Determination Of Communication Parameter Patents (Class 398/25)
  • Patent number: 8625419
    Abstract: In the field of optical communications, a method and a device for adjusting transmission of transport network data are provided. The method includes the following steps. Information of adjusting a designated Optical Transport Network (OTN) line sent from an OTN is received. The OTN line corresponding to the information of adjusting the designated OTN line is adjusted. Changed data traffic of the adjusted OTN line is calculated. An Ethernet channel to be adjusted according to the changed data traffic is designated, and the Ethernet channel to be adjusted is adjusted correspondingly. The device includes a Link Capacity Adjustment Scheme (LCAS) module and a channel processing module. According to the method and the device, the adjustment of the OTN line is associated with the adjustment of the Ethernet channel, thereby ensuring the data transmission efficiency, and improving the overall performance of a network.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Chiwu Ding, Huaping Qing
  • Patent number: 8620160
    Abstract: An optical transmission apparatus includes a reception part for receiving a wavelength division multiplexed (WDM) signal reached via optical amplifiers; a measuring part for measuring an optical power level of each wavelength of the WDM signal received by the reception part; a determination part for determining whether an amount of tilt of the WDM signal calculated based on measurement results of the measuring part is suitable or not; an operation part for calculating the tilt correction amount to be applied to tilt correction processing performed by the optical amplifiers if the amount of tilt of the WDM signal is not suitable; and a notification part for notifying the optical amplifiers of the tilt correction amount.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: December 31, 2013
    Assignee: Fujitsu Limited
    Inventor: Miki Onaka
  • Publication number: 20130343747
    Abstract: In accordance with a particular embodiment of the present disclosure, a network element may include a network-side interface configured to communicatively couple to a network and a controller communicatively coupled to the network-side interface. The controller may be configured to periodically receive one or more messages indicative of a delay for each of a plurality of paths for a network flow between the network element and a second network element, periodically compare the delays for the plurality of paths, and select a path for a network flow from the plurality of paths based on the delays.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Muhammad S. Sarwar, Zigmunds Andis Putnins, Jaya Sarup, Zanjun Lu
  • Patent number: 8615172
    Abstract: A method for arranging relay stations in an optical transmission system including relay stations arranged so that optical signals at a first transmission speed can be transmitted from a transmission end to a reception end, includes: judging whether a transmission of optical signals at a second transmission speed different from the first transmission speed in a section connecting arbitrary two of the relay stations where a regenerative repeater station capable of regenerating optical signals can be arranged is possible; determining a combination of sections judged to be capable of performing transmission that enables a transmission of optical signals from the transmission end to the reception end; and making both ends of respective sections of the determined combination be the relay stations where the regenerative repeater station is arranged, wherein the judging includes a judgment condition which is satisfied in a section including sections but unsatisfied in one of the sections.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 24, 2013
    Assignee: Fujitsu Limited
    Inventor: Takuya Miyashita
  • Publication number: 20130336647
    Abstract: Since it is difficult to fast, simply monitor impairments of received signals with higher receiver sensitivity, a monitoring method for an optical communication system according to an exemplary aspect of the invention includes the steps of emitting lightwave signals to be modulated according to a data, forming dips at transitions between temporally consecutive groups of n symbols of the lightwave signals, wherein the dips are formed at each of (n?1) first transitions of the group, no dip is formed at the n-th transition on the lightwave signals, receiving the lightwave signals, extracting frequency components characterized by the numerical value n from received lightwave signals, and monitoring the received lightwave signals by using the frequency components.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 19, 2013
    Applicant: NEC Corporation
    Inventors: Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi, Manabu Arikawa
  • Publication number: 20130336649
    Abstract: An optical transport system in which (i) an optical transmitter is configured to adaptively change an operative constellation to use a constellation that provides optimal performance characteristics for the present optical-link conditions and/or (ii) an optical receiver is configured to change shapes of the decision regions corresponding to an operative constellation to adapt them to the type of signal distortions experienced by a transmitted optical signal in the optical link between the transmitter and receiver. Under some optical-link conditions, the optical receiver might use a decision-region configuration in which a decision region corresponding to a first constellation point includes an area that is closer in distance to a different second constellation point than to the first constellation point.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: René-Jean Essiambre, Chongjin Xie
  • Patent number: 8611750
    Abstract: An apparatus comprising a plurality of optical transmitters coupled to a fiber, a signal generator coupled to the optical transmitters and configured to provide a single pilot tone to the optical transmitters, and a processor positioned within a feedback loop between the fiber and the optical transmitters, the processor configured to adjust a wavelength for each of the optical transmitters to lock the wavelengths. An apparatus comprising at least one processor configured to implement a method comprising receiving an optical signal comprising a pilot tone, detecting an amplitude and a phase of the pilot tone, calculating a quadrature term using the amplitude and the phase, and wavelength locking the optical signal using the quadrature term.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongbing Lei, Xiao A. Shen, Yu Sheng Bai
  • Patent number: 8606102
    Abstract: A test interface device includes a serializer, an optical transmitter, an optical receiver, and a deserializer. The serializer receives parallel test signals from automatic test equipment, and serializes the parallel test signals into a serial test signal. The optical transmitter converts the serial test signal into an optical test signal. The optical receiver receives the optical test signal from the optical transmitter, and converts the optical test signal into the serial test signal. The deserializer deserializes the serial test signal into the parallel test signals, and transmits the parallel test signals to a device under test. As a result, signal transfer speed may be improved and optical resource usage may be reduced.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Lee, Eun-Jo Byun, Cheol-Jong Woo, Se-Jang Oh
  • Publication number: 20130322872
    Abstract: A method and apparatus for measuring a propagation delay of an optical signal between first and second devices in an optical transmission network, the optical signal being transmitted from the first device to the second device via a first optical fiber and from the second device to the first device via a second optical fiber. The second device includes a loopback having a first mode enabling the optical signal to be routed between the two devices. The method includes: detecting by the second device a triggering by the first device of a propagation delay measurement; receiving a measurement signal transmitted by the first device via the first optical fiber; and configuring the loopback in a second mode in which the loopback injects a return signal into the first fiber in response to the measurement signal. The first device implements a method for determining the propagation delay.
    Type: Application
    Filed: October 3, 2011
    Publication date: December 5, 2013
    Applicant: FRANCE TELECOM
    Inventors: Sebastien Jobert, Esther Le Rouzic, Nicolas Brochier
  • Publication number: 20130322871
    Abstract: A fiber network events measurement apparatus has a laser module alternately generating a pulse signal detecting beam and an FMCW detecting beam. The beams are sent to the fiber network route through a directional coupler. A photo detector receives feedback energy of the beams transmitting in the fiber network route and converts the feedback energy into electronic signals. A mixer uses a frequency difference calculation to obtain a comparison result according to an original and a reflected FMCW signal. The electronic signal is converted into a digital signal by an A/D converter. A signal control unit then obtains a compound trace result including information of characteristic trace and event positions. The compound trace result shows a fiber characteristic trace and event position trace for measuring the fiber network routes.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 5, 2013
    Applicant: POLARLINK TECHNOLOGIES, LTD.
    Inventors: Ching-Wen HSIAO, Hsuan-Hung WU, Shih-Tien LIN, Fu-Chun HUNG, Yu-Shu CHEN, Ching-Lin WU, Chun-Hung SU
  • Publication number: 20130322873
    Abstract: A system for quantum teleportation of a quantum state of an input photon, including: a light emitting diode configured to produce a polarization entangled photon pair; a beam splitter configured to direct photons of the entangled photon pair along respective first and second paths; a measurement unit performing a joint measurement on the input photon; a timing unit configured to measure a first delay between the input photon and the photon of the entangled photon pair at a point of maximum indistinguishability of the photons as they pass through the joint measurement unit, and to measure a second delay between the two photons of the entangled photon pair as they exit the light emitting diode; a controller configured to determine a teleportation measurement is valid if the first delay is within a first predetermined timing window and the second delay is within a second predetermined timing window.
    Type: Application
    Filed: May 16, 2013
    Publication date: December 5, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Richard Mark STEVENSON, Martin Brian WARD, Anthony John BENNETT, Joanna Krystyna SKIBA-SZYMANSKA, Andrew James SHIELDS
  • Publication number: 20130322870
    Abstract: Carrier phase estimation techniques are provided for processing a received optical signal having a carrier modulated according to a modulation scheme. First and second carrier phase estimation operations are performed on a digital signal derived from an optical carrier obtained from the received optical signal using coherent optical reception. The first carrier phase estimation operation tracks relatively fast phase variations of the optical carrier of the received optical signal to produce a first carrier phase estimation and the second carrier phase estimation operation tracks relatively slow phase variations of the optical carrier of the received optical signal to produce a second carrier phase estimation. A difference between the first and second carrier phase estimations is computed. Occurrence of a cycle slip is determined when the difference is greater than a threshold. A correction is applied to the first carrier phase estimation when the low pass filtered difference exceeds the threshold.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Jonas Geyer, Andreas Bisplinghoff, Theodor Kupfer
  • Publication number: 20130322877
    Abstract: Techniques are provided to estimate a distance of one received optical subchannel to one or both of its neighbor (adjacent) subchannels. An optical field comprised of a plurality of subchannels of optical signals at respective wavelengths is received on an optical fiber. Using coherent optical reception in conjunction with analog-to-digital conversion, the received optical field is converted to digital complex valued data. The digital complex valued data is transformed to the frequency domain to produce spectrum data. Using either a peak method or a gap method, a distance or spacing is computed between a subchannel of interest among the plurality of subchannels and at least one neighbor subchannel based on the spectrum data.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Jonas Geyer, Thomas Duthel
  • Patent number: 8600057
    Abstract: An example method includes encapsulating, by an optical network device, at least a portion of a data packet to form a passive optical network (PON) frame. The method further includes applying, by the optical network device, a scrambling polynomial to at least a portion of the PON frame to generate a scrambled PON frame. The method further includes determining, by the optical network device, that the scrambled PON frame comprises a consecutive identical digit (CID) sequence greater than a threshold length. The method further includes replacing, by the optical network device the determined CID sequence with a correction pattern to generate a modified scrambled PON frame. The method further includes transmitting, by the optical network device, the modified scrambled PON frame.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Patent number: 8600230
    Abstract: A method and a device for data processing in an optical network element are suggested, wherein the optical network element changes between a low-speed mode and a high-speed mode of data transmission. In this manner, the optical network element has efficient power savings because it can effectively operate in the low-speed mode which requires less power consumption.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 3, 2013
    Assignee: Nokia Siemens Networks Oy
    Inventors: Thomas Treyer, Harald Rohde, Sylvia Smolorz
  • Publication number: 20130315584
    Abstract: Exemplary embodiments of the invention relate to an optical transceiver module having a diagnostic communications link, wherein the link is configured to access diagnostic and other data contained within the transceiver controller via a backdoor interface. Controller data, including operational parameter values and module setup values, is accessible while the transceiver operates in conjunction with an external host and may be retrieved, and sometimes modified, in real time without interrupting normal transceiver operation or suspending the transmission of data over optical fibers. The data is accessed with an external user device via a backdoor interface on the outside of the transceiver module.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: FINISAR CORPORATION
    Inventor: Lucy G. Hosking
  • Patent number: 8594497
    Abstract: A device may include a first module to capture information relating to network traffic passing through a first interface in a network device. A second module may capture information relating to network traffic passing through a second interface in the network device. A control module may be configured to transmit control commands to the first module and the second module, the control commands instructing the first module and the second module to capture information relating to network traffic passing through the first interface and the second interface, respectively. The control module may be further configured to receive the captured information from the first module and the second module, correlate the received information from the first module and the second module; and provide the correlated information to a user.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Rosa M. Underwood, Henry A. McKelvey, Umang A. Patel
  • Patent number: 8594496
    Abstract: An apparatus comprising an optical transmitter, a coarse tuner coupled to the optical transmitter and having a first tuning range, a fine tuner coupled to the optical transmitter and having a second tuning range smaller than and within the first tuning range, a wavelength division demultiplexer coupled to the optical transmitter and to a plurality of optical fibers, and a detector coupled to the optical transmitter and the wavelength division demultiplexer. A network component comprising at least one processor configured to implement a method comprising detecting an Optical Time Domain Reflectometry (OTDR) signal spectrum that has a modulated pattern, and detecting a reflected OTDR signal spectrum that has a shifted modulated pattern comprising a frequency shift with respect to the OTDR signal spectrum and a time shift proportional to the frequency shift.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: November 26, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Patent number: 8594501
    Abstract: A device receives Long Term Evolution (LTE) architecture information, Internet protocol (IP) network architecture information, and transport network information, and determines traffic patterns of a LTE network based on the LTE architecture information. The device also generates proposed LTE metropolitan optical transport networks (OTNs) based on the determined traffic patterns and one or more of the LTE architecture information, the IP network architecture information, and the transport network information. The device further determines transit switching for the proposed LTE metropolitan OTNs, and selects, from the proposed LTE metropolitan OTNs, a metropolitan OTN optimized for the LTE network.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Deepak Kakadia, Jay Lee, Thomas Tan
  • Patent number: 8594500
    Abstract: A method includes outputting an optical signal from an optical transmitter; causing the optical signal to propagate through equipment of an optical communication site and to loop back to an optical receiver; measuring optical powers, respectively, based on taps proximate to the optical transmitter and the optical receiver; calculating an optical power loss based on the optical powers measured; determining whether the optical power loss is an acceptable value; and indicating when the optical power loss is not the acceptable value.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock, Danny Peterson
  • Publication number: 20130308936
    Abstract: An optoelectronic transceiver includes an optoelectronic transmitter, an optoelectronic receiver, memory, and an interface. The memory is configured to store digital values representative of operating conditions of the optoelectronic transceiver. The interface is configured to receive from a host a request for data associated with a particular memory address, and respond to the host with a specific digital value of the digital values. The specific digital value is associated with the particular memory address received from the host. The optoelectronic transceiver may further include comparison logic configured to compare the digital values with limit values to generate flag values, wherein the flag values are stored as digital values in the memory.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 21, 2013
    Applicant: Finisar Corporation
    Inventors: Lewis B. Aronson, Lucy G. Hosking
  • Publication number: 20130308937
    Abstract: In one embodiment, a media access controller includes first and second optical line terminals with a receiver for adjacent first and second wavelength ranges, respectively, and an optical network unit with a transmitter having a transmitter wavelength which drifts between the first and the second wavelength range. The media access controller is configured to assign the optical network unit to the first and the second optical line terminals, such that an optical burst transmitted by the optical network unit is received by the first optical line terminal and the second optical line terminal. The media access controller is configured to determine first and second qualities of the optical burst received by the first and second optical line terminals, respectively, and to determine an estimate of the transmitter wavelength based on the first quality and the second quality.
    Type: Application
    Filed: January 31, 2012
    Publication date: November 21, 2013
    Applicant: ALCATEL-LUCENT
    Inventors: Wolfgang Pöhlmann, Thomas Pfeiffer, Ronald Heron
  • Patent number: 8588610
    Abstract: A span loss monitoring system includes a supervisory signal sending apparatus with a output level monitoring section, a time stamp generation section, and a supervisory signal generation section that generates a supervisory signal including a pair of the output level measurement hour and the output level. The span loss monitoring system also includes a supervisory signal receiving apparatus with an input level monitoring section, a supervisory signal termination section and a span loss calculation section.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 19, 2013
    Assignee: NEC Corporation
    Inventor: Hiroaki Tanaka
  • Patent number: 8588607
    Abstract: Methods, systems, and computer program products are provided for measuring modal dispersion in a bi-directional dual-multimode fiber optic network (BDON). A modal dispersion measurement system includes a computer processor that is programmed to receive a first pulse width of a first pulse. The first pulse may be communicated over the BDON that is coupled to the processor. A second pulse width of a second pulse is received, the second pulse width being indicative of the modal dispersion. The second pulse width and the first pulse width are compared by the computer processor to determine a distortion error. A measurement of the modal dispersion is validated in accordance to the distortion error.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 19, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Oladeji Bamidele Akanbi, Jerry G. Aguren
  • Patent number: 8588608
    Abstract: A method is provided for managing connections in an optical access network. Also provided are a corresponding platform, exchange, network and computer software product. The method manages connections of a plurality of user modules to a plurality of transmission modules of an exchange in an optical access network. The management method includes a dynamic re-arrangement of the connection of at least one of the user modules to at least one of the transmission modules according to at least one predetermined optimization criterion.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 19, 2013
    Assignee: France Telecom
    Inventors: Philippe Guignard, Roman Glatty, Fabrice Bourgart
  • Publication number: 20130302029
    Abstract: A wavelength tuning time measurement apparatus and method for a multi-wavelength passive optical network (MW PON) are provided. The wavelength tuning time measurement apparatus for measuring a wavelength tuning time of a wavelength-variable light source included in the MW PON system includes an optical filter configured to pass only light of a certain wavelength bandwidth and a photo detector configured to sense light passing through the optical filter. The wavelength tuning time is a time taken from a time when a wavelength change signal is transferred to the wavelength-variable light source, to a time when light starts to be successively sensed by the photo detector.
    Type: Application
    Filed: April 19, 2013
    Publication date: November 14, 2013
    Inventors: Jie-Hyun LEE, Seung-Il MYONG, Han-Hyub LEE, Sang-Soo LEE
  • Publication number: 20130302028
    Abstract: The present invention includes novel techniques, apparatus, and systems for optical WDM communications. Tunable lasers are employed to generate subcarrier frequencies representing subchannels of an ITU channel to which client signals can be mapped. Client circuits can be divided and combined before being mapped, independent of one another, to individual subchannels within and across ITU channels. Subchannels may be independently routed to a single subchannel receiver filter, such that each subchannel detected at the receiver may come from a different source location. Network architectures and subchannel transponders, muxponders and crossponders are disclosed, and techniques are employed (at the subchannel level/layer), to facilitate the desired optical routing, switching, concatenation and protection of client circuits mapped to these subchannels across the nodes of a WDM network. Subchannel hopping may also be used to increase the optical network security.
    Type: Application
    Filed: March 27, 2013
    Publication date: November 14, 2013
    Inventor: VELLO SYSTEMS, INC.
  • Publication number: 20130302031
    Abstract: An optical transmitter includes: an optical modulator configured to generate an optical signal from a plurality of transmission signals; a crosstalk monitor configured to monitor crosstalk between the plurality of transmission signals by using the optical signal; and a crosstalk canceller configured to correct the plurality of transmission signals based on a result of monitoring by the crosstalk monitor.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Takahito TANIMURA, Takeshi HOSHIDA, MASATO NISHIHARA
  • Publication number: 20130294764
    Abstract: A wavelength sensing lighting system may include a light source, a sensor and a controller. One or more light sources and sensors may be included in an array. The light source may emit an illuminating light and the sensor may sense an environmental light. The illuminating light may include data light. The lighting system may include a plurality of nodes connected in a network. The nodes may communicate by emitting and receiving the data light, which may be analyzed by the controller. The light source and the sensor may be provided by a light emitting semiconductor device that is capable of emitting illuminating light and receiving environmental light. A conversion material may convert the wavelength of a source light into a converted light. The conversion material may increase the wavelength range of light emittable and detectable by the lighting system.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 7, 2013
    Applicant: Environmental Light Technologies Corp.
    Inventors: Fredric S. Maxik, David E. Bartine, Pedro Medelius
  • Publication number: 20130294765
    Abstract: Provided are a polarization multiplexing optical receiving device and a polarization multiplexing optical receiving method with which a mismatch of optical intensity between polarized signals accumulated in an optical transmission path of an optical receiving system can be compensated with high precision, and a high-quality polarized optical signal can be received.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 7, 2013
    Applicant: NEC CORPORATION
    Inventor: Takeshi Okamoto
  • Patent number: 8577221
    Abstract: The invention provides an optical burst switch in an Optical Burst Switched (OBS) communication network, said optical burst switch comprising means for monitoring and maintaining mesh of virtual optical paths from a communication node to a plurality of other communication nodes, arranged in a ring network, enabling traffic data to be transmitted and/or received between nodes via a physical optical path. The switch also provides means for sending a data packet probe on a virtual path from a node to each other node in the OBS communication network, wherein data packet probe information received at said switch provides information of availability of the physical optical path for sending traffic data between nodes. The switch can be configured such that the rate at which this path monitoring is scheduled guaranteeing less than 50 ms protection switch in the event of monitoring a failed or degraded path.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 5, 2013
    Assignee: Intune Networks Limited
    Inventors: David McDonald, Tom Farrell, Jim Shields, John Courtney
  • Patent number: 8571407
    Abstract: The present invention relates to an optical coherent receiver and an apparatus for and a method of monitoring performance thereof. The apparatus for monitoring performance of the optical coherent receiver makes use of a first signal and a second signal from the optical coherent receiver to monitor performance of the optical coherent receiver, and comprises a first subtracter, for subtracting the second signal from the first signal to obtain a first subtraction result; a squarer, for obtaining a square of the first subtraction result; a delayer, for delaying the first subtraction result; a multiplier, for multiplying the first subtraction result with the delayed first subtraction result; and a second subtracter, for subtracting the result of the multiplier from the result of the squarer.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 29, 2013
    Assignee: Fujitsu Limited
    Inventors: Lei Li, Zhenning Tao, Hisao Nakashima
  • Publication number: 20130279903
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 24, 2013
    Applicant: MICREL, INC.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Publication number: 20130279904
    Abstract: A method and system for automatically discovering a flexible rate Optical Data Unit (ODUflex) bandwidth hitless resizing capability are provided in the present document. The method includes: a source end interface of a link sending link summary message to an opposite end interface of the link, wherein the link summary message carries information of whether the source end interface of the link supports the ODUflex bandwidth hitless resizing capability; after receiving the link summary message, the opposite end interface of the link feeding back message to the source end interface of the link according to said information or according to said information and whether the opposite end interface of the link supports the ODUflex bandwidth hitless resizing capability, the source end interface of the link determining whether the link supports the ODUflex bandwidth hitless resizing capability according to the message fed back by the opposite end interface of the link.
    Type: Application
    Filed: November 8, 2011
    Publication date: October 24, 2013
    Applicant: ZTE CORPORATION
    Inventors: Kexin Tang, Xihua Fu
  • Publication number: 20130279905
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 24, 2013
    Applicant: MICREL, INC.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Patent number: 8565595
    Abstract: Method and apparatus for optimizing a decision threshold of an optical receiver is used to solve a problem of affecting system stability and reliability. The method comprises: determining a maximum value and a minimum value of an adjustment range of the decision threshold, and determining an adjustment step of the decision threshold (10); adjusting a decision threshold value within the adjustment range of the decision threshold, and separately detecting pre-FEC BERs corresponding to different decision threshold values (11); and searching for a minimum value in the detected pre-FEC BERs, a decision threshold value corresponding to the minimum value being an optimal decision threshold value (12). The apparatus comprises a decision threshold adjusting unit, a pre-FEC BER detecting unit, a decision threshold control unit and an optimal decision threshold determining unit.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: October 22, 2013
    Assignee: ZTE Corporation
    Inventor: Xiao Peng
  • Publication number: 20130272696
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). In one embodiment, calibration of communication downlinks and communication uplinks is performed to compensate for signal strength losses in the system.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Inventors: Rajeshkannan Palanisamy, David Robert Peters, Eric Michael Sadowski, Michael Sauer, Dale Alan Webb
  • Publication number: 20130272695
    Abstract: The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide).
    Type: Application
    Filed: June 6, 2013
    Publication date: October 17, 2013
    Inventor: Seng-Tiong Ho
  • Patent number: 8559814
    Abstract: A power-saving mode flag generating unit 101e sets a power-saving mode flag to active (non power-saving mode, turning on the power-source) when it receives a reset signal from a MAC unit 102. Furthermore, the power-saving mode flag generating unit 101e sets the power-saving mode flag to sleep (power-saving mode, turning off the power source) in accordance with a signal-interrupt detection signal obtained by the signal-interrupt detecting unit 101f1 of the packet monitoring unit 101f. Depending on the state of a packet, the power-saving mode flag generating unit 101e changes the power-saving mode flag to active or sleep for the data communication area of the packet; however, for the ranging area of the packet, the power-saving mode flag generating unit 101e always sets the power-saving mode flag to active. A pattern discriminating unit 101g discriminates between the data communication area and the ranging area of the packet.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Optical Components Limited
    Inventors: Masakazu Horishita, Toru Matsuyama
  • Publication number: 20130266310
    Abstract: Systems and methods are provided for improving the signal quality and performance in a cable operator's Hybrid Fiber Coax (HFC) plant by adding DOCSIS intelligence to components within the HFC plant. These intelligent DOCSIS devices, referred to here as DOCSIS Intelligent Nodes (DINs), intercept the upstream signal from cable modems and set top boxes, and perform various types of signal processing on the signals based upon knowledge of the signal characteristics obtained from CMTS control structures such as MAPs and Upstream Channel Descriptors (UCDs). The DIN functionality can be integrated into any type of device found in HFC networks such as RF amplifiers and fiber nodes.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 10, 2013
    Inventors: David B. FOX, Douglas K. Rosich, Weidong Chen, Jerry Guo
  • Publication number: 20130266308
    Abstract: The disclosed coherent optical receiver includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; a skew addition unit; and a FFT operation unit. The 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs multiple optical signals separated into a plurality of signal components. The optoelectronic converter detects the optical signal and outputs a detected electrical signal. The analog-to-digital converter digitizes the detected electrical signal and outputs a detected digital signal. The skew addition unit adds to the detected digital signal an additional skew amount whose absolute value is equal to, whose sign is opposite to a skew amount of a difference in propagation delay in each lane connected to each output channel of the 90-degree hybrid circuit. The FFT operation unit performs a fast Fourier transform on the output from the skew addition unit.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 10, 2013
    Applicant: NEC CORPORATION
    Inventors: Kiyoshi Fukuchi, Junichi Abe, Wakako Yasuda
  • Patent number: 8554071
    Abstract: An optical transmission apparatus includes an amplifier, a first output port to select a wavelength from the wavelength-division-multiplexed signal light amplified and output signal light with the selected wavelength to an operation line, a second output port to output multiplexed light obtained by multiplexing any one of first spontaneous emission light and second spontaneous emission light to a preliminary line, the first and the second spontaneous emission light being parts of spontaneous emission light generated by the amplifier, the first spontaneous emission light being in a wavelength range that is not selected, and the second spontaneous emission light being in a wavelength range other than a range of the wavelength-division-multiplexed signal light, and a judger to judge a continuity state of the operation line by using the signal light output to the operation line and a continuity state of the preliminary line.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 8, 2013
    Assignee: Fujitsu Limited
    Inventors: Takuma Shoji, Ichiro Nakajima
  • Patent number: 8548325
    Abstract: A system, device, and method for supporting cut-through pats in an optical communication system involves obtaining hop count and quality of service information by an initiating device and using the hop count and quality of service information by the initiating device to make decisions relating to a cut-through path. The hop count and quality of service information is provided in a reply message that is sent by a terminating device and modified by intermediate devices between the initiating device and the terminating device. The terminating device sends the reply with a hop count equal to one and quality of service information for a first link (hop) toward the initiating device. Each intermediate device increments the hop count in the reply and adds quality of service information for a next link (hop) into the reply.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 1, 2013
    Assignee: Ciena Corporation
    Inventors: Gautam Khera, Leigh C. McLellan
  • Patent number: 8548320
    Abstract: A method for monitoring wavelength-division multiplexed (WDM) signal for detecting signal drift of objective signals, including generation of one or more objective signals and a guard signal. The guard signal has a wavelength that is within a range defined by a guard channel. The first and second objective signals and the guard signal are wavelength-division multiplexed to generate a wavelength-division multiplexed signal. The first objective signal, the second objective signal, and the guard signal are assigned to a first multiplexed objective channel, a second multiplexed objective channel, and a multiplexed guard channel, respectively. The wavelength-division multiplexed signal is received by a monitor and then the error rate of the multiplexed guard channel is determined.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 1, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Howard J. Schantz, Brian L. Uhlhorn
  • Patent number: 8548322
    Abstract: A channel power estimator for estimating the power of each channel in a wavelength division multiplexed (WDM) signal, comprising filter means to select and output a sub-band of an incoming WDM signal, function application means to apply a weighting function at least once to the output from the filter means and then output the weighted signal to reconstruction means, storage means for storing optical characteristic data on at least the function application means, wherein the reconstruction means calculates an estimation of the power distribution of the incoming WDM signal using the weighted signal and the optical characteristic data.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 1, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Gianmarco Bruno
  • Publication number: 20130251361
    Abstract: An optical transceiver and methods for using the same are disclosed. The optical transceiver and methods may be useful for providing more accurate information regarding trends in operation of the optical transceiver, predicting an impending failure of the optical transceiver, and providing details of the optical transceiver prior to failure. The optical transceiver generally includes (1) at least one of (i) a receiver configured to receive optical information and (ii) a transmitter configured to transmit optical information, (2) circuitry configured to sample data for one or more operational parameters of the receiver and/or transmitter, (3) logic configured to perform one or more statistical calculations on the sampled data to generate statistical information, and (iv) one or more memories configured to store the sampled data and the statistical information.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Inventor: Mohammad AZADEH
  • Publication number: 20130251362
    Abstract: One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Broadcom Corporation
    Inventors: Weidong Rick Li, Jaroslaw Wojtowicz
  • Patent number: 8542991
    Abstract: An optical communication serial interface is employed to power up a device from a powered down state to a powered on state. An optical receiver element receives serial optical signals transmitted by at least one optical fiber and converts the received serial optical signals to electrical signals. A low level reception converter detects and decodes the electrical signals to provide data and control words from detected and decoded normal electrical signals for a high level command processor. A power supply maintains low level power to at least the optical receiver element and the low level reception converter of the optical communication serial interface while the device is in the powered down state. The low level reception converter detects a particular abnormal sequence of electrical signals; and in response to detecting the particular abnormal sequence of electrical signals, asserts a control signal to power up the device controllable power supply.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: September 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Louie Arthur Dickens, Timothy A Johnson, Craig Anthony Klein, Gregg Steven Lucas, Daniel James Winarski
  • Publication number: 20130243422
    Abstract: The present disclosure relates to a method for estimating chromatic dispersion of a received optical signal (Rx(f)), the method comprising: scanning the received optical signal (Rx(f)) through a number (M) of chromatic dispersion compensation filters in a chromatic dispersion filter range (Dmin . . . Dmax) between a first chromatic dispersion value (Dmin) and a second chromatic dispersion value (Dmax) with a resolution (?D) determined by the chromatic dispersion filter range (Dmin . . . Dmax) normalized by the number (M) of chromatic dispersion compensation filters to obtain filtered samples (Rx, D(f)) of the received optical signal (Rx(f)); and determining a correlation function (CD(?,B)) indicating an estimate of the chromatic dispersion by correlating the filtered samples (Rx, D(f)) of the received optical signal (Rx(f)) with respect to frequency shifts (?) over a correlation bandwidth (B), wherein the correlation bandwidth (B), the chromatic dispersion filter range (Dmin . . .
    Type: Application
    Filed: May 17, 2013
    Publication date: September 19, 2013
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Fabian Nikolaus Hauske
  • Publication number: 20130243421
    Abstract: A measurement apparatus includes: a transmitter disposed at a transmission-side node and configured to transmit two pulsed lights with different wavelengths at time intervals to a reception-side node; a transmission controller configured to control the transmitter so as to transmit the two pulsed lights repeatedly while changing the time interval; a receiving unit disposed at the reception-side node and configured to receive the two pulsed lights from the transmitter via one or more relay nodes; a detection unit configured to detect a change in a phase of at least one of the two pulsed lights received by the receiving unit; and a measurement unit configured to measure, based on the time interval and the change in a phase detected by the detection unit, a dispersion value of each transmission line between two nodes of nodes including the transmission-side node, the reception-side node, and the one or more relay nodes.
    Type: Application
    Filed: February 4, 2013
    Publication date: September 19, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Ryosuke GOTO