmatz
  • Patent number: 8149980
    Abstract: A system and method for effectively supporting a data transmission procedure includes a phase-locked loop with a phase detector that compares a clock signal and input data to generate a phase error signal for adjusting the clock signal that is generated from a voltage-controlled oscillator. The phase detector includes a positive-edge detector circuit that generates an edge detection signal P to indicate whether data transitions are present in the input data. The phase detector also includes a lead/lag indicator circuit that generates a lead/lag indicator signal T to indicate whether the clock signal is early or late with respect to the input data.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: April 3, 2012
    Assignee: Sony Corporation
    Inventor: Jeremy Chatwin
  • Patent number: 8149974
    Abstract: A comparison period detecting unit (11) defines, as a comparison period, a period between a rising edge of a first clock signal and a rising edge of a second clock signal, and detects the presence or absence of transition of a data signal during the comparison period. A phase relationship detecting unit (12) detects a phase relationship between the data signal and a reference clock signal, and outputs a result of detection of the phase relationship when the comparison period detecting unit (11) detects transition of the data signal during the comparison period.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Yukio Arima, Akinori Shinmyo, Toru Iwata
  • Patent number: 8144826
    Abstract: A clock signal recovery device has a digital data signal input for the input of a digital data signal and a clock signal output for the output of a recovered clock signal. The digital data signal has a given nominal clock signal frequency. The clock signal recovery device is a digital circuit.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: March 27, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Josef Hochleitner, Harald Karl
  • Patent number: 8144756
    Abstract: The present invention relates to a jitter measuring system, comprising: a delay circuit for receiving a clock signal and delaying the clock signal to generate a delay signal; a jitter amplifier for receiving the clock signal and delay signal to generate a first signal and a second signal; and a converter for converting a phase different between the first signal and the second signal into a relevant digital code; wherein the phase difference between the first signal and the second signal is an amplification of jitter.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 27, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yu Lee, Nai-Chen Cheng, Ji-Jan Chen
  • Patent number: 8140039
    Abstract: The present invention relates to a quadrature divider which may be used in a phase locked loop or frequency synthesizer or with a single side band mixer. According to a preferred embodiment the divider takes a quadrature input and has a quadrature output. The divider has four analog mixers 1, 2, 3 and 4. The first two mixers 1, 2 take the in-phase quadrature input, while the second mixers 3, 4 take the quadrature-phase quadrature input. The outputs and feedback loops of the mixers are properly arranged such that the in-phase and quadrature-phase outputs of the divider have a determinisitic phase sequence relationship based on the phase sequence relationship of the corresponding quadrature inputs. Third order harmonics may be minimized or reduced by addition or subtraction of the mixer outputs. As the divider is able to take a quadrature input, there is no need for a dummy divider in the phase locked loop, thus saving space and power.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 20, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Howard Cam Luong, Hui Zheng
  • Patent number: 8139701
    Abstract: In one embodiment, a method includes receiving N input streams; generating a recovered clock signal based on the input data bits in the N input streams, the recovered clock signal having a clock frequency and a recovered clock phase; generating a clock signal for each one of the N input streams based on the recovered clock signal having the clock frequency and a respective phase at a respective phase offset relative to the recovered clock phase; detecting a phase difference between each of the N input bit streams and the respective N clock signals; and adjusting the phases of the N clock signals to eliminate the respective phase differences, the adjusting comprising shifting the N respective clock phase offsets such that each of the N clock signals is locked to the input data bits in the respective one of the N input streams.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: March 20, 2012
    Assignee: Fujitsu Limited
    Inventor: Nikola Nedovic
  • Patent number: 8135105
    Abstract: An output clock correction circuit (14) for correcting a frequency of an output clock in a receiving device (13) that receives data (16) and a time stamp component (18) includes an output clock feedback loop (20), a FIFO buffer (22) and a time stamp adjuster (24). The output clock feedback loop (20) adjusts a phase and/or a frequency of the output clock based at least partially on the time stamp component (18). The FIFO buffer (22) temporarily stores the data (16). The time stamp adjuster (24) selectively adjusts the time stamp component (18) based on a status of the FIFO buffer (22). In one embodiment, the status is based at least in part on an actual data level in the FIFO buffer (22). In another embodiment, the FIFO buffer (22) has a target data level range, and the time stamp adjuster (24) adjusts the time stamp component (18) when the actual data level in the FIFO buffer (22) is outside this range.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 13, 2012
    Assignee: Integraded Device Technologies, Inc.
    Inventors: Zhibing Liu, Sheng-Chiech Liang
  • Patent number: 8135104
    Abstract: A high speed transceiver without using an external clock signal and a communication method used by the high speed transceiver which applies a clock recovery circuit including a coarse code generator, a frequency detector, and a linear phase detector to the receiver so as to solve problems such as skew between a reference clock and data that may occur during data transmission and jitter of a recovered clock while an embedded clock method of applying clock information to data is used.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: March 13, 2012
    Assignee: Korea University Industrial & Academic Collaboration Foundation
    Inventors: Chulwoo Kim, Inhwa Jung
  • Patent number: 8130891
    Abstract: A circuit, such as a CDR circuit, includes a sampler to receive a data signal having a variable data bit-rate responsive to a clock signal in an embodiment of the present invention. A clock circuit is coupled to the sampler and generates the clock signal responsive to a selectable update rate and a selectable phase adjust step-size. In a second embodiment of the present invention, the clock circuit includes a Stall logic that is coupled to first, second and third stages and is capable to hold the phase adjust signal responsive to the first and second stage output signals. In a third embodiment of the present invention, an indicator detects the variable data bit-rate and a counter provides the selectable phase adjust step-size for the adjust signal. In a fourth embodiment of the present invention, the clock circuit includes the Stall logic, the indicator and the counter.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: March 6, 2012
    Assignee: Rambus Inc.
    Inventors: Dennis Kim, Jason Wei, Yohan Frans, Todd Bystrom, Nhat Nguyen, Kevin Donnelly
  • Patent number: 8131224
    Abstract: Phase and gain of a transmit signal are measured at a transmitter by determining a first time delay having a first resolution at a measurement receiver between a reference signal from which the transmit signal is generated and a measured signal derived from the transmit signal by comparing amplitudes of the reference signal and the measured signal. A second time delay having a second resolution finer than the first resolution is determined at the measurement receiver between the reference signal and the measured signal based on the first time delay. The reference signal and the measured signal are time aligned at the measurement receiver based on the second time delay and the phase and gain of the transmit signal are estimated after the reference signal and the measured signal are time aligned.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 6, 2012
    Assignee: St-Ericsson SA
    Inventors: Wael A. Al-Qaq, Zhihang Zhang, Nikolaus Klemmer
  • Patent number: 8125252
    Abstract: Multi-phase signal generators and methods for generating multi-phase signals are described. In one embodiment, the clock generator generates quadrature clock signals including those having 90, 180, 270 and 360 degrees phase difference with a first clock signal. One of the intermediate clock signals may be used as an enable signal to guide locking of all signals. For example, the 180 degree clock signal may be inverted and used as an enable signal to guide locking of the initial and 360 degree signals in a single phase adjustment procedure. The 0 and 360 degree signals may be delayed before their phase is compared to compensate for duty cycle error in the clock signals.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Yantao Ma
  • Patent number: 8125278
    Abstract: Disclosed herein is a clock regeneration apparatus, including: an oscillator including n (an integer of two or more) gating groups connected in cascade connection to each other forming an oscillation loop, the gating groups being controlled to gate an internal clock signal with first to nth gating signals different from one another, respectively, the oscillator outputting a clock signal at least from the nth one of the gating groups; an edge detection section adapted to detect an edge of a reception data signal; a phase decision section adapted to decide a phase of the clock signal for each edge of the reception data signal and output a result of the decision as a phase decision signal; and a gating signal generation section adapted to generate the first to nth gating signals and output the gating signals to first to nth ones of the gating groups, respectively.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: February 28, 2012
    Assignee: Sony Corporation
    Inventors: Kenichi Maruko, Hiroki Kihara
  • Patent number: 8126039
    Abstract: Methods and apparatus are provided for evaluating the eye margin of a communications device using a data eye monitor. The quality of a data eye associated with a signal is evaluated by sampling the signal for a plurality of different phases; evaluating the samples to evaluate one or more of a height and width of the data eye; and determining whether the one or more of the height and width satisfy one or more predefined criteria. One or more parameters of the communications device can optionally be adjusted if the communications device does not satisfy the one or more predefined criteria. The communications device can optionally be assigned to a quality category based on the evaluation. A phase offset between a first clock signal used to sample the signal and one or more clocks used to sample data is reduced.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 28, 2012
    Assignee: Agere Systems Inc.
    Inventors: Mohammad S. Mobin, Gregory W. Sheets, Lane A. Smith, Craig B. Ziemer
  • Patent number: 8125259
    Abstract: A method and system for modeling and calibrating duty cycle distortion (DCD) of a Serializer and Deserializer (SerDes) device, including first generating a clock DCD signal. Once the clock DCD signal is generated, it is calibrating based upon results obtained from a filtering process of the clock DCD signal. Once the clock DCD signal is calibrated, a data DCD signal is generated and calibrated based upon results obtained from a filtering process of the data DCD signal.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: February 28, 2012
    Assignee: Agere Systems Inc.
    Inventors: Xingdong Dai, Weiwei Mao, Max J. Olsen, Geoffrey Zhang
  • Patent number: 8121241
    Abstract: A method and apparatus for processing a radio frequency (RF) signal is provided. The method includes generating a periodic square wave local oscillator (LO) signal of a first phase, a periodic square wave LO signal of a second phase, and a chopping signal. The method further includes coding the periodic square wave LO signal of the first phase and the periodic square wave LO signal of the second phase synchronously with the chopping signal to generate a first set of synchronized signals (116, 118) and a second set of synchronized signals (120, 122), respectively. A phase difference between the first phase and the second phase is a predefined value. The RF signal is processed with the first set of synchronized signals (116, 118) and the second set of synchronized signals (120, 122) to obtain an in-phase intermediate frequency (IF) signal (132) and a quadrature-phase IF signal (142), respectively.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: February 21, 2012
    Assignee: Motorola Solutions, Inc.
    Inventors: Robert E. Stengel, Charles R. Ruelke, Sumit A. Talwalkar
  • Patent number: 8116419
    Abstract: In one method, an uplink signal carrying at least one block of transmitted samples is transmitted, and a distorted copy of the uplink signal is received as a downlink signal. A plurality of blocks of received samples are generated based on the received downlink signal, and a time delay and frequency offset between the uplink and downlink signals are determined based on a correlation between the block of transmitted samples and at least one of the plurality of blocks of received samples.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 14, 2012
    Assignee: Alcatel Lucent
    Inventors: Hong Jiang, Vinay Purohit, Paul A. Wilford
  • Patent number: 8115558
    Abstract: A digital PLL circuit includes: an oscillation circuit, wherein an oscillation frequency is controlled by changing the number of capacitance elements to be connected in parallel to an inductance element; and a phase comparator part configured to perform a digital phase comparison of a reference clock and a delayed clock thereof, with an oscillation circuit output; and based on the comparison result, to control the number of the capacitance elements so as to bring the phase of the oscillation circuit output closer to the reference clock phase, wherein the capacitance element includes: a coarse adjustment capacitor configured to have a predetermined capacitance; and fine adjustment capacitors configured to have a capacitance of 1/n of that of the coarse adjustment capacitor, wherein a predetermined number of the fine adjustment capacitors function as one coarse adjustment capacitor at the time of coarse adjustment.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuki Tsuda, Hideaki Masuoka
  • Patent number: 8111785
    Abstract: A system and method are provided for automatic frequency acquisition maintenance in a clock and data recovery (CDR) device. In an automatic frequency acquisition (AFA) mode, the method uses a phase detector (PHD) to acquire the phase of a non-synchronous input communication signal having an initial first frequency. In the event of a loss of lock/loss of signal (LOL/LOS) signal being asserted, a frequency ratio value is retrieved from memory. Using a phase-frequency detector (PFD), the reference signal, and the frequency ratio value, a synthesized signal is generated. In response to using the PFD to generate the synthesized signal and the LOL/LOS signal being deasserted, a rotational frequency detector (RFD) is used to generate a synthesized signal having a frequency equal to the frequency of the input communication signal. With the continued deassertion of the LOL/LOS signal, the PHD is enabled and the phase of the input signal is acquired.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Viet Linh Do, Philip Michael Clovis, Michael Hellmer, Mehmet Mustafa Eker, Hongming An, Simon Pang
  • Patent number: 8111106
    Abstract: Some embodiments of the present invention may include a DPLL circuit comprising a firmware. The firmware may comprise a re-sampled NCO phase detector capable of receiving a reference clock timing signal and a VCXO clock timing signal. The re-sampled NCO phase detector may comprise a resampler capable of receiving phase output and the VCXO clock timing signal and resampling the phase output; and a subtractor capable of receiving the resampled phase output and subtracting the resampled phase output from a calculated mean value of the phase output. The firmware may further comprise a frequency detector capable of receiving the reference clock timing signal and the VCXO clock timing signal; and a multiplexer capable of switching between the re-sampled NCO phase detector and the frequency detector dependent upon a frequency lock status.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 7, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Leo Montreuil, Larry Stephen McKinney, Jiening Ao, Joel Paul Jenkins
  • Patent number: 8111798
    Abstract: A phase synchronization circuit includes a controlled oscillator configured to generate a first oscillation signal and a second oscillation signal that have a common frequency but different phase controlled by a combination of a first control signal and a second control signal, a digital phase frequency detector configured to detect a frequency difference and a first phase difference between a reference signal and the first oscillation signal to generate the first control signal, an analog phase detector configured to detect a second phase difference between the second oscillation signal and the reference signal to generate the second control signal, and a lock detection unit configured to detect a lock of the first oscillation signal with the reference signal in terms of frequency and phase, in order to set the analog phase detector in an active state.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akihide Sai
  • Patent number: 8107582
    Abstract: A method and apparatus for clock recovery in synchronous digital systems. The apparatus includes a phase frequency detector, a loop filter, a compressor, and a clock generator. The phase frequency detector generates a phase error signal based on a difference between an input clock signal and an output clock signal. The loop filter multiplies the phase error signal and filters the multiplied phase error signal. The compressor divides the loop filter output. Based on the compressor output, the clock generator generates an output clock signal is provided as a feedback signal to the phase error detector. The apparatus may also include a glitch cleaner for deglitching the input clock signal.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: January 31, 2012
    Assignee: Beken Corporation
    Inventor: Weifeng Wang
  • Patent number: 8107580
    Abstract: A phase detector generates a phase dependent control signal according to the phase relationship between a first and second clock signal. The phase detector includes first and second phase detector circuits receiving the first and second clock signals and generating select signals having duty cycles corresponding to the phase relationship between the clock edges of the first and second clock signals. The phase detector also includes a charge pump that receives select signals from the phase detector circuits and produces an increasing or decreasing control signal when the first and second clock signals do not have the predetermined phase relationship, and a non-varying control signal when the first and second clock signals do have the predetermined phase relationship. The control signal may be used to adjust the delay value of a voltage-controlled delay circuit in order to adjust the phase relationship between the first and second clock signals to have a predetermined phase relationship.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: January 31, 2012
    Assignee: Round Rock Research, LLC
    Inventor: Ronnie M. Harrison
  • Patent number: 8102948
    Abstract: A carrier recovery apparatus includes a pilot strength detector, a first lock loop, a second lock loop, and a controller. The pilot strength detector determines whether a pilot strength of an input signal is greater than a threshold value to generate a control signal. The first lock loop performs a first carrier recovery on the input signal. The second lock loop performs a second carrier recovery on the input signal. The controller selectively allows the first lock loop to perform the first carrier recovery on the input signal or the second lock loop to perform the second carrier recovery on the input signal according to the control signal. The first lock loop is a pilot-based FPLL and the second locked loop is a pilot-less PLL.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 24, 2012
    Assignee: Himax Media Solutions, Inc.
    Inventors: Guo-Hau Gau, Pei-Jun Shih, Shin-Shiuan Cheng
  • Patent number: 8102960
    Abstract: A method and apparatus to improve adaptation speed of a digital receiver is presented. The receiver includes an equalizer to initiate adaptation to a transmission channel responsive to a first control signal, a slicer coupled to the equalizer to generate symbol decisions based at least in part on an equalized digital signal, logic to receive the symbol decisions and generate a selection signal when a lock onto a training sequence of the symbol decisions occurs, first and second phase detectors to detect phase errors of the equalized digital signal and an incoming digital signal, respectively, and a clock generator to generate a clock signal responsive to one of the first and second phase errors.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 24, 2012
    Assignee: Intel Corporation
    Inventors: Adee Ran, Ehud Shoor, Amir Mezer
  • Patent number: 8098788
    Abstract: An apparatus that includes a module for controlling the frequency of a voltage controlled oscillator (VCO) as part of a phase locked loop (PLL), or clock and data recovery (CDR) when an input reference signal to the PLL or serial data to the CDR has ceased from being received. In particular, the apparatus comprises a VCO adapted to generate a VCO clock signal, a first control module adapted to control the frequency of the VCO clock signal based on the input reference signal, and a second control module adapted to control the frequency of the VCO clock signal in response to an absence of the input reference signal. By controlling the frequency of the VCO clock signal during an absence of the input reference signal, the first control module is able to more easily re-acquire control the frequency of the VCO clock signal when the input reference signal is received again.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: January 17, 2012
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Mustafa Ertugrul Oner, Arda Kamil Bafra, Levent Yakay
  • Patent number: 8099067
    Abstract: A demodulation system for Radio Data System (RDS) signals in a receiver includes a quadrature mixer (303) configured to convert a RDS signal at an input frequency directly to a base band RDS signal, a single filter (305) configured to filter the base band RDS signal to provide a RDS signal, and a signal level detector (311) configured to provide an indication of a level of the RDS signal (313), a demodulator (315) configured to demodulate the RDS signal and provide RDS data, the RDS data corresponding to information for user consumption, where the indication is used for selectively interrupting the user consumption when the level of the RDS signal is unsatisfactory.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: January 17, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Jie Su
  • Patent number: 8098786
    Abstract: In a reception apparatus 1, a multiphase sampling clock signal is generated by a sampling clock signal generation circuit 40, based on a clock signal which has been phase-adjusted by a phase adjustment circuit 50. The data of each of the bits of a serial data signal is sampled and output by a sampler block circuit 30n, with timing indicated by the sampling clock signal. The amount of phase adjustment of the clock signal in the phase adjustment circuit 50 is set such that the delay time from generation of the multiphase sampling clock signal in the sampling clock signal generation circuit 40 until indication of the sampling timing by the sampling clock signal in the sampler block circuit 30n is canceled.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Thine Electronics, Inc.
    Inventors: Kazuyuki Omote, Ryutaro Saito
  • Patent number: 8098787
    Abstract: One or two Serializer/Deserializer (SerDes) modules are used to measure the time between two pulses with high resolution. A PLL inside a SerDes block is locked to a reference clock and an input signal is passed through a storage element to create a serial data stream that is converted into a parallel data stream by a demultiplexer inside the SerDes. The parallel data is stored in a bit logic unit that compares the parallel data to a second parallel data obtained in similar fashion in another SerDes from a second input signal. The time between the two pulses is then calculated as the number of cycles in the serial data stream that corresponds to the number of bits between the positions of the two events.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 17, 2012
    Assignee: Altera Corporation
    Inventor: Andy Turudic
  • Patent number: 8094770
    Abstract: A phase-locked loop includes a sample selector configured to select a set of samples from an oversampled portion of a data signal, a dynamic phase decision control circuit configured to indicate whether a predetermined number of edges is present in the set of samples, and a phase detector configured to determine a skew condition and a direction of the skew condition of the set of samples based on the indication of the dynamic phase decision control circuit. The phase detector is configured to produce a set of skew detection signals based on at least one skew condition determination. The phase-locked loop further includes a loop filter configured to filter the set of skew detection signals. The loop filter is also configured to produce a set of phase adjustment signals based on the set of skew detection signals. The sample selector is configured to select a set of samples from the oversampled portion of the data signal, based on the set of phase adjustment signals.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: January 10, 2012
    Assignee: Integrated Device Technology inc.
    Inventor: Sen-Jung Wei
  • Patent number: 8090067
    Abstract: A clock-data recovery circuit includes a phase rotator, a phase detector and a charge pump. The phase rotator receives first and second reference clocks and differential control signals. The phase rotator generates a modified clock signal responsive to the first and second reference clocks and the control signals. The phase detector receives a data signal and the modified clock signal. The phase detector generates a modified data signal and a phase error signal responsive to the data signal and the modified clock signal. The charge pump receives the phase error signal and generates the differential control signals, which direct the phase rotator to interpolate between select clock phases.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 3, 2012
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Peter Ho
  • Patent number: 8090971
    Abstract: The present invention discloses data recovery architecture (CDR) to improve a multi-link system's tolerance to delay mismatches (or skewing effect) in its different links. The architecture is entirely digital and usable in any multi-link transceiver implementation that makes use of a separate clock link and requires timing synchronization between the different data links.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: January 3, 2012
    Assignee: Synopsys, Inc.
    Inventor: Jose Angelo Rebelo Sarmento
  • Patent number: 8085893
    Abstract: A clock recovery circuit includes a first phase detector for measuring the phase difference between a first clock signal from a voltage controlled oscillator (VCO) and a data signal. A phase shifter responsive to a control signal based on this phase difference adjusts the phase of an incoming clock signal to yield a second clock signal. The phase difference between the first clock signal and the second clock signal is measured and the resulting signal is low-pass filtered to derive a control signal for controlling the VCO. The phase locked loop including the VCO filters out jitter.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: December 27, 2011
    Assignee: Rambus, Inc.
    Inventor: Carl William Werner
  • Patent number: 8085817
    Abstract: A clock synchronization buffer for a counter clock flow pipelined circuit including a cascade of processing modules that receive data from a previous module and provide output results to a following module. The clock synchronization buffer receives a clock input signal and provides clock signals to a local processing module and to the next pipeline stage. The clock synchronization buffer includes a selectable delay stage that receives a clock input signal and a delay select signal and outputs a clock signal having a selected delay. An amplifier connected to the selectable delay stage provides the delayed clock signal to a local processing module that corresponds to the clock synchronization buffer circuit. An inverting amplifier connected to the selectable delay stage provides the delayed clock signal to the next pipeline stage. A clock synchronization controller synchronizes the phases of reference clock input and synchronized clock input signals.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: December 27, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas Jai Fouts, Brian Lee Luke
  • Patent number: RE43131
    Abstract: A carrier tracking circuit includes a first phase adjustment circuit coupled to an input of a delay element and a second phase adjustment circuit coupled to an output of the delay element. A phase correction circuit is coupled to output of the delay element is operable to generate a phase adjustment value based upon a data symbol output from the delay element. The phase correction circuit includes a double phase correction circuit to prevent double application of the same phase adjustment value to a symbol by both the first and second phase adjustment circuits. The carrier tracking circuit may be used in OFDM communications systems with each data symbol being an OFDM symbol and with the delay element being an FFT. The carrier tracker circuit also may include a feed forward circuit for correcting the phase error of a given data symbol using a phase error generated from that symbol.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: January 24, 2012
    Assignee: Intellectual Ventures I LLC
    Inventors: Daniel Davidson MacFarlane Shearer, III, Michael J. Seals