Lens Patents (Class 385/33)
  • Patent number: 8858093
    Abstract: An optical connector includes a jumper, optical fibers and an optical-electric coupling element. The jumper includes a first side surface and a second side surface. A locating flange extends from the first side surface. The locating flange includes a first vertical surface. The jumper defines receiving holes through the first and second side surfaces and the first vertical surface. Each of the optical fibers is received in a respective receiving hole. The optical-electric coupling element includes a third side surface defining a locating cavity. The locating cavity includes a second vertical surface forming coupling lenses. The locating cavity also includes a lower sidewall and an upper sidewall defining an opening. The second vertical surface is substantially perpendicular to the upper sidewall. The locating flange is inserted into the locating cavity, with each coupling lenses aligned with a respective optical fiber.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chang-Wei Kuo
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8861900
    Abstract: Probes optical assemblies and probes for optical coherence tomography (OCT) applications are disclosed. The probe assembly includes an optical fiber, a stub lens and a light-deflecting member arranged in a cooperative optical relationship to define an optical path between the optical fiber end and an image plane that is folded by the light-deflecting member. The optical probe includes a transparent jacket that contains the optical probe assembly.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, John Himmelreich
  • Publication number: 20140301698
    Abstract: It is an object of the present invention to simply position a lens and an optical fiber while suppressing an increase in cost. An optical coupling member includes an optical fiber (13), a holder (11) that holds the optical fiber (13) inserted from an insertion hole (11a) formed at one end, and a lens such as a collimator lens (12) accommodated in an accommodation section (11c) formed at the other end of the holder (11), in which positioning is performed by causing the lens and/or the end face of the optical fiber (13) to come into contact with a tapered surface provided at a position facing the lens (12) and the optical fiber (13) in a protruding portion (11e) formed on an inner surface in the vicinity of the accommodation section (11c) of the holder (11).
    Type: Application
    Filed: October 15, 2012
    Publication date: October 9, 2014
    Applicant: MITSUBISHI PENCIL COMPANY, LIMITED
    Inventors: Naohiko Moriya, Kiyoshi Iwamoto
  • Patent number: 8855452
    Abstract: A silicon photonic chip is provided. An active silicon layer that includes a photonic device is on a front side of the silicon photonic chip. A silicon substrate that includes an etched backside cavity is on a backside of the silicon photonic chip. A microlens is integrated into the etched backside cavity. A buried oxide layer is located between the active silicon layer and the silicon substrate. The buried oxide layer is an etch stop for the etched backside cavity.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Russell A. Budd, Frank R. Libsch, Robert L. Wisnieff
  • Patent number: 8845626
    Abstract: Laser treatment apparatus includes one diode-laser providing infrared radiation for the treatment and another diode-laser for providing visible radiation. A lens launches the infrared and visible radiations from the diode-lasers into the entrance face of the optical fiber for transporting the radiations to a treatment location.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 30, 2014
    Assignee: Coherent, Inc.
    Inventors: Jason P. Watson, David Schleuning
  • Publication number: 20140270641
    Abstract: An optical coupling element includes a first side surface and an upper surface. The upper surface defines a first cavity and a tapering hole which permits the insertion and precise fixing in place with adhesive of an optical fiber, without any gap or play in the attachment which would allow misalignment between the optical fiber and a light coupling lens.
    Type: Application
    Filed: June 14, 2013
    Publication date: September 18, 2014
    Inventor: YI-ZHONG SHEU
  • Patent number: 8837880
    Abstract: The invention is directed to provide a virtual image display device capable of setting the aspect ratio of the image light entering the eyes of the observer as a virtual image to a desired state while fulfilling the design limitations. In the invention, the aspect ratio of the virtual image can be converted to the aspect ratio (16:9) laterally longer than the aspect ratio (4:3) of the image area due to the conversion in the aspect ratio conversion optical system. Thus, the aspect ratio of the image light to be recognized by the eye of the observer as a virtual image can be adjusted to a desired state even in the case in which, for example, the lateral width of the image forming device with respect to the whole of the virtual image display device is limited by a design requirement.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 16, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Takashi Takeda, Masayuki Takagi, Toshiaki Miyao, Takahiro Totani, Akira Komatsu
  • Patent number: 8837881
    Abstract: An optical connector includes a jumper, optical fibers and an optical-electric coupling element. The jumper includes a lower surface and an upper surface. The jumper defines a first receiving hole and a second receiving hole. A flange perpendicularly extends upward from a periphery of the upper surface. The flange defines a locating opening. The optical-electric coupling element includes a bottom surface and a top surface. The bottom surface forms at least two first coupling lenses. The bottom surface defines a cutout spatially corresponds with the flange of the jumper. The cutout includes a bottom portion. A locating projector extends upward from the bottom portion. The locating projector is inserted into the locating opening to attach the jumper into the optical-electric coupling element, with each of the first coupling lens being received in the first receiving hole or the second receiving hole. The flange being received in the cutout.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi Hung
  • Patent number: 8837882
    Abstract: A light-based touch-sensitive surface, including a housing, a surface attached to the housing for receiving touch input, a plurality of light sources in the housing for emitting light that crosses the surface, a plurality of light receivers in the housing for detecting the light emitted by the light sources, a curved lens adjacent to the surface through which the light emitted by the light sources passes, including two substantially similarly curved exterior panels, one of which forms a curved rim for the surface, and a calculating unit in said housing, connected to the light receivers, for calculating a touch location based on an absence of light expected to be received by the receivers.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: September 16, 2014
    Assignee: Neonode Inc.
    Inventors: Stefan Holmgren, Lars Sparf, John Karlsson, Anders Jansson, Thomas Eriksson, Joseph Shain, Niklas Kvist, Robert Pettersson
  • Publication number: 20140254985
    Abstract: An optical connector includes a substrate, an optical emitter, an optical receiver, a support member, and a lens member. The optical emitter and the optical receiver are electrically connected to the substrate. The support member includes a lower end connected to the substrate and an upper end away from the substrate. The upper end includes a supporting end and a protrusion protruding from the supporting surface. The lens member includes a lens portion and an assembling portion surrounding the lens portion. A thickness of the assembling portion is less than a height of the protrusion relative to the supporting surface. The assembling portion abuts on the supporting surface and a slit is formed between a peripheral side surface of the assembling portion and an inner side surface of the protrusion. An adhesive is distributed in the slit to adhere the lens member to the support member.
    Type: Application
    Filed: September 10, 2013
    Publication date: September 11, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIH-CHEN LAI
  • Patent number: 8829393
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8824841
    Abstract: An expanded beam optical insert is provided for use in optical data connectors, such as fiber optic connectors or the like. The expanded beam optical insert may be readily assembled, substantially without the use of costly fixturing tools or adhesives, while still allowing the precise positioning of alignment of optical lenses for placement of ferrule assemblies, optical stubs, and the like.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 2, 2014
    Inventor: David T. Mullen
  • Patent number: 8821035
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: September 2, 2014
    Assignee: Flir Systems, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Patent number: 8824840
    Abstract: An optical connector assembly includes two optical connectors, each of which includes a transparent shell forming a blind hole and a lensed fiber integrally forming a lens at a front end thereof. The lensed fibers are inserted into the respective blind holes using the front ends and held in the respective blind holes. A distance between the lensed fibers is two times of a working distance of the lensed fibers.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 2, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chia-Ling Hsu
  • Patent number: 8825142
    Abstract: An imaging apparatus for diagnosis is connected with a probe including a transmitting and receiving unit transmitting a light transmitted from a light source continuously to the inside of a body cavity and concurrently, receiving a reflected light continuously from the inside of the body cavity, and generates a tomographic image inside the body cavity based on the obtained reflected light by obtaining the reflected light from the transmitting and receiving unit while rotating the transmitting and receiving unit. The apparatus includes a mechanism for extracting intensity of the reflected light obtained by a phenomenon that the light transmitted to the transmitting and receiving unit is reflected at the transmitting and receiving unit; and a mechanism for judging whether or not the extracted intensity of each reflected light at each rotary angle of the transmitting and receiving unit lies in a range of a predetermined variation width.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: September 2, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Satoru Suehara
  • Publication number: 20140241664
    Abstract: An expanded beam (EB) optical connector. In some embodiments, the EB optical connector includes: a rigid, hollow, straight contact tube having a centerline axis; and a collimator assembly having an optical axis and comprising an optical fiber and a collimating lens, wherein the centerline axis of the contact tube is at least substantially aligned with the optical axis such that collimated light produced by the lens from light exiting the fiber travels though the contact tube and the loss of light caused by misalignment of the axes is not more than 2 dB.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Inventor: Jerome C. FARNAN
  • Publication number: 20140241665
    Abstract: A method and apparatus for controlled displacement, rotation and deformation of parts of a fiber optic collimator so as to provide multiple degrees of adjustment freedom that are decoupled one from another, for adjusting the path of a light beam, comprising: an output elongate hollow node for passing a light beam therethrough and towards a lens, and an elongate hollow base node having separate top and bottom parts connected to each other by opposed ends of a plurality of flexible rods that restrict the relative movement between the top and bottom parts of the base node to substantially only translational parallel movement. Opposed portions of the top and bottom parts of the base node each include a respective screw and an opposed slanted surface, which upon interaction, develop a shearing force which is applied to the top and bottom parts of the base node and cause a translational parallel relative movement therebetween.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: U.S. Army Research Laboratory ATTN RDRL-LOC-1
    Inventor: U.S. Army Research Laboratory ATTN RDRL-LOC-I
  • Publication number: 20140241666
    Abstract: An optical communication module includes a photoelectric conversion unit and a lens unit, the photoelectric conversion unit includes a substrate. The lens unit is fixed on the substrate. The optical communication module further includes a cylinder. The lens unit includes a blind hole faces to the substrate. The substrate includes a mounting hole, one end of the cylinder is fixed into the blind hole, another end of the cylinder is fixed into the mounting hole.
    Type: Application
    Filed: December 17, 2013
    Publication date: August 28, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: I-THUN LIN
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Publication number: 20140233887
    Abstract: A method for aligning a ferrule-mounted optical fiber with the optical axis of an electro-optical device, including the following steps: providing an alignment marking with respect to the device in relation to the optical axis; providing an annular receptacle and a tubular alignment pin with a central passageway, having its proximal end slidably fitted in the annulus of the receptacle; aligning the proximal end of the alignment pin with the alignment marking; securing the device to the receptacle; removing the alignment pin from the receptacle; and inserting the ferrule-mounted optical fiber into the receptacle.
    Type: Application
    Filed: June 24, 2013
    Publication date: August 21, 2014
    Inventors: Idris Rahmat, Huan Sin Lee, Tuan Chin Teyo, Gabriel Walter
  • Patent number: 8811781
    Abstract: Techniques described herein generally relate to assemblies with selective optical transmissivity. In some examples, an assembly with selective optical transmissivity is described. The assembly can include a first layer and a second layer. The first layer can include a multiple number of liquid lens units. Each of the liquid lens units can be configured to selectively focus incoming optical rays within a focal range defined between a first focal length and a second focal length. The second layer can be spaced apart from the first layer and can include a multiple number of optical waveguides. Each of the optical waveguides can include one or more waveguide inlets such that the second layer includes a multiple number of waveguide inlets. Each of the waveguide inlets may be associated with a respective one of the liquid lens units and may be spaced apart from the respective one of the liquid lens units by a distance within the focal range.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 19, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Takahisa Kusuura
  • Publication number: 20140219607
    Abstract: An optical assembly is disclosed where the optical assembly provides an optical device and a holder including a sleeve, a skirt, and a lens. The sleeve has a bore, into which an external optical fiber is set to couple with the optical device, providing a target surface in an end thereof. The target surface includes an aiming index to indicate the axis of the lens.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 7, 2014
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Reiko Murata
  • Patent number: 8796612
    Abstract: An optical fiber connector is positioned on a printed circuit board (PCB) and includes a main body, a number of slots, and a number of optical fibers. The main body includes a number of light transceivers. Each of the light transceivers includes a light transmitting module and a light receiving module adjacent to the light transmitting module. One end of each of the optical fibers is optically coupled to a respective one of the light emitting modules and the light receiving modules, and the other end of each of the optical fibers is mounted on a respective one of the slots.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Publication number: 20140209929
    Abstract: An optical coupling system is provided which includes a first layer structure and a second layer structure. The first layer structure includes a plurality of layers sequentially stacked on a substrate, and is configured to compresses a beam emitted from a light source along a direction substantially perpendicular to a top surface of the substrate. The second layer structure is formed on the substrate, and is configured to compresses the beam, having passed through the first layer structure, along a direction substantially parallel to the top surface of the substrate.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 31, 2014
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Sung-Dong SUH, Kyoung-Won NA, Yoon-Dong PARK, Beom-Suk LEE, Dong-Mo IM
  • Publication number: 20140211598
    Abstract: A light coupling structure, a method of manufacturing a memory cell, and a magnetic recording head are provided. The light coupling structure includes a light coupling layer having a cavity; a waveguide having a cladding layer and a core layer; wherein the cladding layer of the waveguide is disposed in the cavity of the light coupling layer and the core layer of the waveguide is disposed over the light coupling layer and the cladding layer of the waveguide; wherein the light coupling layer is configured to receive light from a light source and couple the received light into the core layer of the waveguide.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 31, 2014
    Inventors: Qian Wang, Seng-Tiong Ho
  • Publication number: 20140211476
    Abstract: An optical waveguide includes a body of optically transmissive material having a width substantially greater than an overall thickness thereof and including a first side, a second side opposite the first side, a central bore extending between the first and second sides and adapted to receive a light emitting diode, and extraction features on the second side. A light diverter extends into the central bore for diverting light into and generally along the width of the body of material. The extraction features direct light out of the first side and wherein at least one extraction feature has an extraction surface dimension transverse to the thickness that is between about 5% and about 75% the overall thickness of the body of material.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Inventor: Cree, Inc.
  • Publication number: 20140212093
    Abstract: An optical connector includes a printed circuit board, a substrate, a photoelectric die, a number of wires, a lens element, and an optical fiber. The substrate is mounted on the printed circuit board. The photoelectric die is wire-bonded to the substrate by the wires. The photoelectric die is packaged by the lens element, the substrate and the printed circuit board and optically coupled to the optical fiber by the lens element.
    Type: Application
    Filed: June 27, 2013
    Publication date: July 31, 2014
    Inventor: CHIH-CHEN LAI
  • Publication number: 20140205237
    Abstract: A mechanically aligned optical engine includes an optoelectronic component connected to a first side of a bench substrate and a transparent substrate bonded to a second side of the bench substrate. The transparent substrate comprises a mechanical feature designed to fit within an aperture of the bench substrate such that a lens formed onto the transparent substrate is aligned with an active region of the optoelectronic component.
    Type: Application
    Filed: September 6, 2011
    Publication date: July 24, 2014
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne V. Sorin, Georgios Panotopoulos, Susant K. Patra
  • Publication number: 20140205236
    Abstract: An optical fiber combiner 1 has: a plurality of input optical fibers 20; a plurality of divergence angle reducing members 50 which lights emitted from the respective input optical fibers 20 enter and which emits the lights from the input optical fibers 20 at divergence angles made lower than divergence angles upon entrance; a bridge fiber 30 which the lights emitted from the respective divergence angle reducing members 50 enter and which has a tapered portion 34 which has a portion in which the lights propagate and a diameter of which is gradually reduced apart from a divergence angle reducing member 50 side; and an output optical fiber 40 which a light emitted from a side of the bridge fiber 30 opposite to the divergence angle reducing member 50 side enters.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: FUJIKURA LTD.
    Inventors: Yoshikiyo Noguchi, Kensuke Shima
  • Publication number: 20140205235
    Abstract: Optical connections for optical communication having in-line optical paths and magnetic coupling portions are disclosed. In one embodiment, an optical connection includes a lens block having an optical interface portion that defines an in-line optical path without an optical turn for optical signals propagating through the lens block, and a magnetic coupling portion disposed about at least a portion of the lens block. In another embodiment, a method of making an optical connection that includes providing a circuit board having one or more active components and placing a lens block on the circuit board. The lens block includes an optical interface portion defining an in-line optical path. The method further includes placing at least one magnetic coupling portion about the lens block. The at least one magnetic coupling portion is configured as a bulk magnetic material. Electronic devices and fiber optic cable assemblies are also disclosed.
    Type: Application
    Filed: May 10, 2013
    Publication date: July 24, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Seldon David Benjamin, Davide Domenico Fortusini, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8787715
    Abstract: An optical coupling lens includes a light incident surface, a light output surface perpendicular to the light incident surface, a reflection surface interconnected between the light incident surface and the light output surface, a first converging lens and a second converging lens formed on the light incident surface, and third converging lens formed on the light output surface and has a semi-cylindrical shape. Optical axes of the first converging lens and the second converging lens are perpendicular to the light incident surface and located on a common imaginary plane. A central axial plane of the third converging lens is perpendicular to the light output surface. An intersecting line between the central axial plane and the common imaginary plane is located on the reflection surface. A width of the third converging lens is equal to a diameter of each of the first converging lens and the second converging lens.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: July 22, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi Hung
  • Patent number: 8787714
    Abstract: Provided is a lens array that can reliably obtain monitor light and is easy to manufacture. In the provided lens array, light incident on a first lens surface (11) from light-emitting elements is split by a reflective/transmissive layer (17) between a first optical surface (14a) and a first prism surface (16a) and sent, respectively, towards a second lens surface (12) and a third lens surface (13). Monitor light included in the light sent towards the third lens surface (13) is sent by the third lens surface (13) towards a light-receiving element (8). The path of light incident on the first optical surface (14a) is collinear with the path of light outgoing from the second optical surface (14b).
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 22, 2014
    Assignee: Enplas Corporation
    Inventor: Shimpei Morioka
  • Publication number: 20140199022
    Abstract: An optical connector includes a printed circuit board, a photoelectric element positioned on and electrically connected to the printed circuit board, a lens element, and an optical fiber. The lens element defines a cutout having a sidewall and a blind hole in the sidewall. The lens element defines a receiving recess and forms a lens in a bottom surface of the recess. The lens is optically aligned to gather light which is directly reflected from a light-emitting optical fiber inserted in the blind hole. The lens element is positioned on the printed circuit board such that the photoelectric element is received in the recess and aligned with the lens.
    Type: Application
    Filed: August 21, 2013
    Publication date: July 17, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHANG-WEI KUO
  • Publication number: 20140199024
    Abstract: An optical coupling lens includes a body, first converging portions, second converging portions, third converging portions, and fourth converging portions. The body includes a first optical surface, a second optical surface perpendicular to the first optical surface, and a reflecting surface oblique relative to the first optical surface and the second optical surface. The first and second converging portions are formed on the first optical surface and face the reflecting surface. The third and fourth converging portions are formed on the second optical surface and face the reflecting surface. The third converging portions correspond to the first converging portions, and the fourth converging portions correspond to the second converging portions.
    Type: Application
    Filed: August 23, 2013
    Publication date: July 17, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHANG-WEI KUO
  • Publication number: 20140199023
    Abstract: A photoelectric coupling module includes a holding module and a lens module. The holding module includes a base defining a receiving recess and a cover having a protruding portion. The protruding portion is received in the receiving recess, and the protruding portion and the receiving recess cooperatively define a receiving room for holding optical fibers. The lens module is coupled to the holding module, and includes a reflective surface, a plurality of first lenses, and a plurality of second lenses. Optical axes of the first lenses cross optical axes of the second lenses on the reflective surface. The optical fibers are coupled to the second lenses.
    Type: Application
    Filed: August 21, 2013
    Publication date: July 17, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: I-THUN LIN
  • Publication number: 20140199021
    Abstract: A photoelectric coupling module includes a fiber module, a lens module, and at least one positioning pole. The fiber module defines a plurality of receiving holes and at least one first positioning hole. The lens module includes a central portion and an edge portion surrounding the central portion. The central portion includes a plurality of lenses, and the lenses are respectively aligned with the receiving holes. The edge portion defines at least one second positioning hole. The at least one positioning pole is made of metal, and penetrates the at least one second positioning hole and the at least one first positioning hole.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 17, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: I-THUN LIN
  • Publication number: 20140199025
    Abstract: A photoelectric conversion device includes a circuit board, light-emitting modules arranged on the circuit board in a first straight line, light-receiving modules arranged on the circuit board in a second straight line, and an optical coupling module. The optical coupling module includes a first optical surface, a second optical surface perpendicular to the first optical surface, a reflecting surface obliquely relative to the first and second optical surfaces, first converging lenses arranged on the first optical surface in a third straight line, second converging lenses arranged on the first optical surface in a fourth straight line, third converging lenses arranged on the second optical surface in a fifth straight line, and fourth converging lenses arranged on the second optical surface in a sixth straight line. The first to six straight lines are substantially parallel to each other.
    Type: Application
    Filed: August 26, 2013
    Publication date: July 17, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHANG-WEI KUO
  • Patent number: 8781274
    Abstract: An optical amplifier includes: a first optical fiber, through which seed light and excitation light propagate; an optical coupler that inputs the excitation light into the first optical fiber; a first lens to which the seed light and the excitation light output from the first optical fiber are input and which increases diameters of the seed light and the excitation light; a glass rod doped with rare earth elements to be excited by the excitation light, to which the seed light and the excitation light output from the first lens are input and which amplifies and outputs the seed light as output light; a second lens to which at least the output light output from the glass rod is input and which decreases a diameter of the output light; and a second optical fiber to which the output light output from the second lens is input.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: July 15, 2014
    Assignee: Fujikura Ltd.
    Inventors: Yoshikiyo Noguchi, Michihiro Nakai
  • Patent number: 8781273
    Abstract: Ferrule assemblies having at least one coded magnetic array are disclosed. In one embodiment, a ferrule assembly includes a ferrule body having a coupling surface and a coded magnetic array having a plurality of magnetic regions. The coded magnetic array may be located within the coupling surface. The ferrule assembly further includes a lens component located within the ferrule body. The lens component may have a facet at the coupling surface of the ferrule body at a predetermined angle. In another embodiment, a translating ferrule assembly includes an optical interface and a coded magnetic array, and is configured to translate within a connector housing of an optical connector when coupled to an electronics device. Optical couplings having a coded magnetic array and sockets for receiving a connector are also disclosed.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 15, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon D. Benjamin, Jeffery A. DeMerritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Patent number: 8780417
    Abstract: A lens array includes a first lens row including first lenses arranged in a first direction, a second lens row including second lenses arranged in a direction substantially parallel with the first direction, a first boundary being a boundary between the first lenses adjacent to each other, a second boundary being a boundary between each of the first lenses and the second lens adjacent to the first lens, and a first join portion where the first boundary and the second boundary join each other. At the first joint portion, the first boundary and the second boundary contact each other with no step as seen in a plane that is substantially orthogonal to the first direction.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: July 15, 2014
    Assignee: Oki Data Corporation
    Inventor: Akihiro Yamamura
  • Publication number: 20140193116
    Abstract: The disclosure generally relates to sets of optical waveguides such as optical fiber ribbons, and fiber optic connectors useful for connecting multiple optical fibers. In particular, the disclosure provides an efficient, compact, and reliable optical fiber connector that incorporates a unitary substrate comprising a plurality of staggered light redirecting features on an input surface there of directing incoming light from optical fibres through the substrate towards optical elements to be coupled with.
    Type: Application
    Filed: September 13, 2012
    Publication date: July 10, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James R. Bylander, Ding Wang
  • Publication number: 20140192827
    Abstract: A variable wavelength diode according to the inventive concept includes a resonator and a plurality of cylindrical lenses. The resonator includes slab waveguides of which resonance lengths are different from each other. The slab waveguides are disposed on a planar light wave circuit (PLC). Thus, the variable wavelength diode realizes a high variation speed and a continuous variation of a beam at the same time.
    Type: Application
    Filed: September 9, 2013
    Publication date: July 10, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Kwang Ryong OH
  • Patent number: 8774577
    Abstract: Optical couplings for making and optical connection between one or more devices are disclosed. In one embodiment, an optical coupling includes a coupling face, an optical interface within the coupling face, an optical component positioned within the optical interface, and at least one coded magnetic array. The at least one coded magnetic array may include a plurality of magnetic regions configured aid in mating the optical component with a corresponding optical component of a complementary mated optical coupling to a predetermined tolerance for optical communication. Optical cable assemblies and electronics devices having optical couplings with optical interfaces using coded magnetic arrays are also disclosed.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon D. Benjamin, Jeffery A. DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Patent number: 8774578
    Abstract: An optical module includes a substrate including an optical device chip disposed on a top surface thereof, a spacer having at least one through hole and combined with the substrate on the substrate to insert the optical device chip into the through hole, a cover combined with the spacer on the spacer to stop the through hole, and an optical fiber combined with the cover on the cover in a position corresponding to a position of the optical device chip. The optical module is configured such that light transmitted through the optical fiber is incident to the optical device chip or light emitted from the optical device chip is incident to the optical fiber. The optical module may be downscaled and produced in large quantities at low cost.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 8, 2014
    Assignees: XL Photonics Inc.
    Inventor: Heung Ro Choo
  • Patent number: 8774579
    Abstract: A gradient-index (GRIN) optical connector is disclosed that includes a GRIN lens having a central optical axis and front and back opposite endfaces. A plurality of optical fibers are optically coupled to the back endface of the GRIN lens and defines a first optical fiber bundle having an asymmetric arrangement relative to the central optical axis of the GRIN lens. The GRIN lens has a refractive index profile generally defined by an alpha profile having an alpha parameter ? in a range 1.92???1.98. An optical fiber connector assembly formed by interfacing two of the GRIN optical connectors is also disclosed.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon David Benjamin, Davide Domenico Fortusini, Chi Zhang
  • Patent number: 8774576
    Abstract: A an optical module includes a circuit board provided with an optical element selected from a light-receiving element and/or a light-emitting element; a lens where light from the optical element passes through; an alignment mark serving as an indicator for alignment with the optical element; and an optical waveguide formed to input/output light into/from the optical element through the lens.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: July 8, 2014
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Patent number: 8773616
    Abstract: An illuminating lens (1) includes a light entrance surface (11), a light exit surface (12), and a bottom surface (13). The light entrance surface (11) has a first light entrance surface (111) and a second light entrance surface (112). The first light entrance surface (111) is a curved surface convex toward the light exit surface (12) and perpendicularly intersecting an optical axis A, and the second light entrance surface (112) extends outwardly from an edge of the first light entrance surface (111) and is connected obliquely to an inner edge of the bottom surface (13).
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomoko Iiyama, Syunsuke Kimura, Daizaburo Matsuki
  • Publication number: 20140185983
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Publication number: 20140185984
    Abstract: An optical connector includes a jumper, optical fibers and an optical-electric coupling element. The jumper includes a lower surface and an upper surface. The jumper defines a first receiving hole and a second receiving hole. A flange perpendicularly extends upward from a periphery of the upper surface. The flange defines a locating opening. The optical-electric coupling element includes a bottom surface and a top surface. The bottom surface forms at least two first coupling lenses. The bottom surface defines a cutout spatially corresponds with the flange of the jumper. The cutout includes a bottom portion. A locating projector extends upward from the bottom portion. The locating projector is inserted into the locating opening to attach the jumper into the optical-electric coupling element, with each of the first coupling lens being received in the first receiving hole or the second receiving hole. The flange being received in the cutout.
    Type: Application
    Filed: April 24, 2013
    Publication date: July 3, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: YI HUNG