Different Wavelengths For Diagnostic And Communication Patents (Class 398/31)
  • Patent number: 6885820
    Abstract: A method and apparatus for controlling the signal/noise ratio of optical add/drop signals in an optical WDM transmission system having a transmitter unit, a receiver unit and at least one optical add/drop multiplexer for transmitting optical express signals and at least one optical add/drop signal wherein the power spectrum of the pre-emphasized express signals is determined, and the signal level of the at least one optical add/drop signal is adapted to the power spectrum determined for the express signals.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: April 26, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Christian Eder, Claus-Jorg Weiske
  • Patent number: 6850706
    Abstract: An optical auxiliary signal, produced in a central device, is transmitted in addition to a user signal from the central to a remote optical device via at least two optical supply line fibers which are provided for transmitting optical signals between the central and remote optical devices. The optical auxiliary signal received in the remote optical device is diverted, is transmitted via a second optical supply line fiber to the central optical device, and the reception or the absence of the optical auxiliary signal and of the optical user signal in the central optical device are evaluated in order to monitor the operational state of the optical supply line fibers.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: February 1, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hubert Jager, Detlef Stoll, Gerhard Stortz
  • Patent number: 6842586
    Abstract: A method and apparatus is provided for using optical time-domain reflectometry (OTDR) with a WDM transmission system that includes a plurality of terminals interconnected by at least two pairs of unidirectional optical transmission paths each of which has at least one repeater therein. The method begins by transmitting an optical probe signal from a first OTDR unit associated with a first terminal into the repeater over a first optical path in a first of the at least two pairs of unidirectional optical transmission paths. The first OTDR unit receives a first returned OTDR signal over a second optical path in the first optical path pair. The first OTDR signal contains status information concerning the first optical path in the first optical path pair. The optical probe signal from the first optical path in the first optical path pair is coupled to a second optical path in the second optical path pair.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 11, 2005
    Assignee: Red Sky Systems, Inc.
    Inventors: Michael J. Neubelt, Stephen G. Evangelides, Jr., Jonathan A. Nagel
  • Patent number: 6839523
    Abstract: In a method and system for evaluating distributed gain in an optical transmission system, a data signal and a residual pump laser signal propagating in opposite directions within a waveguide are monitored. Modulation of the residual pump laser signal is correlated with low frequency components of the data signal. This correlation is used to determine cross-talk between the data signal pump laser signals, as a function of location within the waveguide. The distributed gain is then evaluated from the cross-talk, using a known relationship, or proportionality, between gain and cross-talk.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: January 4, 2005
    Assignee: Nortel Networks Limited
    Inventor: Kim B. Roberts
  • Patent number: 6819875
    Abstract: The present invention provides an optical wavelength multiplexing transmission apparatus and an optical output control method for an optical wavelength multiplexing transmission apparatus in an optical wavelength multiplexing transmission system using a main signal light and an OSC light. The optical wavelength multiplexing transmission apparatus (10a) is made up of a first transmitting/receiving section (52a), a second transmitting/receiving section (52b) and an apparatus supervisory control unit (54). This can not only achieve quick restoration from troubles, but also stably calculate an optical output level even if a change of the number of wavelengths to be multiplexed takes place in a main signal light, and even save troublesome adjustments for the improvement of reliability of a transmission line while eliminating the need for a signal source for the adjustment of a receive optical level at the initial installation.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: November 16, 2004
    Assignee: Fujitsu Limited
    Inventor: Eisaku Touma
  • Patent number: 6810210
    Abstract: A communication path impairment detection module for connection to a duplex optic communication link is provided. The duplex optic communication link includes an outgoing communication path and an incoming communication path, each being characterized by a data channel and an optical service channel. The communication path impairment detection module includes a first port and a second port suitable for coupling to the outgoing and incoming communication paths respectively. The communication path impairment detection module is responsive to impairment of the data channel and of the optical service channel in the incoming communication path to impair the data channel and the optical service channel in the outgoing communication path.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: October 26, 2004
    Assignee: Nortel Networks Limited
    Inventor: Marc Veilleux
  • Publication number: 20040208522
    Abstract: A network management communication infrastructure is provided that supports in-fiber signaling amongst the network components residing in an optical transport network. The network management communication infrastructure introduces an optical media management channel into each of the optical fibers that resides in an optical transport network.
    Type: Application
    Filed: November 8, 2001
    Publication date: October 21, 2004
    Inventors: Ian Dawes, Sanjay Kalyansundaram, Gordon Harney
  • Patent number: 6807377
    Abstract: Parallel synchronous pattern signals are transmitted from other side in a plurality of parallel data channels. A skew data reception unit converts the received parallel pattern signals into electric signals in the respective parallel data channels. A skew detection circuit serves to detect the length of a skew between the parallel data channels. A skew correction circuit serves to correct and eliminate the skew in parallel data signals, transmitted from the other side, between the parallel data channels based on the detected skew. The data signals without skews are output from the skew data reception unit.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: October 19, 2004
    Assignee: Fujitsu Limited
    Inventor: Takayuki Watanabe
  • Patent number: 6785473
    Abstract: Disclosed is a WDM network which has: a lightwave path which connects between clients and each of which is provided with an overhead, and a sub-network which is defined by dividing the WDM network. In this WDM network, the sub-network has a partial lightwave path to go through the sub-network, the overhead has a partial lightwave path supervisory control information region which is terminated at both nodes of the partial lightwave path, and when a fault occurs on a lightwave path, the fault information of partial lightwave path including the position information of fault occurred is added to the partial lightwave path supervisory control information region of the overhead.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: August 31, 2004
    Assignee: NEC Corp.
    Inventors: Shinobu Sasaki, Tatsuya Shiragaki, Shinya Nakamura, Takashi Yamazaki
  • Patent number: 6782210
    Abstract: An optical communication equipment comprises shared optical sources 88a-88d to be shared by communication nodes 100a-100d, the wavelengths of optical signals 76a-76d are converted into desired wavelengths &lgr;a-&lgr;d according to the addressed information of the corresponding optical label signals 77a-77d by using the shared optical sources 88a-88d and routed to the addressed communication nodes without being converted into electrical signals by using the wavelength routing function of the cyclic-wavelength arrayed-waveguide grating (AWG) 120. The load of each communication node can be reduced by incorporating the multi-wavelength optical sources, which can be shared among individual communication nodes, into the router 80.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: August 24, 2004
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Okada, Kazutoshi Kato, Kazuto Noguchi, Yoshihisa Sakai, Takashi Sakamoto, Morito Matsuoka, Sen-ichi Suzuki
  • Patent number: 6766113
    Abstract: A facility is provided to allow a supervisory message to quickly propagate through a transmission network without delay. Specifically, a supervisory message is quickly routed from one node to a next node by (a) splitting the control channel signal carrying the supervisory message at a receiving node, (b) sending one of the split control channel signals to an output via switchable apparatus for immediate transmission the next node and (c) sending the other split signal to a controller for analysis. If the controller invokes a predetermined procedure as a result of the content of the message, e.g., invokes protection switching, then the controller forms a supervisory message identifying the invoked procedure, operates the switchable apparatus so that the message identifying the invoked procedure may be routed to the output in place of the split channel signal message.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: July 20, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Daniel Y. Al-Salameh, Mario F. Alvarez, David S. Levy, Jithamithra Sarathy, Anastasios Tzathas
  • Patent number: 6748169
    Abstract: A method for measuring the signal quality of an optical data signal is provided. To measure the signal quality, and in particular the signal-to-noise ratio of an optical data signal which has data-free time intervals, the signal strength of the transmitted optical data signal is measured during a data transmission. The signal strength of the noise signal is determined during the data-free time intervals. The signal-to-noise ratio is determined and used as a criterion for the signal quality of the optical data signal.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: June 8, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harald Geiger, Christoph Glingener, Erich Gottwald
  • Patent number: 6728489
    Abstract: An optical transmission system accomplishes optical transmission to a long distance by combining a multiplexing line terminal with optical amplifiers, linear repeaters, and regenerators with optical amplifiers combined together. The system also accomplishes the optical transmission to a short distance by directly connecting the linear terminals therebetween, with an electric-to-optic converter replaced by an electric-to-optic converter having a semiconductor amplifier, with an optic-to-electric converter by an optic-to-electric converter having an avalanche photodiode as light receiver, an with no use of any optical booster amplifier and optical preamplifier in the multiplexing line terminal. With these, the optical transmission system can be easily constructed depending on the transmission distance required.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: April 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Tomooka, Naohiro Sakakida, Shin Nishimura, Yoshihiro Ashi, Hironari Matsuda, Satoshi Aoki, Yukio Nakano, Masahiro Takatori, Toru Kazawa, Shinya Sasaki, Ryoji Takeyari, Hiroyuki Nakano
  • Patent number: 6714740
    Abstract: In a method of controlling a switching operation of an optical network for use in connection between an optical transmitter and an optical receiver through an optical switch is controlled by a switch controller, the optical receiver is given through the optical switch a sequence of combined optical signals which is formed by combining a sequence of optical signals with an additional sequence of optical signals. The additional sequence of the optical signals may be either a sequence of optical signals sent to another optical receiver or a sequence of dummy optical signals. The combined optical signal sequence has a time interval which is defined between two adjacent ones of the combined optical signals and which is shorter than a predetermined time interval of, for example, 1 millisecond. Such a combined optical signal sequence serves to avoid occurrence of an optical surge appearing when the time interval is longer than the predetermined time interval.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: March 30, 2004
    Assignee: NEC Corporation
    Inventor: Akio Tajima
  • Patent number: 6714739
    Abstract: An optical transmission system including at least one optical transmitter configured to transmit at least one signal wavelength and a tuning wavelength, an optical receiver including an optical filter having a filter bandwidth including the at least one signal wavelength and a percentage of the tuning wavelength and an optical to electrical signal converter configured to receive the at least one signal wavelength from said filter, a first tuning optical to electrical converter configured to receive a first portion of the tuning wavelength stopped by said filter, a second tuning optical to electrical converter configured to receive a second portion of the tuning wavelength passed by said filter, and a filter controller configured to tune the filter bandwidth based on the relative proportion of first and second portions of the tuning wavelength provided to the first and second tuning optical to electrical converters.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: March 30, 2004
    Assignee: Corvis Corporation
    Inventors: Pramode Kandpal, Alistair J. Price, David F. Smith
  • Publication number: 20040052533
    Abstract: A system and method is provided for optical communication in which the common noises can be significantly suppressed. The system includes two transmitters working at two different wavelengths. One transmitter is configured to encode information into an optical carrier signal, and another transmitter configured to transmit a reference signal, and a receiver device with two photo-detectors and differential detection to regenerate the information from the received optical signals.
    Type: Application
    Filed: June 3, 2003
    Publication date: March 18, 2004
    Inventors: Zhan He, Jianfeng Li, Sadeg M. Faris
  • Patent number: 6704508
    Abstract: An optical crossconnect selectively connects at least one input terminal with at least one output terminal. The optical crossconnect includes: an optical switch connecting at least one input port connected to the at least one input terminal with at least one output port connected to the at least one output terminal; at least one supervisory light generating circuit for sending a supervisory light from each of the at least one output port to the optical switch; and at least one supervisory light receiving circuit for receiving the supervisory light output from the at least one input port.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: March 9, 2004
    Assignee: NEC Corporation
    Inventor: Koji Asahi