Electro-optic Patents (Class 385/8)
  • Publication number: 20100231491
    Abstract: A light source device with high use efficiency is provided. By using a laser light source of a single polarization, uniformization of light quantity and uniformization of polarization are simultaneously realized, in a two-dimensional planar illumination utilizing reflection and collimating. Thus, it is possible to realize the two-dimensional planar illumination with polarization aligned, and therefore the use efficiency of light can be significantly improved, when combined with switching utilizing the polarization of a liquid crystal panel, etc.
    Type: Application
    Filed: February 13, 2007
    Publication date: September 16, 2010
    Inventors: Kiminori Mizuuchi, Kazuhisa Yamamoto
  • Patent number: 7787714
    Abstract: An object of the present invention is to widen the band of the velocity matching frequency as well as to reduce the electrode loss in the modulation electrode. An optical modulator has a substrate made of an electro-optical material, a signal electrode 3A, 3B and a ground electrode 2A, 2B provided on the substrate, an optical waveguide provided on the substrate. The signal electrode and the ground electrode each has an interaction section 2a, 2c, 3a, 3c and a feed-through section 2b, 2d, 3b, 3d. Light propagating through the optical waveguide is modulated by applying a modulation voltage on the interaction section. The thickness of the feed-through section is greater than that of the interaction section.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: August 31, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Yuichi Iwata, Osamu Mitomi, Jungo Kondo, Kenji Aoki
  • Patent number: 7782520
    Abstract: Duobinary and NRZ modulation of an X-Gb/s optical signal is achieved with a lumped element InP Mach-Zehnder device configured to operate at X/k-Gb/s where k>1 and arranged in a push-pull configuration.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 24, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Andrew Adamiecki, Sethumadhavan Chandrasekhar, Christopher Doerr, David Nielson, Peter Winzer
  • Patent number: 7772551
    Abstract: A refractive index variable element includes a structure including quantum dots having discrete energy levels and a dielectric matrix surrounding the quantum dots, and an electron injector injecting an electron into the quantum dots through the dielectric matrix.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Todori, Reiko Yoshimura, Fumihiko Aiga, Tsukasa Tada
  • Patent number: 7764851
    Abstract: An optical modulator has an optical waveguide substrate having a pair of principal surfaces, a pair of side surfaces an incident face and exit face of light, the substrate being composed of a ferroelectric material; a channel optical waveguide having at least a pair of branch sections, a multiplexing section of the branch sections and an exit section provided on the downstream of the multiplexing section, the waveguide being formed on the principal surface of the optical waveguide substrate; a modulation electrode electrodes for applying a signal voltage for modulating light propagating in the branch sections; and a reflective groove for reflecting leaked light of off-mode emitted from the multiplexing section and emitting the light from a principal surface of the optical waveguide substrate. An operating point of the optical modulator is controlled by changing a DC bias applied on the modulation electrode based on optical output of the leaked light of off-mode.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 27, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Akiyoshi Ide, Jungo Kondo, Osamu Mitomi, Yasunori Iwasaki, Hiroki Kobayashi
  • Patent number: 7760970
    Abstract: A single-photon absorption all-optical modulator, systems employing the same, and methods of making and using the same. An illustrative example is provided based on silicon semiconductor technology that employs rectangular waveguides. In some embodiments, it is observed that the waveguides operate with an absorption density of less than 1017 cm?1s?1mW?1 to provide a single-photon absorption operation mode.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 20, 2010
    Assignee: California Institute of Technology
    Inventors: Tom Baehr-Jones, Michael J. Hochberg, Axel Scherer
  • Patent number: 7756367
    Abstract: Various embodiments of the present invention are related to photonic systems and methods that can be used to encode data in carrier electromagnetic waves. In one embodiment of the present invention, a method for encoding data in carrier electromagnetic waves is provided. The method comprises: transmitting a number of carrier electromagnetic waves in a first waveguide; coupling one or more of the carrier electromagnetic waves into a resonant cavity of a photonic crystal coupled to the first waveguide; modulating the one or more carrier electromagnetic waves within the resonant cavity in order to generate data encoded electromagnetic waves; and coupling the data encoded electromagnetic waves into a second waveguide.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: July 13, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mihail Sigalas, Shih-Yuan Wang
  • Patent number: 7756376
    Abstract: An optical functional waveguide having a small size, used with stored energy, controlling the phase of light at high speed, and adjusting the optical path length. The optical functional waveguide includes a substrate (11), a quartz waveguide clad (12), a quartz waveguide core (13), groove structures (14), a filling material (15), and heater electrode (16). The filling material (15) placed in the groove structures (14) is, e.g., a resin transparent to the wavelength region of the guided light, and the refractive index temperature coefficient is about 10 to 100 times that of quartz. The heater electrode (16) is interposed between the groove structures (14) provided along the optical path. Therefore, the temperature of the filling material (15) can be varied sharply and quickly with little energy expended.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: July 13, 2010
    Assignee: Keio University
    Inventor: Hiroyuki Tsuda
  • Publication number: 20100166356
    Abstract: In an optical modulator, a first electrode portion having a plurality of first electrodes is provided on the upper surface of a base part having a periodically-poled structure and a second electrode portion is provided on the lower surface thereof, and voltage is applied in one direction between the first electrode portion and the second electrode portion, to thereby cause a periodic change of the refractive index in a polarization-part array direction in the periodically-poled structure and diffract light which enters the base part. This allows reduction in the voltage applied between the first electrode portion and the second electrode portion, and it is thereby possible to form a desired electric field inside the periodically-poled structure while achieving a high-density channel arrangement. By reducing the voltage, the rate of the optical modulation performed by the optical modulator can be increased.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 1, 2010
    Inventors: Masahide OKAZAKI, Toshiaki SUHARA
  • Patent number: 7738745
    Abstract: A method that includes (a) thermally biasing an electro-optic polymer device using an electrode; and (b) driving the electro-optic polymer device by applying a high frequency signal to the device using the same electrode.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: June 15, 2010
    Assignee: GigOptix, Inc.
    Inventors: Mary K. Koenig, Raluca Dinu
  • Patent number: 7729575
    Abstract: A variety of structures, methods, systems, and configuration scan support plasmons for routing.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 1, 2010
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20100129025
    Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
    Type: Application
    Filed: January 27, 2010
    Publication date: May 27, 2010
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Clarence Chui
  • Patent number: 7724999
    Abstract: An electro-optical device having a non-volatile programmable refractive index. The device includes: a waveguiding structure with waveguiding material, the waveguiding structure defining an optical beam path, where the waveguiding structure includes a transition metal oxide with oxygen vacancies that migrate when exposed to an electric field; and a plurality of electrodes for applying an electric field to a region including the transition metal oxide with oxygen vacancies; where the transition metal oxide and the electrodes are arranged such that under the applied electric field the oxygen vacancies migrate in a direction that has a component which is radial relative to a center of the beam path. Further, there is provided a method for making the electro-optical device, including: fabricating the waveguiding structure; positioning a plurality of electrodes for application of an electric field; and arranging the transition metal oxide and the electrodes.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gerhard Ingmar Meijer, Thilo Eermann Curt Stöferle
  • Patent number: 7720319
    Abstract: A method and system for determining the length of collocated waveguides in a high erosion environment, such as a solid rocket motor or a braking system. The system provides for mating optical waveguides having different attenuation coefficients within the combusting, eroding, or otherwise regressing material. Optical energy generated by the environment (e.g., from burning fuel), or which is introduced and scattered into the environment, travels through the waveguides to detector means coupled thereto. The intensities of the arriving optical energy are compared and the length of the collocated waveguides calculated therefrom. By calculating the length of the waveguides over time, a regression rate is determined.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: May 18, 2010
    Inventor: Valentin Korman
  • Patent number: 7715663
    Abstract: Techniques are disclosed for optical switching and data control, without the interaction of electronic switching speeds. In one example embodiment, a common cavity optical latch is provided that that can hold an optical state for an extended period of time, and the operation of which is controlled optically. Optical phase control allows optical modal switching to be employed between two common optical cavities, using incident optical signals and the way in which the cavities manipulate the phase within them to lock in one or the other configuration, thereby forming an optical latch. The optical latch is implemented in an integrated fashion, such as in a CMOS environment.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: May 11, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Daniel N. Carothers
  • Patent number: 7711215
    Abstract: It is an object of the present invention to provide a DSB-SC system capable of suppressing a third order component. The DSB-SC modulation having high extinction ratio can be realized by adjusting the first order component, which is generated by applying a modulation signal (3fm), and the third order component, which is generated by applying a basic signal (fm), to have reversed phase and the same intensity level, and then by applying the first order component to the third order component, these two components cancel each other.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 4, 2010
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7711213
    Abstract: Various embodiments of the present invention are directed to nanowire-based modulators that can be used to encode information in a carrier channel of electromagnetic radiation. In one embodiment of the present invention, the modulator includes a waveguide configured to transmit one or more channels of electromagnetic radiation. The modulator includes a first terminal and a second terminal. The first terminal and the second terminal are positioned on opposite sides of the waveguide. The modulator also includes a number of nanowires, wherein each nanowire interconnects the first terminal to the second terminal and a portion of each nanowire is operatively coupled to the waveguide. The nanowires modulate the one or more channels when an electrical signal of appreciable magnitude is applied to the first terminal and the second terminal.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: May 4, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Scott Corzine, Wei Wu, Alex Bratkovski
  • Patent number: 7701630
    Abstract: The invention relates to an external optical modulator comprising a Mach-Zehnder having a signal electrode including at least four sections of unequal length to one another positioned over an alternating domain structure in an electrooptic substrate, and including a center section, or center pair of sections disposed asymmetrically between pairs surrounding sections. The surrounding pairs, comprise the two sections adjacent the center section or pair of sections, and each two sections adjacent the previous pair of sections, moving outwardly from the center to the final outermost pair, L1 and LN at the RF input 2 and RF output 4. In each pair, the section lengths are equal, or the section closer to the RF output 4 has a longer length than the section closer to the RF input 2. The surrounding pairs have lengths that decrease from the innermost pair to the outermost pair. For a zero chirp structure, the section lengths are selected to maintain an equivalent length for the inverted and uninverted domain sections.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 20, 2010
    Assignee: JDS Uniphase Corporation
    Inventors: Karl Kissa, Gregory J. McBrien
  • Patent number: 7700936
    Abstract: In one embodiment, a method of producing an optoelectronic nanostructure includes preparing a substrate; providing a quantum well layer on the substrate; etching a volume of the substrate to produce a photonic crystal. The quantum dots are produced at multiple intersections of the quantum well layer within the photonic crystal. Multiple quantum well layers may also be provided so as to form multiple vertically aligned quantum dots. In another embodiment, an optoelectronic nanostructure includes a photonic crystal having a plurality of voids and interconnecting veins; a plurality of quantum dots arranged between the plurality of voids, wherein an electrical connection is provided to one or more of the plurality of quantum dots through an associated interconnecting vein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 20, 2010
    Assignee: University of Delaware
    Inventors: Janusz Murakowski, Garrett Schneider, Dennis W. Prather
  • Patent number: 7697793
    Abstract: A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which hen transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 13, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Vipulkumar Patel, Prakash Gothoskar
  • Patent number: 7693355
    Abstract: A hybrid EO polymer/sol-gel modulator in which the sol-gel core waveguide does not lie below the active EO polymer waveguide increases the higher electric field/optical field overlap factor ? and reduces inter-electrode separation d thereby lowering the modulator's half-wave drive voltage V?, reducing insertion loss and improving extinction.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 6, 2010
    Assignee: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Nasser N. Peyghambarian, Robert A. Norwood, Yasufumi Enami, Christopher T. DeRose
  • Patent number: 7693356
    Abstract: An optical modulator comprises a Z-cut lithium niobate substrate on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides lying beneath a buffer layer of dielectric material. First and second ground electrodes and a hot electrode are disposed on the buffer layer, the first and second ground electrodes being spaced either side of the hot electrode, the hot electrode and the first ground electrode being proximate to at least apart of the respective waveguides. The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: April 6, 2010
    Assignee: Oclaro (North America), Inc.
    Inventors: Giovanni Gilardi, Paolo Milanese, Simone Pensa
  • Patent number: 7693363
    Abstract: The invention is a system and method for performing all-optical modulation. A semiconductor layer having a defined thickness has an insulator adjacent one surface of the semiconductor. Conductive layers are provided adjacent the semiconductor layer and the insulator. A photodetector is provided to generate an electric field across the conductive layers in response to an input optical gate signal. An input optical signal is modulated by interaction with a plasmon wave generated at the semiconductor/conductive layer interface. By defining the thickness of the semiconductor layer, a desired wavelength of light supports the plasmon waves. Operation of the all-optical modulator requires the provision of an input optical signal of a desired wavelength and the provision of a gate optical signal. An output optical signal is recovered and can be used to store, display or transmit information, for example over a fiber optic communication system, such as a telecommunication system.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 6, 2010
    Assignee: California Institute of Technology
    Inventors: Jennifer A. Dionne, Kenneth A. Diest, Luke Sweatlock, Harry A. Atwater
  • Patent number: 7689069
    Abstract: A semiconductor optical switch may include an optical waveguide, a first electrode, and a first reflector. The optical waveguide may include a branching point, a first incoming path and first and second outgoing paths. The first electrode is provided at the branching point to give carrier injection into the branching point to allow that the branching point reflects an optical signal that is propagating through the first incoming path so that the reflected optical signal propagates through the second outgoing path. The first electrode may give no carrier injection into the branching point to allow that the branching point allows the optical signal to transmit through the branching point and propagate through the first outgoing path. The first reflector is provided on the first outgoing path. The first reflector reflects a leakage of light that has propagated from the branching point.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: March 30, 2010
    Assignee: Yokogawa Electric Corporation
    Inventors: Masayuki Suehiro, Shinji Iio, Shinichi Nakajima, Yoshiyuki Asano, Morio Wada
  • Patent number: 7689070
    Abstract: A high frequency electrical signal control device comprises a transmitter for generating a high frequency electrical signal, a receiver, a transmission line for propagating the electrical signal, and a structure for radiating the electrical signal propagated through the transmission line to the space or receiving a signal from the space. The degree of coupling of the electrical signal between the space and the transmission line provided by the structure can be variably controlled.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 30, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi
  • Patent number: 7668415
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: February 23, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 7668409
    Abstract: An optical communication device includes a substrate which has electro-optical effect; a first optical modulator which has a pair of waveguides formed in the substrate; a second optical modulator which has a pair of waveguides formed in the substrate; a waveguide coupler which is provided in an output of the first optical modulator, the waveguide coupler being able to couple and branch light propagating through the pair of waveguides of the first optical modulator; and a delay connecting section which gives differential delay to the output branched by the waveguide coupler and inputs the output to the pair of waveguide of the second optical modulator. As a result, the optical communication device and optical device in which insertion loss is reduced compared with the conventional optical modulator can be provided.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 23, 2010
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7664345
    Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 16, 2010
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventor: Clarence Chui
  • Patent number: 7660493
    Abstract: An optical modulator is provided. The optical modulator includes a thin plate made of an electrooptic material and having a thickness of 20 ?m or less, an optical waveguide formed on a top or bottom surface of the thin plate, and a modulation electrode formed on the top surface of the thin plate to modulate light passing through the optical waveguide, wherein, in a shape of the thin plate, a width of the thin plate at an optical input portion or optical output portion of the optical waveguide is two time or less the thickness of the thin plate.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: February 9, 2010
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katsutoshi Kondou, Satoshi Oikawa, Takashi Shinriki
  • Patent number: 7657132
    Abstract: An optoelectronic-RF device has at least one optical modulator/sensor comprising at least two cascaded optical-waveguide gratings and at least one non-grating optical waveguide segment interconnecting the at least two cascaded optical-waveguide gratings, with at least one optical waveguide segment interconnecting the at least two cascaded optical-waveguide gratings via the at least one non-grating optical waveguide segment. An RF waveguide is provided for propagating an RF electric field, the at least one optical modulator/sensor being disposed in and forming a portion of the RF waveguide with light propagating through the cascaded optical-waveguide gratings in a direction that is perpendicular to a direction of propagation of the RF electric field in the RF waveguide.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: February 2, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, David L. Persechini, Kevin Geary
  • Patent number: 7657129
    Abstract: Systems are disclosed that utilize electrical signals from detectors of an imaging focal plane array or antenna elements of an antenna array to modulate optical signals. Antenna or focal plane array elements are coupled to optical waveguides by way of whispering gallery mode resonators made of electro-optic material. The resonators modulate optical signals in the waveguides based on the electrical signals from the detectors/antenna elements. The signals received by the array are converted into the optical domain, allowing subsequent optical processing and/or distribution. Each detector/antenna element involved can be identified by the specific wavelength and waveguide through which its signal is coupled, enabling subsequent optical processing of the signals such as by wavelength division multiplexing systems. Additionally disclosed are imaging sensor photonic systems that include WDM components and other optical components such one or more optical narrow-band amplifiers and/or filters.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 2, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas W. Karras
  • Publication number: 20100021104
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 28, 2010
    Inventors: Masakazu YAMAGIWA, Kenji TODORI, Reiko YOSHIMURA, Miho MARUYAMA, Kou YAMADA, Yasuyuki HOTTA, Tsukasa TADA
  • Publication number: 20100002979
    Abstract: A slot waveguide utilized as a color-selecting element. The slot waveguide includes a first layer of plasmon supporting material, the first layer being optically opaque and having an input slit extending through the first layer; a second layer of plasmon supporting material facing the first layer and separated from the first layer by a first distance in a first direction, the second layer being optically opaque and having an output slit extending through the second layer and separated from the input slit by a second distance extending along a second direction differing from first direction; a dielectric layer interposed between the first layer and the second layer, the dielectric layer having a real or complex refractive index; and a power source electrically coupled to the first layer and the second layer to apply an electrical signal for modulation of the real or complex refractive index of the dielectric layer.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 7, 2010
    Inventors: Kenneth A. Diest, Jennifer A. Dionne, Harry A. Atwater, Henri Lezec
  • Patent number: 7630417
    Abstract: Whispering-gallery-mode (WGM) optical resonators made of crystal materials to achieve high quality factors at or above 1010.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: December 8, 2009
    Assignee: California Institute of Technology
    Inventors: Lutfollah Maleki, Andrey B. Matsko, Anatoliy Savchenkov, Dmitry V. Strekalov
  • Patent number: 7630588
    Abstract: A high frequency electrical signal control device comprises a transmitter for generating a high frequency electrical signal, a receiver, a transmission line for propagating the electrical signal, and a structure for radiating the electrical signal propagated through the transmission line to the space or receiving a signal from the space. The degree of coupling of the electrical signal between the space and the transmission line provided by the structure can be variably controlled.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: December 8, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi
  • Patent number: 7630595
    Abstract: Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 8, 2009
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Wenlu Chen
  • Patent number: 7627203
    Abstract: Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: December 1, 2009
    Inventors: Wei Chen, Wenlu Chen
  • Patent number: 7627205
    Abstract: Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 1, 2009
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Wenlu Chen
  • Patent number: 7620284
    Abstract: An optical waveform shaping device includes a first waveguide portion, formed on a substrate, for transmitting the optical signal and simultaneously absorbing a portion of the optical signal, which has a signal level equal to or smaller than a predetermined value, so as to shape the optical signal; and a second waveguide portion, formed on the substrate, for transmitting the optical signal, which was transmitted through the first waveguide portion, and simultaneously amplifying the optical signal. The first waveguide portion may be formed using a saturable absorber. A first electrode for supplying electric current to the first waveguide portion so that the first waveguide portion is provided with a function of absorbing the optical signal; and a second electrode for supplying electric current to the second waveguide portion so that the second waveguide portion is provided with a function of amplifying the optical signal may also be provided.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: November 17, 2009
    Assignee: Yokogawa Electric Corporation
    Inventors: Shinji Iio, Machio Dobashi, Chie Sato, Morio Wada, Katsuya Ikezawa, Akira Miura, Tsuyoshi Yakihara, Shinji Kobayashi, Sadaharu Oka
  • Patent number: 7616843
    Abstract: Arranged for at least one of a pair of branch optical waveguides in a Mach-Zehnder type interference optical system is a ring resonance type phase shifter for modulating a light wave signal propagating through the branch optical waveguide. The ring resonance type phase shifter includes a ring-type optical waveguide arranged so as to be mode-coupled with the corresponding branch optical waveguide, and is configured so that amplitude branching ratio K between the corresponding branch optical waveguide and the ring-type optical waveguide can be varied with a change in refractive index or the like, accompanied by voltage application to a pn junction, for example. As amplitude branching ratio K is varied, the phase difference between the light wave signals propagating through the paired optical waveguides varies, to thereby control the intensity of the light wave signal output from the interference optical system.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: November 10, 2009
    Assignee: NEC Corporation
    Inventor: Masashige Ishizaka
  • Publication number: 20090245716
    Abstract: An optical communication device has: an optical waveguide device having an optical waveguide core that guides light, a cladding portion enveloping the optical waveguide core, a mirror surface structured at an end surface of the cladding portion and the optical waveguide core, and changing an optical path of light that passes through the optical waveguide core, and an electrically-conductive film formed so as to cover the mirror surface; a reference potential member at which a predetermined potential is ensured; and a connecting member electrically connecting the electrically-conductive film and the reference potential member.
    Type: Application
    Filed: September 17, 2008
    Publication date: October 1, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Tomoaki Kojima, Kazuhiro Sakai, Osamu Ueno, Shinya Kyozuka, Akira Sakamoto
  • Patent number: 7587107
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 8, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7587104
    Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated by an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: September 8, 2009
    Assignee: IDC, LLC
    Inventor: Clarence Chui
  • Patent number: 7583868
    Abstract: A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: September 1, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dae Su Yee, Young Ahn Leem, Dong Churl Kim, Kyung Hyun Park, Sung Bock Kim
  • Patent number: 7583329
    Abstract: An electro-optical device substrate includes a substrate, a plurality of data lines, a plurality of scanning lines, pixel electrodes, and transistors. The plurality of data lines and the plurality of scanning lines intersect with each other in a display area formed on the substrate. The pixel electrodes are provided at positions corresponding to intersections of the plurality of data lines and the plurality of scanning lines. Each of the transistors includes a semiconductor layer and a gate electrode. The semiconductor layer has a channel region, a data line side source/drain region, a pixel electrode side source/drain region, a first junction region, and a second junction region. The channel region has a channel length along a first direction in the display area. The data line side source/drain region is electrically connected to a corresponding data line. The pixel electrode side source/drain region is electrically connected to a corresponding pixel electrode.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: September 1, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Tatsuya Ishii
  • Patent number: 7583894
    Abstract: Methods and apparatus are described for modulating an optical signal using electroabsorption in conjunction with an optical interferometer. Phase-shift keying modulation can be achieved with lower amplitude modulator drive signals than conventional methods by splitting the signal to be modulated into multiple optical modes and interferometrically combining the modes after modulating at least one of the modes with an EAM. Using the present invention, the extinction ratio performance of ASK can be significantly improved for a given drive voltage or a desired extinction ratio can be achieved with a substantially lower drive voltage. Hence, the elecro-optic bandwidth of EAMs can be enhanced by overcoming the trade-off relationship between extinction ratio and bandwidth. Furthermore, the present invention can be used to generate other modulation formats, such as QPSK or QAM, with much lower drive voltages, thereby reducing the cost and power consumption of the high-speed drive electronics for the modulation.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Inuk Kang
  • Publication number: 20090214151
    Abstract: A high speed optical switch may include a plurality of pairs each having a length L? that may be connected in series. All switching may be accomplished in the high speed optical switch by discharging one arm in a pair (e.g. a single L?) at a time. L? may refer to a guide length used to induce a relative ? phase shift. Each of the plurality of pairs may have two arms with both arms being initially charged. If both arms in any give pair have the same state, (e.g. either charged, uncharged, or charging) a ‘1’ may be transmitted through that pair. If the arms are in opposite states, (e.g. charged or uncharged) a ? phase shift may be produced and a ‘0’ may be transmitted through that pair. For example, a first pair in the series may be recharged while other pairs are using in switching.
    Type: Application
    Filed: April 26, 2006
    Publication date: August 27, 2009
    Applicant: Georgia Tech Research Corporation
    Inventor: David A. Keeling
  • Patent number: 7580595
    Abstract: An optoelectronic data transmission device has an active section with an active element that generates an optical gain if a forward bias is applied, and an absorption section. A waveguide incorporates the active section and the absorption section. Mirrors providing feedback for light are placed to frame the waveguide. The device can be operated in a pulsed regime emitting pulsed laser light. An additional modulator allows modulating its refractive index due to the electrooptic effect. A device providing for the modulation of the refractive index of the modulator. The refractive index of the additional modulator can be varied such that the repetition frequency of the output pulsed laser light is varied. The waveguide further incorporates the additional modulator.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 25, 2009
    Assignee: Technische Universitaet Berlin
    Inventors: Dieter Bimberg, Nikolai N. Ledentsov, Vitaly Shchukin
  • Patent number: 7580593
    Abstract: In an optical attenuator, there are a first optical waveguide 3A connected to an input optical waveguide 1, a second optical waveguide 3B connected to an output optical waveguide 2 and a connecting optical waveguide 4, which are connected with each other in series. A first recess 13A and a second recess 13B are formed in a positional relationship of opposite directions with respect to an axial direction of an optic axis of light that is inputted through the input optical waveguide 1, transmitted through the first optical waveguide 3A, the connecting optical waveguide 4 and the second optical waveguide 3B and outputted from the output optical waveguide 2.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: August 25, 2009
    Assignee: Panasonic Electric Works Co., Ltd.
    Inventors: Yuichi Uchida, Nobuyuki Miyagawa, Tadahiro Yamaji, Takuya Matsumoto
  • Patent number: RE41204
    Abstract: The present invention relates generally to electro-optically active waveguide segments, and more particularly to the use of a selective voltage input to control the phase, frequency and/or amplitude of a propagating wave in the waveguide. Particular device structures and methods of manufacturing are described herein.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: April 6, 2010
    Inventors: Ravinder Jain, Balaji Srinivasan