Different Wavelengths For Diagnostic And Communication Patents (Class 398/31)
  • Patent number: 7965940
    Abstract: Methods and apparatus for providing distance extension and other transport functions such as error monitoring, provisioning, and link/service management in a fiber channel path are disclosed. According to one aspect of the present invention, a transport node includes a processing arrangement and an output interface. The processing arrangement creates a first ordered set that includes information associated with an ability for the transport node to receive a first fiber channel frame, and inserts the first ordered set between a second ordered set and a third ordered set of a fiber channel stream. The output interface transmits the fiber channel stream, which includes the information regarding whether the transport node is capable of receiving the first fiber channel frame.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: June 21, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Zengyuan Wang, Tuchih Tsai
  • Patent number: 7945160
    Abstract: Systems and methods for monitoring a data transmission link, especially an optical, bidirectional data transmission link, in which a digital transmit signal is transmitted on a first transmission path from a local end of the data transmission link toward a remote end of the data transmission link. A portion of the power of the transmit signal sent at the local end is transmitted, delayed by a non-zero delay time on a second transmission path as a control signal toward the remote end of the data transmission link. Both signals are received at the remote end and are tested for the presence of events of a predetermined type. A conclusion can be reached on the quality of the transmission link as a function of a time correlation and frequency of the appearance of events in the received transmit signal and in the received control signal.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: May 17, 2011
    Assignee: ADVA AG Optical Networking
    Inventor: Henning Hinderthür
  • Patent number: 7945158
    Abstract: A method, apparatus, and program, for evaluating an optical network node. The method comprises providing at least one communication path of the node with a capability by which lasing can occur in the communication path, and detecting whether lasing has been established in the communication path to determine whether the optical node is operational. If no lasing is detected in the detecting, a fault exists in the communication path. The method further comprises determining an insertion loss in the communication path, and determining whether the insertion loss is comparable to a predetermined insertion loss, to confirm whether the node is configured correctly.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: May 17, 2011
    Assignee: Tellabs Operations, Inc.
    Inventors: Oleg B. Leonov, Stanley Chou
  • Patent number: 7936749
    Abstract: A node device receives supervisory control information on a dedicated wavelength different from a wavelength of signal light, which is input from an input port together with the signal light, and extracts, from signal light to be output from an output port, information superposed on an optical main signal of the signal light. Then, it is confirmed whether or not the signal light to be output and the supervisory control information correspond by using the extracted information, and supervisory control information corresponding to the signal light to be output is transmitted on the dedicated wavelength from the output port.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: May 3, 2011
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Takao Naito
  • Patent number: 7903969
    Abstract: A link connectivity verification message to recognize a physical link connection state is transmitted from the WDM to the PXC on a C-plane. The PXC transmits a link connectivity verification ACK message including information representing a physical link connection state, and the WDM transmits a cross-connect instruction message to cross-connect a transmission side and a reception side of a port (port 1) of the PXC. Probe light transmitted from the port (port a) of the WDM is turned back by a cross-connect of the port (port 1) of the PXC. The WDM receives the probe light to verify a link connectivity.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 8, 2011
    Assignee: KDDI Corporation
    Inventors: Noboru Yoshikane, Takehiro Tsuritani, Tomohiro Otani
  • Patent number: 7881611
    Abstract: A system and method for loading unutilized channels of a WDM system with noise to improve system performance. A transmitter amplifier may impart noise to unutilized channels by reducing amplifier input or providing feedback of the amplifier output. Noise signals may also be looped back to the transmitter from received signals.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: February 1, 2011
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventors: Georg H. Mohs, Stuart M. Abbott, Franklin W. Kerfoot, III, R. Brian Jander, Morten Nissov
  • Patent number: 7881608
    Abstract: Methods and apparatuses are provided for performing jitter measurements in a transceiver module. Accordingly, there is no need to use expensive test equipment that must be inserted into and removed from the network in order to obtain these measurements. In addition, because the measurements can be obtained at any time without any interruption in communications over the network, jitter performance can be monitored more closely and more frequently to facilitate better and earlier diagnosis of problems that can lead to failures in the network.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: February 1, 2011
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd
    Inventors: Frederick W. Miller, James Al Matthews
  • Patent number: 7860090
    Abstract: The present invention discloses a method for processing LMP packet carrying a control message, which includes: receiving the LMP packet carrying a control message from a peer LMP node, determining whether a state of a control channel is an available state according to the LMP packet, and updating or resetting a HelloDeadInterval timer if the control channel is in the available state. When the control channel is in the available state, the processed LMP packet is sent to the peer node, a new LMP packet carrying the control message is generated and sent to the peer node, and a HelloInterval timer is updated or reset. The present invention further provides a LMP processing unit and a LMP packet processing node.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 28, 2010
    Assignee: Huawei Technolgies Co., Ltd.
    Inventor: Hongguang Guan
  • Patent number: 7853144
    Abstract: The subassembly includes a laser for emitting signals towards fibers to be monitored, a passive alignment carrier, a photodetector for monitoring reflected laser signals from the fibers and for monitoring laser output power, and an optical fiber. The laser is disposed within the passive alignment carrier. The optical fiber is embedded in the passive alignment carrier, and has an angled fiber facet. The laser emits signals toward and through the angled fiber facet, whereby a portion of the laser signal illuminates the photodetector, and another portion illuminates the fibers that are being monitored and reflects back to the photodetector such that faults on the fibers can be detected.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: December 14, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Mark W. Beranek
  • Patent number: 7827308
    Abstract: Optical link related wavekey information and other vendor specific information is distributed in a WDM network using an extension of the standard OSPF routing protocol. The extension makes use of a vendor attribute Link State Advertisement (LSA) which is a new type of opaque LSA. The vendor attribute LSAs include a Vendatt Link State Identifier (ID) field in the LSA header, and a Vendatt Type/Length/Value (TLV) structure. The Vendatt TLV includes a Vendatt-type field identifying the TLV as a Vendatt TLV, and an enterprise code field identifying the vendor whose equipment (node or network element) generates vendor attribute LSAs or is able to receive vendor attribute LSAs by the identified vendor. Vendor attribute LSAs of a specific vendor are designed to be ignored by nodes or network elements of other vendors.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: November 2, 2010
    Assignee: Alcatel-Lucent Canada Inc.
    Inventors: Udo Mircea Neustadter, Steve Joseph Grabner
  • Patent number: 7822055
    Abstract: The Fibre Channel Credit Extender (FCCE) (600) is a network device that is disposed between and connected to an end node (210) and an optical repeater (220). The FCCE (600) contains as many buffer credits as necessary, to solve bandwidth problems in a network. In a situation where maximum bandwidth is required in both directions of a link, the FCCE (600) breaks a single logical link into three physically separated “linklets.” The short-distance linklets attain maximum bandwidth by use of the existing buffer credits of the end nodes. The long-distance linklet attains maximum bandwidth by use of very high receive buffer credits in the FCCEs (600). In this way, only those links that need maximum bandwidth over distances not covered by end-node credit counts need be attached to an FCCE (600). The FCCE (600) contains the optical repeater to gain distance on that link, and contains high credit count receive buffers to gain bandwidth on the link.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 26, 2010
    Assignee: QLogic Switch Products, Inc.
    Inventors: William R. George, Steven M. Betker
  • Patent number: 7809263
    Abstract: An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 5, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuya Uda, Kenta Noda, Yasuhiro Uchiyama, Hiroshi Masuda, Hiroyuki Nakano
  • Patent number: 7769302
    Abstract: The invention includes methods and apparatuses to adjust an optical signal transmitted through an optical amplifier, such as in a wavelength division multiplexed optical network. The methods and apparatus of the invention calculate polarization effects which cause degradation to the optical signal. A measurement of the polarization-related degradation of an optical signal is calculated by using at least one reference signal. In some embodiments of the invention, the reference signal is depolarized or has scrambled polarizations. The invention is typically used in long-haul optical networks.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 3, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Martin Birk, Xiang Zhou
  • Patent number: 7756422
    Abstract: During initial start-up of an optical communication system, an ASE reference span loss is calculated based on transmitting power and received power of ASE light generated by an optical amplifier, and an OSC reference span loss is calculated based on the transmitting power and the received power of OSC light. During normal operation of the optical communication system, a span loss is calculated using the OSC light, and an amount of change in the span loss representing a difference between the span loss and the OSC reference span loss is calculated. A current span loss between a transmitting station and a receiving station is calculated by adding the amount of change in the span loss to the ASE reference span loss.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 13, 2010
    Assignee: Fujitsu Limited
    Inventors: Takeshi Sakamoto, Kosuke Komaki, Yuji Shimada, Takuji Maeda
  • Patent number: 7742698
    Abstract: A method for monitoring an optical network includes communicating optical traffic along a working path of an optical network. The optical network comprises a protection path for the optical traffic to communicate the optical traffic upon a failure in the working path. The protection path comprises two or more network elements coupled together by optical lines. The method also includes monitoring an idle signal of the protection path to detect an error in the protection path comprising an error in a component of one or more of the network elements.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 22, 2010
    Assignee: Fujitsu Limited
    Inventors: Jim O. Goodwin, Larry H. Steinhorst, Wilson K. Chan
  • Patent number: 7725042
    Abstract: An automated optical transport system is provided which provides for automatic discovery of system components, automatic inventory of system components, automatic topology detection, automatic provisioning of channels, and automatic characterization and tuning of system components and fiber. The invention provides automation capability through inclusion of management card capabilities at each station which communicates through a reverse propagating service channel. Dynamic and propagation direction independent segments are provided in conjunction with a token-based scheme to repeatedly tune, update and monitor the transport system.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: May 25, 2010
    Inventors: Marvin Ray Young, Michael H. Eiselt, Daniel Nooner, Jeffrey Pearlman, Michael L. Cooper
  • Patent number: 7684695
    Abstract: One apparatus embodiment includes a first light source, a second light source, and a receiver having a photodetector. The first light source emits a first signal at a nonvisible wavelength for data transmission. The second light source emits a second signal at a visible wavelength for fault detection when combined with the first signal for transmission over a fiber optic path. The receiver converts the first signal from the nonvisible wavelength to an electrical signal.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 23, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brian L. Uhlhorn
  • Patent number: 7676159
    Abstract: A process for all-optically switching an incoming optical signal having at least a data packet is provided. The data packet including at least an address bit in its header, and the process includes receiving the data packet; processing the header optically; storing the decision made during the processing of the header; and switching the whole incoming data packet dependent upon the decision.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: March 9, 2010
    Assignee: The Hong Kong Polytechnic University
    Inventors: Alexander Ping-Kong Wai, Lixin Xu, Lai Yin Chan, Luen Fu Lui, Hwa Yaw Tam
  • Patent number: 7650073
    Abstract: A system and method of wavelength discovery in network elements having an optical architecture. In one embodiment, a first wavelength topology map is generated for wavelengths inserted in a first direction at each network element. A second wavelength topology map is generated for wavelengths inserted in a second direction at each network element. The first wavelength topology maps are transmitted in the first direction to adjacent network elements over a dedicated overhead wavelength channel. Similarly, the second wavelength topology maps are transmitted in the second direction to adjacent network elements over the dedicated overhead wavelength channel. Responsive to messaging via the dedicated overhead wavelength channel, each of the first and second topology maps are updated at each of the network elements.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: January 19, 2010
    Assignee: Alcatel Lucent
    Inventors: Robert Burnett, Dewayne Bridges, James Ries
  • Patent number: 7630634
    Abstract: A node for managing an optical signal includes a first system optics card for providing channels to be transported over a first optical transport link and receives channels from a second optical transport link. Channels received over the second optical transport link are provided to an optical converter card for transport to a client device, for feedback onto the first optical transport link, or pass through to a second system optics card of the node. The first system optics card is capable of dropping network channels from the second transport link to associated client devices through optical converter cards and add client channels received from optical converter cards to the first transport link. The first system optics card may include one or more express input and output ports to couple with one or more other system optics cards in order to provide multiple degrees of communication capability.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: December 8, 2009
    Assignee: Tellab Operations, Inc.
    Inventor: Mark E. Boduch
  • Patent number: 7630639
    Abstract: One embodiment of the present invention provides a system that facilitates transmission control in an Ethernet passive optical network, which includes a central node and at least one remote node, and wherein a remote node implements a data-link layer and a physical layer. During operation, the system starts by receiving, at the physical layer of a remote node, a word which is communicated from the data-link layer of the remote node, wherein the word may be a data word or an idle word. The system then delays the word for a pre-determined amount of time before allowing the word to be transmitted by a transmitter, thereby providing time for turning the transmitter on or off. The system also turns the transmitter on or off based on the content of the received words.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: December 8, 2009
    Assignee: Teknovus, Inc.
    Inventors: Glen Kramer, Edward W. Boyd
  • Patent number: 7616891
    Abstract: An optical network is provided that carries optical traffic in multiplexed wavelengths between a number of nodes. The network includes at least one light-trail associated with one of the wavelengths and established between a subset of the nodes in the network. The network also includes an out-of-band control channel that is associated with a different wavelength than the light-trail. The control channel is used to communicate control messages to establish the light-trail and to allocate use of the light-trail by the subset of nodes. Each of the subset of nodes comprises a burstponder operable to receive data traffic from one or more client devices of the associated node to be communicated over the light-trail and to buffer the received data traffic and assemble the data traffic into an optical payload.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 10, 2009
    Assignee: Fujitsu Limited
    Inventors: Paparao Palacharla, Ashwin Anil Gumaste, Susumu Kinoshita
  • Publication number: 20090263125
    Abstract: A light mark, a method and a device for light mark modulation and demodulation are disclosed. The modulation method includes: generating a mark with periodically alternating frequency and interval; and modulating the mark signal onto an optical signal. In the present disclosure, the mark with periodically alternating frequency and interval is adapted to distinguish different wavelengths by using different frequencies, and distinguish the same wavelength from different nodes by using the same frequency but different intervals. Therefore, numerous available marks are obtained with a small number of frequencies, and unique marks for all wavelengths in a network only require a number of frequencies equal to the number of the wavelengths in the network. Moreover, even if a wavelength conflict occurs, the wavelength conflict can be determined according to detected marks.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 22, 2009
    Inventor: Shuqiang Shen
  • Patent number: 7596314
    Abstract: An optical medium, whether inside or outside an internet/telecommunications backbone, is managed using a management signal at a wavelength which is distinct from wavelengths of service signals. A multiplexer multiplexes the management signal onto the optical medium, after which a demultiplexer demultiplexes the management signal for analysis. Performance of customer channels may be inferred from performance of the management signal.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: September 29, 2009
    Inventor: Robert H. Manifold
  • Patent number: 7583902
    Abstract: A method and apparatus configured to incorporate system data for transmission as part of or concurrently with network data. The system data may comprise communication system data for use in controlling or monitoring a communication system. The system data may be is utilized to control or adjust the amplitude or intensity of the network data to thereby amplitude modulate the system data into or with the transmission of the network data. By monitoring the amplitude or intensity of the received network data signal, the system data may be recovered. An automatic gain control or bias loop may be monitored to detect the amplitude modulation of the network data. The system data may be encoded.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: September 1, 2009
    Assignee: Mindspeed Technologies, Inc.
    Inventors: Daniel Draper, Maurice M. Reintjes, Gilberto I. Sada, Keith R. Jones
  • Patent number: 7580632
    Abstract: A system and method that utilizes digital coding techniques to combine a high-rate data stream with a lower rate side data stream to produce a combined data stream in such a way that the side data can be extracted by an inexpensive, low-bandwidth receiver. The method generally comprises the steps of: combining at least one payload data stream with at least one side data stream into a composite electrical data stream; applying the composite data stream to an optical transmitter to produce an optical signal; detecting the optical signal with an optical receiver having a maximum frequency of operation less than one-half of the rate of the composite data stream; and recovering the side data stream from the electrical output of the optical receiver.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 25, 2009
    Assignee: AT&T Intellectual Property II, LP
    Inventors: Mark D. Feuer, Vinay V. Vaishampayan
  • Patent number: 7561798
    Abstract: There is provided a method for testing an optical fiber link. The method includes employing a wavelength division multiplexer (WDM) to receive a signal via a port of the WDM and multiplex the signal onto the optical fiber link. The signal is used in a test of the optical fiber link. There is also provided an arrangement of components for testing the fiber link.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: July 14, 2009
    Assignee: Verizon Services Corp.
    Inventor: Dimitrios S. Kokkinos
  • Patent number: 7555215
    Abstract: A dual structure for a multiplexing section extended to an OSU is obtained without adding a dynamic function, such as an optical switch, to a W-MULDEM. The W-MULDEM of an optical wavelength division multiplexing access system divides, among ports corresponding to the individual ONUs, downstream optical signals having wavelengths ?d1 to ?dn, which are received along a current-use optical fiber, or downstream optical signals having wavelengths ?d1+?? to ?dn+??, which are received along a redundant optical fiber. The W-MULDEM also multiplexes, for the port that corresponds to the current-use optical fiber or the redundant optical fiber, upstream optical signals having wavelengths ?u1 to ?un or wavelengths ?u1+?? to ?un+??, which are received along optical fibers corresponding to the ONUs. A wavelength difference between the downstream optical signal and the upstream optical signal that are consonant with each ONU is defined as an integer times the FSR of an AWG.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: June 30, 2009
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hirotaka Nakamura, Junichi Kani, Hiroo Suzuki, Mitsuhiro Teshima, Ukyo Yamaguchi, Hidetaka Onishi, Katsumi Iwatsuki
  • Patent number: 7551852
    Abstract: A method and apparatus configured to transmit module data between optic modules over a primary communication channel, such as an optic fiber configured to carry network data or outgoing data. A control center may send the module data, such as any type of DDMI data, over the optic fiber to control one or more aspects of the optic module system. The optic module may also be configured to send module data regarding any aspect of module status or operation, to a control center, via the optic fiber. Use of the primary communication channel, normally reserved for only network data, allow for module to module communication or module to control center communication without need of cumbersome two wire interface or supplement channels. Optic module data communication may occur concurrent with network data transmission. Optic module data back-up may occur via the optic channel to provide rapid re-load of important optic module data.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: June 23, 2009
    Assignee: Mindspeed Technologies, Inc.
    Inventors: Maurice M. Reintjes, Daniel Draper, Gilberto I. Sada
  • Patent number: 7546035
    Abstract: The invention relates to a method for conveying management information in a WDM system from a number of wavelength converters to a central management unit, wherein a management information signal is superimposed on the WDM signal from the respective wavelength converter. A fraction of the optical signal in the common optical transmission line is tapped off to a detector and the different management information signals are recovered by a receiver unit which is connected to the detector. The invention also relates to a WDM system and a pluggable WDM wavelength converter.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: June 9, 2009
    Assignee: Transmode Systems AB
    Inventors: Gunnar Forsberg, Johan Sandell
  • Patent number: 7542678
    Abstract: A method and apparatus for providing a supervisory channel in a wavelength division multiplexing (WDM) fiber-optic communication system uses a controlled optical attenuator disposed in an optical path between a demultiplexer (DMUX) and a multiplexer (MUX) of an Optical Add-Drop Multiplexer (OADM.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: June 2, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Lutz Raddatz
  • Patent number: 7539413
    Abstract: The present invention discloses a submarine observation system in which a plurality of carrier lights assigned to each submarine observation equipment is transmitted from a land terminal apparatus to an optical submarine cable (down-going) by using a WDM transmission. In the submarine observation equipment, only a prescribed carrier light is demultiplexed by an optical demultiplexer, an observation signal indicating an observation result is generated by an observation device, intensity of the carrier light demultiplexed by the optical demultiplexer is modulated by an optical amplifier based on an observation signal, and the modulated carrier light is multiplexed by an optical multiplexer. The multiplexed carrier light is output to the optical submarine cable (up-going) to be returned to the land terminal apparatus being the transmission station.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 26, 2009
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology
    Inventors: Hiroaki Munehira, Junichi Nakagawa, Toshiyuki Tokura, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Patent number: 7536102
    Abstract: In accordance with the teachings of the present invention, a method and apparatus is presented for troubleshooting a fiber-optic cable. A fiber-optic, cable-troubleshooting system includes an integrated Optical Time Domain Reflectometer (OTDR) for generating an optical distance to a fault and a cable-locating module for presenting a tone on a fiber-optic cable. A technician uses the tone to locate the fiber-optic cable and the optical distance to locate the fault in the fiber-optic cable.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: May 19, 2009
    Assignee: AT&T Corp
    Inventors: John Huffman, Hossein Eslambolchi
  • Patent number: 7509047
    Abstract: Apparatus and method for transmitting a supervisory signal for optical network applications. The apparatus includes a subcarrier transmission system configured to receive a first supervisory signal and output a second supervisory signal, and an electrical-to-optical conversion system configured to receive the second supervisory signal and a data signal and output an optical signal. The second supervisory signal is associated with a subcarrier frequency. The data signal is associated with a data bandwidth, and the data bandwidth includes a data frequency. At the data frequency, a power density of the data signal is substantially equal to zero. A ratio of the subcarrier frequency to the data frequency ranges from 0.8 to 1, and the subcarrier frequency ranges from 2.4 GHz to 2.483 GHz.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 24, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7486893
    Abstract: The disclosed technology provides a dynamic interconnection system which allows to couple a pair of optical beams carrying modulation information. In accordance with the disclosed technology, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the disclosed technology. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: February 3, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: David M. Pepper, Richard P. Berg
  • Patent number: 7471898
    Abstract: Disclosed is a device and method for optical supervisory channel framing in an optical transport network system including at least one of an optical transmission section, an optical multiplex section, and an optical channel section. A maintenance signal is generated according to a first LOS (Loss OF Signal) signal generated from at least one of the optical transmission section, the optical multiplex section, and the optical channel section. The maintenance signal and a frame-related channel such as a message communication channel are multiplexed to generate an optical supervisory channel frame. The optical supervisory channel frame is output to another device including a repeater and a terminal system through a single supervisory channel.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 30, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jong-Yoon Shin, Ji-Sung Jung, Yool Kwon, Je-Soo Ko
  • Patent number: 7469102
    Abstract: Various methods, systems, and apparatuses is described in which a passive-opticalnetwork includes a first multiplexer/demultiplexer, a second multiplexer/demultiplexer, a wavelength tracking component, and a transmission wavelength controller. The first multiplexer/demultiplexer is located in a first location. The second multiplexer/demultiplexer is located in a second location remote from the first location. The wavelength tracking component determines the difference between the transmission band of wavelengths of the first multiplexer/demultiplexer and the second multiplexer/demultiplexer to provide a control signal to match the transmission band of wavelengths of the first multiplexer/demultiplexer and the second multiplexer/demultiplexer. The transmission wavelength controller alters an operating parameter of the first multiplexer/demultiplexer based on the control signal to control the transmission band of wavelengths of the first multiplexer/demultiplexer.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: December 23, 2008
    Assignee: Novera Optics, Inc.
    Inventors: Chang-Hee Lee, Kwang-Uk Chu
  • Patent number: 7469101
    Abstract: A passive optical arrangement for indicating the presence of a change in ownership along a fiber optic cable span uses an attenuation unit at a splice location that will severely attenuate an optical signal propagating along the span at a predetermined “marker” wavelength. Particularly well-suited in combination with determining the physical location of a fault along a fiber optic cable, the arrangement allows a technician to use an OTDR at the marker wavelength to determine both the physical location of the fault as well as the physical location of a change in ownership (if any) between the technician and the fault location, since the presence of the attenuation unit will register as a large step-wise change in signal propagation.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: December 23, 2008
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Hossein Eslambolchi, John Sinclair Huffman
  • Patent number: 7463829
    Abstract: An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: December 9, 2008
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tetsuya Uda, Kenta Noda, Yasuhiro Uchiyama, Hiroshi Masuda, Hiroyuki Nakano
  • Patent number: 7460783
    Abstract: Method and apparatus for dynamic provisioning of reliable connections in the presence of multiple failures in optical networks are described. One embodiment is a method for allocation of protection paths after a failure in an optical network. The method comprises, responsive to a failure in an active lightpath, switching traffic on the active lightpath to a protection path; subsequent to the switching, identifying all active lightpaths in the network that no longer have an available protection path; and attempting to allocate a protection path to each of the identified active lightpaths.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: December 2, 2008
    Assignee: Alcatel Lucent
    Inventors: Andrea Fumagalli, Sandeep Darisala, Parthasarathy Kothandaraman, Marco Tacca, Luca Valcarenghi, Maher Ali, David Eli-Dit-Cosaque
  • Patent number: 7447433
    Abstract: An optical communication device enabling confirmation of frames flowing through a communication line without affecting such line. The optical communication device includes a first conversion unit that converts a first optical signal transmitting a first frame group including a first maintenance frame into a first electrical signal; a frame duplication unit that receives the first electrical signal, generates a second electrical signal that transmits the first frame group, and outputs the first electrical signal; a second conversion unit that converts the first electrical signal output by the frame duplication unit into a second optical signal; and a third conversion unit that converts the second electrical signal generated by the frame duplication unit into a third optical signal.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: November 4, 2008
    Assignee: Allied Telesis Holdings K.K.
    Inventor: Seiho Itano
  • Patent number: 7447432
    Abstract: There is provided a method of, and apparatus for, regulating radiation component (wavelength channel) power in a wavelength division multiplexed (WDM) optical communications system (10). The system (10) comprises a plurality of nodes (20) interconnected through optical waveguides (30, 40) (optical fibers). The method is characterised by: passing one or more tokens (300) around the system from node to node; adjusting nodal settings (150, 170), such as optical attenuation, applied at each node to regulate the power of WDM radiation components at the node in response to receiving one or more tokens; and repeating the method until WDM radiation component power within the system is substantially regulated.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: November 4, 2008
    Assignee: Ericsson AB
    Inventors: John Richard Fielding, Graham Ronald French
  • Patent number: 7444077
    Abstract: An optical transmission system includes an optical signal transmitter to output optical signal, a monitoring light transmitter to generate monitoring light, an optical multiplexer to output a multiplexed signal light by multiplexing the optical signal and monitoring light, an optical relay transmission path to amplify the multiplexed signal light by using a Raman amplification effect, an optical demultiplexer to demultiplex the multiplexed signal light, a monitoring light receiver to receive the monitoring light output from the optical demultiplexer, and a pumping light source stopping device to continuously monitor a transmission state of the monitoring light and, when the transmission of the monitoring light is interrupted, to stop emission of the pumping light from the pumping light source to be used for distributed Raman amplification.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: October 28, 2008
    Assignee: NEC Corporation
    Inventor: Hideki Okuno
  • Patent number: 7437070
    Abstract: In each of a plurality of submarine observation apparatus (1 to n), a branching unit (63) branches fixed-wavelength light (?1) from an incoming wavelength-multiplexed light signal. An observation signal modulating unit (64) modulates the intensity of the branched fixed-wavelength light (?1) with observation information multiplexed by an observation signal multiplex unit (61). A combining unit (65) combines light signals (?2) to (?n) passing through the branching unit (63) and the fixed-wavelength light (?1a) modulated by the observation signal modulating unit (64) into a composite light signal, and outputs it to an optical fiber (12a). Therefore, in each of the plurality of submarine observation apparatus (1 to n), there is no necessity for providing a wavelength-division-multiplexing-transmission optical transmitter which requires high wavelength stability.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 14, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Japan Agency for Marine-Earth Science and Technology
    Inventors: Tasuku Fujieda, Hideki Goto, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Patent number: 7437069
    Abstract: The present invention provides an automatic power restoring method capable of reliably detecting continuity by the dissolution of a line fault, to restore the optical power, even in a structure including an optical amplification medium on an optical transmission path and an optical communication system using the method. To this end, in an optical communication system to which the automatic power restoring method of the invention is applied, a pilot signal having a low transmission rate, a wavelength of which is set based on loss wavelength characteristics obtained by combining loss wavelength characteristics of an optical fiber used for the optical transmission path and loss wavelength characteristics of the optical amplification medium on the optical transmission path, is transmitted and received between an optical transmitting station and an optical receiving station when a line fault occurs, and a detection of continuity is thus performed.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: October 14, 2008
    Assignee: Fujitsu Limited
    Inventors: Hiroyuki Deguchi, Shinichirou Harasawa, Hideki Maeda, Akira Naka, Gentaro Funatsu
  • Patent number: 7430372
    Abstract: An optical transmission system is provided which is capable of booting the system by using an ASE (Amplified Spontaneous Emission) light in a manner to provide high quality. A pre-amplifier receives noise light and does gain setting in an amplifier booting mode and receives an optical signal and to amplify the received signal in a working mode. A variable dispersion compensator is placed in a preceding-stage of the pre-amplifier and makes compensation of dispersion of a wavelength occurring when an optical signal propagates through an optical fiber in a variable manner.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: September 30, 2008
    Assignee: Fujitsu Limited
    Inventors: Mamoru Suematsu, Akira Yamamoto, Haruki Tanaka, Hideaki Sugiya, Yuki Murakami, Hisayuki Ojima
  • Patent number: 7426347
    Abstract: An apparatus for shared optical performance monitoring (OPM) is provided. A wavelength sensitive device receives light at an input port and routes it wavelength selectively to a set of output ports. To perform optical performance monitoring on the output ports, a monitoring component of each output signal is extracted, and these monitoring components are then combined. A single OPM function is then performed on the combined signal. However, with knowledge of the wavelengths that were included in each output signal, a virtual OPM function can be realized for each output port. The per port functionality can include total power per port, power per wavelength per port, variable optical attentuation, dynamic gain equalization, the latter two examples requiring feedback.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 16, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Alan Hnatiw, Sheldon Walklin, Thomas Ducellier
  • Patent number: 7421199
    Abstract: An apparatus and method for processing a supervisory signal for optical network applications. The apparatus includes a subcarrier transmission system configured to receive a first supervisory signal and output a second supervisory signal, and an electrical-to-optical conversion system configured to receive the second supervisory signal and a first data signal and output a first optical signal. Additionally, the apparatus includes an optical-to-electrical conversion system configured to receive the first optical signal and output a first electrical signal and a second data signal, and a subcarrier reception system configured to receive the first electrical signal and output a third supervisory signal. The second supervisory signal is associated with a first subcarrier frequency. The first data signal is associated with a first data bandwidth, and the first data bandwidth includes a first data frequency. A ratio of the first subcarrier frequency to the first data frequency ranges from 0.8 to 1.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: September 2, 2008
    Inventor: Yu Sheng Bai
  • Patent number: 7418212
    Abstract: A system and method for detecting digital symbols carried in a received optical signal. The system comprises a functional element operative to receive a stream of samples of an electrical signal derived from the received optical signal and to evaluate a non-linear function of each received sample, thereby to produce a stream of processed samples. The system also comprises a detector operative to render decisions about individual symbols present in the received optical signal on the basis of the stream of processed samples. In an embodiment, the non-linear function computes substantially the square root of each received sample.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 26, 2008
    Assignee: Nortel Networks Limited
    Inventor: Chandra Bontu
  • Patent number: RE42095
    Abstract: The control of the transmission of useful optical signals on different line paths of an optical transmission device is accomplished via at least one of the following features: using signal sources and signal sinks, the useful optical signals are coupled into the line paths, or are coupled out of them; at least one portion of the optical line paths is configured as normal line paths having coupling nodes via which a switchover to an alternative line path can be undertaken if a normal line path is disturbed; in addition to the useful optical signals, test signals, whose evaluation is used for the switchover between the line paths, are transmitted bidirectionally section-by-section; at least two types of test signals can be transmitted, of which a first type is used as an indicator for an intact line path and a second type as an indicator for a disturbed line path; and any switchover to an alternative line path is only undertaken if, before the detection of the disturbance, a test signal of the first type has be
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: February 1, 2011
    Assignee: Nola Semiconductor LLC
    Inventors: Jan Koeppen, Guenter Neumann, Helmut Tiltmann