Determination Of Communication Parameter Patents (Class 398/25)
  • Patent number: 8867911
    Abstract: A device able to evaluate a phase difference between I-component and Q-component of signal light generated by an optical hybrid is disclosed. The device includes a detector, a compensator and an evaluator. The detector detects positive and negative elements of each of the I-component and the Q-component. The compensator generates a compensated I-component and a compensated Q-component so as to keep the sum of positive and negative elements of each of components in constant. The evaluator determines the phase difference via an ellipsoid drawn by the compensated I- and Q-components.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yoshihiro Tateiwa
  • Patent number: 8867917
    Abstract: Described herein are systems and methods of enhancing channel bandwidth in an optical system having a number of wavelength selective switching (WSS) devices. The method includes the steps of passing the optical signals through the WSS devices by: (i) spatially dispersing the wavelength channels of the optical signals; (ii) projecting the spatially dispersed channels onto corresponding predetermined regions of an optical manipulation matrix including a plurality of individually addressable manipulating elements; (iii) determining a modification function that specifies a state for each manipulating element within the predetermined region; and (iv) driving the elements of the corresponding regions at states specified by the function to selectively modify the channel band shape such that the received channel's bandwidth is substantially enhanced, and to spatially direct the wavelength channels to predetermined output ports of the WSS devices.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Finisar Corporation
    Inventors: Steven James Frisken, Glenn Wayne Baxter, Cibby Pulikkaseril, Novelene Wang
  • Patent number: 8867408
    Abstract: A network device provides a selector list that includes indices of child nexthops associated with the network device, where each of the child nexthops is associated with a corresponding child link provided in an aggregated bundle of child links. The network device also receives an indication of a failure of a child link in the aggregated bundle of child links, and removes, from the selector list, an index of a child nexthop associated with the failed child link. The network device further receives probabilities associated with the child links of the aggregated bundle of child links. Each of the probabilities indicates a probability of a packet exiting the network device on a child link. The network device also creates a distribution table based on the probabilities associated with the child links, and rearranges values provided in the distribution table.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: October 21, 2014
    Assignee: Juniper Networks, Inc.
    Inventors: Nitin Kumar, Alex Baban, Alok Khambatkone
  • Patent number: 8867912
    Abstract: Optical service channel (OSC) systems and methods over high loss links are described utilizing redundant telemetry channels. A first telemetry channel provides a low bandwidth communication channel used when Raman amplification is unavailable on a high loss link for supporting a subset of operations, administration, maintenance, and provisioning (OAM&P) communication. A second telemetry channel provides a high bandwidth communication channel for when Raman amplification is available to support full OAM&P communication. The first and second telemetry operate cooperatively ensuring nodal OAM&P communication over high loss links (e.g., 50 dB) regardless of operational status of Raman amplification.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 21, 2014
    Assignee: Ciena Corporation
    Inventors: Balakrishnan Sridhar, Jun Bao
  • Publication number: 20140308033
    Abstract: Disclosed is an optical line monitoring system and method which detects an optical line where a disorder occurs, by using an OTDR (Optical Time Domain Reflectometer) pulse pattern with matching information. The optical line monitoring system generates and stores a reference OTDR pulse pattern matched with identification information of an optical channel service unit, and compares the matched reference OTDR pulse pattern with the OTDR pulse pattern collected at an inspection time to verify an optical line region where a disorder occurs.
    Type: Application
    Filed: October 10, 2012
    Publication date: October 16, 2014
    Inventors: Ji-Sang Park, Lae-Hyuk Park, Ki-Yeul Kim, Kwan-Hee Han, Eun-Jeong Yang
  • Publication number: 20140308032
    Abstract: A diagnostic testing utility is used to perform single link diagnostics tests including an electrical loopback test, an optical loopback test, a link traffic test, and a link distance measurement test. To perform the diagnostic tests, two ports at each end of a link are identified and then statically configured by a user. The ports will be configured as D_Ports and as such will be isolated from the fabric with no data traffic flowing through them. The ports will then be used to send test frames to perform the diagnostic tests.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventors: David Aaron Skirmont, Saumitra Buragohain, Balakrishna Wusirika, Badrinath Kollu, Kyuh Kim
  • Publication number: 20140308034
    Abstract: An optical signal quality monitoring apparatus includes an optical detector for directly receiving an optical signal modulated in an optical path and converting the optical signal to an electric signal, an asynchronous sampling unit for asynchronously sampling the electric signal of the optical detector at a reduced speed, and a digital signal processor for monitoring an optical signal quality by finding a synchronized amplitude histogram of data sampled in the asynchronous sampling unit. An optical signal quality monitoring method includes (a) a step of allowing an optical detector to directly receive a modulated optical signal and to convert the optical signal to an electric signal; (b) a step of allowing an asynchronous sampling unit to asynchronously sample the electric signal; and (c) a step of allowing a digital signal processor to monitor an optical signal quality by generating a synchronized amplitude histogram of sampled data.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 16, 2014
    Inventors: Yun Chur CHUNG, Hyeok Gyu CHOI, Jun Ho CHANG
  • Patent number: 8861964
    Abstract: Methods and arrangements for time distribution in an optical network system in the upstream direction. The information of a selected time reference frame and a calculated time stamp value of the frame based on a real-time clock of the optical line terminal (OLT) is sent from the OLT to the optical network unit (ONU) via the optical distribution network (ODN). When the time reference frame is sent to the ONU from the OLT via the ODN, the ONU records the arrival time of the frame based on a time reference made by the real-time clock of the ONU. The time difference between the arrival time and the time stamp value is calculated whereupon the OLT is informed of the calculated time difference. The OLT adjusts the real-time clock of the OLT in accordance with the time difference.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Ling Chen, Shuyou Dong
  • Patent number: 8861953
    Abstract: Portable apparatus for measuring parameters of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other (10) of said elements, comprises first and second connectors for connecting the apparatus into the optical transmission path in series therewith, and a device connected between the first and second connectors for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the parameters of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 14, 2014
    Assignee: EXFO Inc.
    Inventors: Bernard Ruchet, Normand Cyr
  • Publication number: 20140301741
    Abstract: A method for optical transmission of high speed data and an optical receiver for receiving such high speed data is provided. The method includes transmitting an optical signal having a first logic-high and first logic-low defining a first modulation amplitude that is sub-band modulated with a toggling signal having a first toggling amplitude with a first modulation index, receiving the optical signal with an optical receiver circuit and converting the optical signal to an intermediate electrical signal, IES, having: a second logic-high and a second logic-low defining a second modulation amplitude, and a second toggling amplitude having a second modulation index, providing a decision threshold relative to the IES as a function of the second modulation amplitude, and adjusting the threshold by determining the second toggling amplitude and adjusting the threshold relative to the IES based on proportionality between the second toggling amplitude and the second modulation amplitude.z.
    Type: Application
    Filed: November 5, 2012
    Publication date: October 9, 2014
    Inventor: Steen Bak Christensen
  • Publication number: 20140301733
    Abstract: There are provided an optical transponder having a first end and a second end, as well as an electric switch having the transponder. The transponder includes an optical interface, at the first end, having a variable rate optical transmitter and a variable rate optical receiver to respectively transmit and receive signals using at least one of different bandwidths and different bit rates. The transponder further includes an electrical interface, at the second end, having an electrical interface throughput matching an optical capacity of the optical interface. The transponder also includes a processor for controlling the optical capacity.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 9, 2014
    Applicant: NEC Laboratories America, Inc.
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 8855498
    Abstract: A method for suppressing a skew between a first channel and a second channel in an optical transmission system having a transmitter that transmits an optical signal with the first channel and the second channel and a receiver that receives the optical signal, the method includes: controlling dispersion added to the optical signal to be larger than a specified amount; and controlling a delay time of at least one of the first channel and the second channel in the receiver based on a quality of the optical signal monitored in the receiver to suppress the skew between the first channel and the second channel in the receiver.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 7, 2014
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Masato Nishihara
  • Patent number: 8855493
    Abstract: An Optical Network Unit (ONU) emulator enables traffic emulation in a Gigabit-capable Passive Optical Network (GPON) that couples an Optical Line Termination (OLT) system to the ONU emulator and carries mixed types of emulated ONU traffic and real ONU traffic. The ONU emulator includes one or more emulated ONU platforms; each emulated ONU platform includes multiple ONU emulator blocks, and each ONU emulator block includes circuitry to emulate multiple emulated ONUs simultaneously. An emulated ONU platform generates upstream GPON frames according to respective profiles of the emulated ONUs, and sends the upstream GPON frames to the OLT system. At least a subset of the upstream GPON frames reach the OLT system via one or more passive optical splitters that couple the emulated ONU platform and a set of real ONUs to the OLT system. The emulated ONU platform also receives downstream GPON frames from the OLT system.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Hassan Elhage
  • Patent number: 8855485
    Abstract: When a circuit that calculates a frequency offset using a shape of a frequency spectrum is implemented by hardware, the circuit size can be reduced.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 7, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tadao Nakagawa, Yasushi Takatori, Riichi Kudo, Munehiro Matsui, Koichi Ishihara, Takayuki Kobayashi, Etsushi Yamazaki, Akihide Sano, Eiji Yoshida, Masato Mizoguchi, Yutaka Miyamoto
  • Patent number: 8855484
    Abstract: The present invention is to provide a method applicable to a fiber-optic transceiver including a transmitter optical subassembly (TOSA) provided therein with a laser diode, but without a monitoring photodiode, a laser driver controlled by a controller IC for driving the laser diode to generate a laser beam, and a thermal sensor for sensing temperature of the laser diode. The method includes executing an approximation process to characteristic data, i.e.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: October 7, 2014
    Assignee: Alpha Networks Inc.
    Inventor: Wei-Hung Tsai
  • Publication number: 20140294377
    Abstract: A network element is disclosed. In accordance with some embodiments of the present disclosure, a network element may comprise a network interface configured to communicatively couple to a network, and a controller communicatively coupled to the network interface. The controller may be configured to determine a delay-measurement interval, and to perform a plurality of delay measurements at a respective plurality of randomly determined times within the delay-measurement interval. Performing a delay measurement may comprise sending an outgoing signal, receiving an incoming signal, and determining a delay time based on the outgoing signal and the incoming signal.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Applicant: Fujitsu Limited
    Inventors: Catherine Yuan, Vikas Mittal, Serdar Kiykioglu
  • Patent number: 8842993
    Abstract: Methods, algorithms, architectures, circuits, and/or systems for determining the status of parameters associated with optical transceiver operation are disclosed. The optical transceiver can include an optical receiver to receive optical data; an optical transmitter to transmit optical data; one or more memories to store data (and, optionally, thresholds) for each of a plurality of parameters that are related to operation of at least one of the optical receiver and the optical transmitter; a microprocessor that compares the parametric data against the threshold(s) to calculate one or more flags to indicate whether a corresponding parameter has exceeded the first or second threshold; and an interface that receives a flag request from a host, and provides the one or more flags in response to the request. In the present disclosure, the microprocessor may calculate the one or more flags only in response to the flag request from the host.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 23, 2014
    Assignee: Source Photonics, Inc.
    Inventor: Todd Rope
  • Patent number: 8842985
    Abstract: Reliable data transmission is secured without inviting large design changes by means of configuring an optical data transmission device in a manner so as to be provided with: data conversion units and optical communication control units that transmit to each of a first communication unit and a second communication unit disposed movably relative to one another an optical signal modulated in response to wired-line data input from a wired line, and that output wired-line data demodulated from the received optical signal to the wired line; a bit data input unit that receives input of bit data for emergency stops; a bit data output unit that outputs bit data for emergency stops; and bit data communication control units that control in a manner so as to transmit/receive input bit data via the optical communication control units using optical signals that are isolated from the optical signal corresponding to the wired-line data.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 23, 2014
    Inventors: Masanori Hino, Yoji Maejima
  • Publication number: 20140270754
    Abstract: A delay measurement method of a path (P) or path segment through a transport network and a corresponding network nodes (NE1, NE2) for performing the delay measurement are described, which provide a higher precision and lower jitter. An originating network node (NE1) inserts a delay measurement request signal (REQ) into an overhead subfield of a first data unit and transmits the first data unit over the path (P) or path segment to a far-end network node (NE2) as part of framed transport signals. The far-end network node (NE2), upon detection of the delay measurement request (REQ), inserts a delay measurement reply signal (REP) into on overhead subfield of a second data unit and transmits the second data unit back to the originating network node (NE1) using framed transport signals in reverse direction. The originating network node (NE1) determines a time difference between insertion of the delay measurement request signal (REQ) and receipt of the delay measurement reply signal (REP).
    Type: Application
    Filed: October 17, 2012
    Publication date: September 18, 2014
    Applicant: Alcatel Lucent
    Inventors: Juergen Loehr, Wolfram Sturm
  • Publication number: 20140270753
    Abstract: An embodiment of the invention comprises a testing device selecting at least one power port for testing. The testing device enables at least one power port to output power, where the power may be used by a corresponding remote device that may be present. The testing device may then determine whether a corresponding remote device may be communicatively coupled to it. After the determination, the power port may be disabled from outputting power.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: TELLABS OPERATIONS, INC.
    Inventor: Vincent Loredo
  • Patent number: 8837934
    Abstract: Monitoring signals associated with operating parameters of an optical transceiver are ascertained by using a comparator arrangement external to a micro-controller unit. Monitoring signals associated with these operating parameter are provided as inputs to a discrete arrangement of comparators and then evaluated against a known reference voltage source. The reference source is swept across a known range of values, and when the output of the comparator changes state, the value of the reference input associated with this transition is defined as the value of the specific monitoring input signal and stored within the proper memory location within the microcontroller portion of the transceiver monitor circuit. The digital output signal of the comparator is applied as an input to the microcontroller, which recognizes this digital signal as defining the specific value of the reference signal to use and equate with the value of the monitored signal.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 16, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Tien-Tsorng Shih
  • Patent number: 8837936
    Abstract: In accordance with a particular embodiment of the present disclosure, a network element may include a network-side interface configured to communicatively couple to a network and a controller communicatively coupled to the network-side interface. The controller may be configured to periodically receive one or more messages indicative of a delay for each of a plurality of paths for a network flow between the network element and a second network element, periodically compare the delays for the plurality of paths, and select a path for a network flow from the plurality of paths based on the delays.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: September 16, 2014
    Assignee: Fujitsu Limited
    Inventors: Muhammad S. Sarwar, Zigmunds Andis Putnins, Jaya Sarup, Zanjun Lu
  • Patent number: 8837935
    Abstract: A technique for monitoring at least a network portion of an optical communication network, by monitoring changes of a decision threshold used for discriminating a digital optical signal being propagated via the network portion.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: September 16, 2014
    Assignee: ECI Telecom Ltd.
    Inventors: Uri Mahlab, Mordechay Tuby
  • Publication number: 20140255025
    Abstract: Systems and methods for associating a remote controller with a device are provided. The systems and methods generally relate to receiving a request from a remote controlled to pair the remote controller to a device at several devices and determining at each of the several devices the strength of the wireless pairing request signal received by that device. If a device determines that its received signal is the strongest, the device may be paired with the remote controller. If instead a device determines that its received signal is not the strongest, it may ignore subsequent communications received from the remote controller.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: Apple Inc.
    Inventor: Nicholas Vincent King
  • Publication number: 20140255024
    Abstract: Method and device for processing a communication network A method and a device for processing a communication network are provided, wherein (a) a first performance parameter of the communication network is determined; (b) a third performance parameter is determined based on the first performance parameter and a second performance parameter, which second performance parameter was previously determined, wherein the second performance parameter comprises a forecast of an expected network performance over time until the end of the scheduled lifetime of the communication network; and (c) the communication network is processed based on the third performance parameter. Furthermore, an according computer program product is suggested.
    Type: Application
    Filed: August 22, 2011
    Publication date: September 11, 2014
    Applicant: XIEON NETWORKS S.A.R.L.
    Inventors: Michael Frantz, Joerg Reichert
  • Patent number: 8831424
    Abstract: In an optical communication network that includes a plurality of interconnected network nodes, a method includes storing in each network node, and for each communication channel that traverses the node, one or more impairment margins of respective impairments that affect the communication channel. A potential communication channel that traverses a subset of the nodes in the network is identified. A quality of the potential communication channel is evaluated by processing the impairment margins stored in the nodes in the subset.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Rosanna Pastorelli, Stefano Piciaccia, Alberto Tanzi, Eliana Silvia Vercelli
  • Patent number: 8831428
    Abstract: Communication devices, systems, and methods for dynamic cell bonding (DCB) for networks and communication systems are disclosed. In one embodiment, a method of operating a wireless communication system is provided. The method includes determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength from each of the first plurality of remote units, and measuring a received signal strength from each of a second plurality of remote units in the cloud not bonded to the communication session. One or more of the second plurality of remote units is dynamically bonded to the communication session if the measured received signal strength of the one of the second plurality of remote units is greater than the measured received signal strength of the first plurality of remote units.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 9, 2014
    Assignee: Corning Optical Communications LLC
    Inventors: Andrey Kobyakov, Michael Sauer
  • Publication number: 20140248049
    Abstract: A local communications apparatus is aligned with a remote apparatus, each apparatus comprising radio frequency (RF) and free space optical (FSO) transceivers with substantially parallel boresight. Coarse alignment is performed using the RF transceiver and fine alignment is performed using the FSO transceiver. A patterned search is performed to locate the RF signal from the remote apparatus and known features of the intensity profile are utilized to locate the global maximum, thus coarsely aligning the pair of apparatuses. A second patterned search is performed to locate the FSO signal from the remote apparatus and an iterative step-search is used to align the FSO signal centroid with the FSO transceiver, thus finely aligning the pair of apparatuses.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 4, 2014
    Applicant: Aoptix Technologies, Inc.
    Inventor: Eric Saint Georges
  • Publication number: 20140248048
    Abstract: A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 4, 2014
    Inventors: Malcolm J. Northcott, J. Elon Graves, Siegfried Fleischer, Paolo Zambon, Jeffrey Tuttle, Rebecca Chang
  • Patent number: 8824886
    Abstract: A method of monitoring a differential group delay (DGD) of an optical communications signal having a polarisation multiplexed modulation format is described. The method includes the operations of receiving a signal and performing analogue to digital conversion of the signal to generate a digitised signal corresponding to one polarisation of the signal and to generate another digitised signal corresponding to another polarisation of the signal, and applying a polarisation mode dispersion(PMD) compensation to each of the digitised signals. The method further includes the operations of obtaining an indication of the channel transfer function of the optical communications signal, determining a DGD in dependence on the indication of the channel transfer function, determining a delay between the PMD compensated digitised signals, subtracting the delay from the DGD to obtain a corrected DGD, and generating and transmitting a monitoring signal with an indication of the corrected DGD.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 2, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Roberto Magri, Raffaele Corsini, Ernesto Ciaramella, Emma Matarazzo, Andrea Peracchi
  • Patent number: 8824902
    Abstract: An optical receiver includes: an optical to electric converter that converts a received optical signal into an analog electric signal; an analog to digital converter that converts the analog electric signal obtained by the optical to electric converter into a digital signal; a digital signal processor that performs wave shaping on the digital signal; an information extract circuit that extracts information related to loss or deterioration of the optical signal from a signal propagating from the analog to digital converter to the digital signal processor or a signal in the digital signal processor; and a judging circuit that judges, based on the information extracted by the information extract circuit, whether the optical signal is lost or deteriorates.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 2, 2014
    Assignee: Fujitsu Limited
    Inventors: Takeshi Sakamoto, Kosuke Komaki
  • Patent number: 8824887
    Abstract: A network planning tool and method for configuring a connection-oriented packet network over a WDM optical network without an optical control layer, such as a SONET/SDH layer. The optical network includes a plurality of optical fibers interconnected through nodes and the connection-oriented packet network, such an Ethernet network, MPLS network, or pseudowire network, includes two or more terminal devices. The method and tool function by building an association between the components of the physical layer, such as the optical fiber, and their geographic location or path. The connection-oriented packet network is configured by building multi-link trunks (MLTs) between terminal devices, where the MLTs are built by aggregating lightpaths that traverse distinctive geographic paths. The MLTs are planned and configured through aggregating lightpaths that traverse incongruent sets of photonic elements.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 2, 2014
    Assignee: Rockstar Consortium US LP
    Inventors: Mirjana Vukovic, Dominic Goodwill, Eric Bernier
  • Patent number: 8824891
    Abstract: A method removes signal interference in a passive optical network. The passive optical network includes an optical line terminal, a splitting unit coupled with the optical line terminal, an optical network unit coupled with the splitting unit, and an identification signal uniquely associated with the optical network unit. The method includes the steps of sending a first signal, detecting the first signal, comparing the detected first signal with an identification signal and decoupling the optical network unit from the splitting unit if the comparing step results in a mismatch.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 2, 2014
    Assignee: Xieon Networks S.a.r.l
    Inventors: Lutz Rapp, Dario Setti
  • Patent number: 8817589
    Abstract: Methods and apparatus for line coding in a communications network are described. According to one embodiment of the invention, downstream communications traffic bits are received and mapped into downstream bit positions of a transmission structure. A pre-selected bit in each upstream bit positions of the transmission structure is provided to form a downstream transmission structure. A downstream optical signal carrying the downstream transmission structure is generated for transmission. Upstream communications traffic bits are also received and mapped into the upstream bit positions of the transmission structure to form an upstream transmission structure. An upstream optical signal carrying the upstream transmission structure is generated for transmission.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 26, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Fabio Cavaliere, Stefan Dahlfort, Luca Giorgi
  • Patent number: 8818188
    Abstract: An emulated Optical Network Unit (ONU) platform executes the functions of multiple emulated ONUs to enable traffic emulation in a Gigabit-capable Passive Optical Network (GPON) for data traffic, control traffic and management traffic. The emulated ONU platform generates OMCI messages, PLOAM messages, DBRu messages, data traffic and control traffic according to respective statistical specifications in respective profiles of the emulated ONUs. The emulated ONU platform formats and encapsulates the emulated traffic for upstream transmission to an OLT system according to dynamic bandwidth allocation instructions received from the OLT system. The emulated ONU platform then sends the emulated traffic upstream to the OLT system, and receives downstream traffic from the OLT system.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 26, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Hassan Elhage
  • Publication number: 20140233942
    Abstract: The invention is related to phase detection in lidar systems using single photon detectors (SPDs). The frequency at which the SPDs are time gated is related to but not an integer multiple of the frequency of the transmitted optical pulses. Each return optical pulse arrives with a particular temporal position with respect to the nearest gate, and thus is detected with a related detection efficiency. The SPD output can be segmented into multiple time-multiplexed signals whose relative detection efficiency reveals the phase of the optical return pulses, and no such phases have negligible detection efficiency for all the time-multiplexed signals. To mitigate the impact of afterpulsing and other saturation effects, when a first optical pulse is detected with high detection efficiency the next optical pulse that is detected with high detection efficiency is separated by a time period about equal to or greater than the detector dead time.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Inventor: Gregory S. Kanter
  • Patent number: 8811816
    Abstract: The disclosure claims a method and system for detecting optical fiber connection.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 19, 2014
    Assignee: ZTE Corporation
    Inventor: Long Li
  • Patent number: 8811815
    Abstract: A method includes generating a test signal and modulating the test signal. The method may also include transmitting the test signal on an optical path, where the optical path may include a number of add-drop multiplexer devices and amplifiers. The method may also include receiving the test signal at a destination device and converting the received test signal into an electrical signal. The method may further include identifying a portion of the electrical signal that is associated with the modulated test signal.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: August 19, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Publication number: 20140226976
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a central controller that executes instructions facilitating performance of operations including monitoring multiple network nodes, at least some of the network nodes being in communication with others through respective point-to-point links. Each point-to-point link includes a respective free space optical channel. The central controller detects optical received signal strength of a free space optical channel falling below a certain level and provides control signals to reconfigure the multiple network nodes. Signals are re-routed along one of the respective point-to-point links through other network nodes responsive to detecting the optical received signal strength falling below the certain level Other embodiments are disclosed.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 14, 2014
    Applicant: AT&T Intellectual Property II, LP
    Inventors: David M. Britz, Jeevan Dodley, Lih-Yuan Lin, Robert R. Miller
  • Publication number: 20140226973
    Abstract: A system for regulating the signal strengths of a plurality of Radio Frequency (RF) signals to reduce signal degradation includes a plurality of controllers. Each controller is operably positioned upstream of an electrical-to-optical converter which generates an optical signal for transmission over a fiber optic transmission path. Each controller functions to detect and identify RF signals whose strength exceeds a maximum value and immediately attenuate the RF signal to prevent the transmission path from being jammed by the signal. Each controller also performs a signal leveling function by sampling signal strength, over time, and uses moving window averaging or some other moving window statistic to level the RF signal. Structurally, each controller includes a detector, a signal attenuator and a signal amplifier that are operationally positioned along a signal path extending from a controller input port to a controller output port and are operationally connected to a processor.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Inventors: Peter H. Wolff, Chen-Kuo Sun, Eric Liu
  • Publication number: 20140226975
    Abstract: A method is provided for improving performance of a distributed computing task being executed by computing devices interconnected by an optical switching fabric. Traffic flows between a plurality of nodes of a MapReduce application using an interconnected optical switching fabric are monitored. One or more optimizations for the interconnected optical switching fabric are determined based on the monitoring of the traffic flows. The interconnected optical switching fabric is reconfigured to implement the one or more determined optimizations.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: SODERO NETWORKS, INC.
    Inventors: Yueping ZHANG, Lei XU
  • Publication number: 20140226977
    Abstract: A hybrid communications system implements different communication technologies to communicate data and information for particular communications directions in different portions of the system. Power line communications (PLC) signaling is used to deliver data and information from a gateway device to a light access point. Visible light communications (VLC) signaling is used to communicate data and information from the light access point to a user equipment (UE) device. Wireless radio signaling, wireless infrared (IR) signaling, or a combination of wireless IR signaling and PLC signaling is used to communicate data/information from the UE device to the gateway device. To efficiently control the VLC communications channel between the light access point and UE device, the UE device measures the VLC channel, e.g., calculating SNRs on a per VLC tone basis, and communicating VLC channel quality feedback information to the gateway device, which is forwarded to the light access point.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Aleksandar Jovicic, Junyi Li, Thomas Joseph Richardson
  • Publication number: 20140226972
    Abstract: An access network comprises a first network interface device coupled to a customer network and configured to provide an interface between the access network and the customer network. The access network also comprises a second network interface device coupled to a core network and configured to provide an interface between the access network and the core network. The first network device is configured to insert a Status Type Length Value (TLV) element into a Continuity Check Message (CCM) to form a modified CCM and to transmit the modified CCM to the second network interface device. The Status TLV element includes fields for at least one of a dying gasp indication from a customer premise equipment or performance monitoring data. The second network interface device is configured to store data from the Status TLV in a database entry associated with an identification number of the first network interface device.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: CALIX, INC.
    Inventors: Shaun Noel Missett, Berkay Baykal, Tim Joseph Ethen
  • Publication number: 20140226974
    Abstract: A system for transmitting an optical signal over a fiber optic includes a terminal for generating the optical signal. Due to its modulation, the optical signal includes a carrier having a wavelength “?”, with an upper sideband and a lower sideband. A tuner is connected with the terminal to adjust the wavelength “?” of the carrier of the optical signal relative to a band pass filter. The purpose here is two-fold. For one, this adjustment eliminates a sideband of the optical signal, to avoid fading, and it suppresses the carrier of the optical signal, to enhance the OMI while maintaining the linearity of the signal.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Inventor: Chen-Kuo Sun
  • Publication number: 20140226971
    Abstract: A method for adjusting an optical signal includes determining a polarization dependent loss (PDL) value associated with the optical signal, determining an angle between the optical signal and one or more axes of PDL, determining an amount of nonlinear phase noise due to PDL and nonlinear effects upon the optical signal based upon the PDL value and the angle, determining a phase rotation based upon the amount of nonlinear phase noise, and applying the phase rotation to the optical signal.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Olga Vassilieva, Inwoong Kim, Motoyoshi Sekiya
  • Patent number: 8805199
    Abstract: A dispersion compensation design system includes a changing unit setting a changed value for the amount of dispersion compensation for a span connecting nodes constituting an optical network; a path classification unit determining whether respective paths in the optical network are capable of transmission with the changed value and classifying one or more of the paths as second category paths based on the determination results; an updating unit updating the amount of dispersion compensation with the changed value if the number of the second category paths in the latest classification result is less than the number of the second category paths in the retained previous classification result; and a repeating unit that, if not all of the paths in the optical network are capable of transmission, prevents use of combinations of amounts of dispersion compensation applied to the spans in the second category paths in the latest classification result.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventors: Kazuyuki Tajima, Tomohiro Hashiguchi, Yutaka Takita
  • Publication number: 20140219650
    Abstract: A network traffic monitoring apparatus and method of monitoring network traffic on a network path is disclosed. The apparatus comprises a first path arranged to receive a portion of the network traffic from the network path and a monitoring port arranged to monitor the portion of network traffic. The apparatus further comprises a switch having an input port communicatively coupled to the first path, and an output port communicatively coupled to the monitoring port. The switch is arranged to selectively toggle between the first state in which the portion of network traffic can pass from the input port to the output port and a second state, in which the portion of network traffic is prevented from passing from the input port to the output port, in dependence of a switching signal. The apparatus further comprises a second path for communicating a monitoring status signal to a network device.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 7, 2014
    Applicant: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Gianmarco Bruno
  • Patent number: 8798459
    Abstract: The optical receiver includes: a photoelectric conversion circuit for receiving an optical signal and converting the received optical signal into an electrical signal; a comparator for outputting a first determination signal (S1) when a voltage corresponding to the optical signal does not reach a first threshold value (TH1) and for canceling an output of the S1 when the voltage corresponding to the optical signal exceeds a second threshold value larger than TH1 during the S1 is output; a timing extraction circuit for generating a clock signal based on a frequency and a phase of the electrical signal obtained by the converting and for outputting a second determination signal (S2) when the generated clock signal does not satisfy a predetermined condition; a unit for causing the comparator to output the S1 when the S2 is output; and detects loss of optical signal while one of the S1 and S2 is output.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 5, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Masaaki Furukawa, Kouhei Sagara
  • Patent number: 8798458
    Abstract: Exemplary systems, devices, and methods for evaluating a link status of a fiber-optic communication system are disclosed. An exemplary transceiver device includes a transmitter configured to transmit an optical signal having a first wavelength to an additional transceiver device by way of a single optical fiber, a receiver configured to receive an optical signal having a second wavelength from the additional transceiver device by way of the single optical fiber, and a link status facility communicatively coupled to the transmitter and the receiver and configured to provide one or more visual indications of a link status between the transceiver device and the additional transceiver device. Corresponding systems, devices, and methods are also disclosed.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 5, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Nee Ben Gee, Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8798456
    Abstract: A diagnostic testing utility is used to perform single link diagnostics tests including an electrical loopback test, an optical loopback test, a link traffic test, and a link distance measurement test. To perform the diagnostic tests, two ports at each end of a link are identified and then statically configured by a user. The ports will be configured as D_Ports and as such will be isolated from the fabric with no data traffic flowing through them. The ports will then be used to send test frames to perform the diagnostic tests.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: August 5, 2014
    Assignee: Brocade Communications Systems, Inc.
    Inventors: David Aaron Skirmont, Saumitra Buragohain, Balakrishna Wusirika, Badrinath Kollu, Kyuh Kim