Multiplex Patents (Class 398/43)
  • Patent number: 8699877
    Abstract: A wavelength division multiplexer terminal with a multiplexer arrangement with a first switching matrix, and a demultiplexer arrangement with a second switching matrix allows flexibility for connection transceivers to ports of the wavelength division multiplexer and wavelength division demultiplexer respectively. Optical monitoring receivers are connected upstream the wavelength division multiplexer and downstream the wavelength division demultiplexer for managing and supervising connections.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 15, 2014
    Assignee: Xieon Networks S.a.r.l.
    Inventor: Robert Schimpe
  • Publication number: 20140099107
    Abstract: An exemplary system for communicating data includes a light source that emits light and a processing device that receives and encodes data into a communication signal. A modulator modulates light emitted by the light source, wherein the modulation is imperceptible to the human eye, and the modulated light includes the encoded data. The modulation of the transmitted light is imperceptible to a human eye. A receiving device receives the modulated light and processes the light to decode the encoded signal and obtain the data.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 10, 2014
    Applicant: Booz, Allen & Hamilton
    Inventors: Vadim RAVICH, Andrew Linn, Allan O. Steinhardt
  • Publication number: 20140099106
    Abstract: An integrated circuit is incorporated into a communications system to enable a channel to achieve data rates that are at least double that which are currently achievable. The integrated circuit combines serial data signals using recovered clock and serial data signals in reference and non-reference clock domains. The integrated circuit rate converts recovered serial data in one of the clock domains, performs a phase alignment at the converted data rate, and returns the rate converted and phase-aligned serial data to the recovered data rate in response to the recovered clock from the remaining clock domain. Thereafter, the recovered and aligned serial data signals are combined. The phase alignment is monitored in circuitry that detects when a threshold offset is violated. When the threshold offset is violated a synchronization circuit is enabled.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventors: Georgios Asmanis, Faouzi Chaahoub, Ravi Teja Kotamraju
  • Patent number: 8693874
    Abstract: A transmission system is provided with a transmission apparatus that outputs an ASE light from a transmission light amplifier and with a reception apparatus provided with: a tilt detection unit that detects the optical strength levels of at least two probe lights having different wavelengths from a received ASE light; and a reception light amplifier that performs a first-order tilt correction on light to be output in a linear manner so as to reduce the difference in the optical strength level of the two probe lights detected by the tilt detection unit.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: April 8, 2014
    Assignees: Fujitsu Limited, Fujitsu Telecom Networks Limited
    Inventors: Tomoyuki Suzuki, Kenji Watanabe, Koji Tanonaka, Akihisa Kawaguchi, Takehiro Fujita
  • Patent number: 8693871
    Abstract: A method for routing and wavelength assignment (RWA) in an optical network with improved heuristics for reducing the computational times required for the RWA. The method minimizes the number of wavelengths by packing the lightpaths using a minimum number of bins in a bin packing problem. Computational efficiency is enhanced by using several novel methods to determine shortest paths and eliminate arcs in a graph that represents the network topology.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 8, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mauricio Guilherme de Carvalho Resende, Thiago Ferreira de Noronha, Celso C. Ribeiro
  • Patent number: 8693872
    Abstract: A wavelength locking method, apparatus, and system are provided. The wavelength locking method includes modulating, by using scrambling signals with a same frequency and different phases, each one of a plurality of optical channel signals respectively; processing, by a combiner, a splitter, and a wavelength locker, the modulated optical signals, so as to acquire photoelectricity detector (PD) signals; performing phase discrimination on the PD signals to acquire wavelength information of the optical channels; determining different shift values corresponding to the different wavelength information; and adjusting wavelengths of the optical channels according to the corresponding shift values.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 8, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Shuangqi Wu, Fei Tang, Hongping Zhang
  • Patent number: 8693868
    Abstract: Methods and systems for implementing versatile optical terminals that detect optical transmission protocols and subsequently adapt to the correct protocol are disclosed. In an embodiment, an interface device for providing an interface for a first network with a passive optical network (PON) is disclosed. The interface device includes a protocol detection circuit for determining whether optical communication signals received from the PON conform to a first optical communication protocol, and a switchover control circuit that reconfigures the interface device to work with a second optical communication protocol when the received optical communication signals do not conform to the first optical communication protocol.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Marvell Israel (M.I.S.L) Ltd.
    Inventors: Erez Izenberg, Oren Ben-Hayune, Erez Amit, Dimitry Melts, Arie Elias
  • Publication number: 20140093238
    Abstract: A light transmitter transmits multiple light packets, each formatted to include a predetermined phase synchronization field (PSF) and a same message comprising a series of bits. The PSF and each bit are each represented as light that is intensity modulated over a bit period at a corresponding frequency. The light packets are transmitted at different start-times to cause a receiver to sample each packet with a different phase of a fixed, asynchronous sample timeline. The PSF and message are demodulated from each of the sampled light packets. If the demodulated PSF matches the predetermined PSF, then the corresponding demodulated message is declared valid.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventor: Richard D. Roberts
  • Patent number: 8687956
    Abstract: Systems and methods are described that provide a distributed restoration signaling protocol for shared mesh restoration with standbys for transparent optical networks.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 1, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Guangzhi Li, Angela Lan Chiu, Robert Duncan Doverspike, John L. Strand
  • Patent number: 8682161
    Abstract: An optical data transmission system for transmitting optical data in a flight vehicle, including a head end, optical splitter, N units of terminals that process optical data received from the optical splitter to display such as video, plural optical cables connected between the head end and the optical splitter and between the optical splitter and the terminals, and a seat group including N sets of passenger seats that transmit two-way optical data and are placed close to one another. The N units of terminals are placed in association with the respective N sets of seats. The optical splitter is placed in association with the seat group; sends optical data from the head end to the N units of terminals; and reversely unifies N-series optical data, different from one another, from the N units of terminals into one series and sends it to the head end.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaaki Higashida, Satoshi Ohyama
  • Patent number: 8678673
    Abstract: Exemplary embodiments of optical USB thin card is disclosed, which includes a substrate, having a space formed inside its packaging layer; a seat, disposed at a position on the substrate while forming an opening on the substrate; a plurality of first contact elements, each being disposed on the seat to be used for connecting electrically with an external device; a plurality of second contact elements, each being disposed on the seat to be used for connecting electrically with an external device; and bidirectional optical transmission module, having a plurality of optical fiber, disposed inside an accommodation space formed by the enclosure of the seat and the substrate; a micro control unit, for processing signals, data and commands of the optical USB thin card.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Hong Lin, Yuan-Heng Sun
  • Publication number: 20140072308
    Abstract: An implantable bio-sensing platform architecture that enables the wireless selection, calibration and reading of multiple sensors, as well as checking the power levels of the solar powering source energizing various electronic and optoelectronic devices and circuits embedded in the platform. It also permits checking the operation of the potentiostats interfacing with each amperometric analyte sensor. The platform is flexible to include FET based sensors for protein sensing as well as other applications including pH sensing. In addition, other physiological sensors can be integrated in the platform.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Applicants: The University of Tennessee, Knoxville, The University of Connecticut
    Inventor: Faquir C. Jain
  • Publication number: 20140072298
    Abstract: A radio frequency signal transceiving method and device thereof are proposed. The method is configured for a radio equipment controller (REC) of a radio frequency signal transceiving device to exchange radio signals between a plurality of Baseband Units (BBUs) and a plurality of Radio Equipments (REs) that respectively connected to a plurality of Remote Radio Units (RRUs), and the method includes but not limited to the step of: receiving a first radio downlink signal at least, generating a first downlink control signal, modulating the first radio downlink signal at least into a first analog downlink signal at a first frequency according to the first downlink control signal, multiplexing the first analog downlink signal and the first downlink control signal into an integrated analog downlink signal, converting the integrated analog downlink signal into an optical downlink signal, and transmitting the optical downlink signal.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 13, 2014
    Applicant: Industrial Technology Research Institute
    Inventor: Hsin-An Hou
  • Publication number: 20140064730
    Abstract: An optic Distributed Antenna System includes a Head End (HE) configured to adjust a first signal for a first carrier at a first band to a first level, to adjust a second signal having at least a carrier different from the first carrier or a band different from the first band to a second level, to combine the first and second signals, to perform Electronic/Optic conversion on the combined signal, and to optic-distribute and send the combined optic signal, and a plurality of Remote Units (RUs) each connected to the HE over a corresponding single optic line, wherein each of the RUs is configured to perform Optic/Electronic conversion on the combined optic signal, to adjust the converted signal for each signal band, to perform high-power amplification on the adjusted signals, to multiplex the amplified signals, and to transmit the multiplexed signal to a Mobile station via at least one antenna.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: ADVANCED RF TECHNOLOGIES, INC.
    Inventor: Young-Hoon Ko
  • Patent number: 8666247
    Abstract: The present disclosure provides bandwidth defragmentation systems and methods in optical networks such as Optical Transport Network (OTN), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Ethernet, and the like. In particular, the present invention includes bandwidth defragmentation algorithms that may be used within the context of a signaling and routing protocol to avoid bandwidth defragmentation. As such, the present invention defines a mechanism for computing an end to end path for a connection in a manner that avoids bandwidth fragmentation and provides for better network utilization. For example, the present invention may include a path computation based upon administrative weight and upon fragmentation costs. This may be implemented in existing signaling and routing protocols without changes to existing protocol messages used in topology discovery.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 4, 2014
    Assignee: Ciena Corporation
    Inventors: Hari Srinivasan, Waseem Reyaz Khan, Anurag Prakash, Saurabh Pandey
  • Patent number: 8666250
    Abstract: An optical network terminal (ONT) for use in an optical access network and comprising: an optical transceiver arranged to communicate with an optical line terminal using a wavelength which is modulated to carry sub-channels; a second transceiver arranged to communicate with a number of subscriber equipment using respective subscriber equipment channels; the ONT arranged to automatically map each subscriber equipment channel to a respective sub-channel of the wavelength without using an address associated with the respective subscriber equipment.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 4, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Pierpaolo Ghiggino, Fabio Cavaliere
  • Patent number: 8660422
    Abstract: Disclosed herein are a combined communication and broadcasting dual switching system and method. The system includes broadcasting transmission means, an Optical Line Terminal (OLT), an optical detection unit, an active path determination unit, an optical switch unit, and a combining unit. The broadcasting transmission means converts a Radio Frequency (RF) broadcast signal into an optical signal. The OLT includes dual lines and selectively outputs an Internet data signal. The optical detection unit detects a line from which the Internet data signal is being output. The active path determination unit determines that the line is an active path. The optical switch unit receives the optical signal from the broadcasting transmission means, and switches to the active path. The combining unit receives the optical signal output after having been switched, receives the Internet data signal from the OLT, and multiplexes the received optical signal and the received Internet data signal.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 25, 2014
    Assignee: Ubiquoss Inc.
    Inventor: Shin Hak Yang
  • Patent number: 8660020
    Abstract: Embodiments of the present invention compensate for skew across a wavelength division multiplexed network. The network is a wavelength division multiplexed optical transport network. The skew compensation can be performed electrically or optically. It can be performed on the transmission side of the network, the receiver side of the network or at any intermediary node on the network.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: February 25, 2014
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, David F. Welch, Ting-Kuang Chiang, Edward E. Sprague, Parthiban Kandappan, Stephen G. Grubb, Prasad Paranjape
  • Patent number: 8644172
    Abstract: The invention relates to a network comprising at least one host device having an interface card connected to a backplane of said host device, wherein said interface card comprises at least one cage for receiving a pluggable module which performs a traffic management of data transported via at least one optical fiber connected to said pluggable module.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 4, 2014
    Assignee: ADVA Optical Networking SE
    Inventors: Henning Hinderthuer, Mirko Lawin
  • Patent number: 8644706
    Abstract: Distributed and highly software reconfigurable CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units is also disclosed.
    Type: Grant
    Filed: July 22, 2012
    Date of Patent: February 4, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Publication number: 20140029941
    Abstract: A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Inventors: Alexandre M. Bratkovski, Jacob Khurgin, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 8639069
    Abstract: A wavelength-selective optical switch for switching arbitrary wavelengths between optical fibers in mesh networks, using interference filters for separating optical wavelengths, and two-dimensional arrays of micromirrors for switching. Broadband switch inputs and outputs are provided for adding and dropping arbitrary wavelengths at each node of the network. A two-stage multiplexer and two-stage demultiplexer are provided to simplify the free-space demultiplexer and multiplexer. Mechanisms are provided that allows full non-blocking functionality in the presence of finite yield of the micromirror arrays.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: January 28, 2014
    Assignee: Calient Technologies, Inc.
    Inventors: Roger Jonathan Helkey, John Edward Bowers, Xuezhe Zheng, David Welsh, Robert Anderson, Olivier Jerphagnon
  • Patent number: 8639113
    Abstract: Servers attached to a data communications network, such as a wavelength division multiplexed network, are made aware of events on the network, such as a protection switch for scheduled maintenance to reduce latency and improve performance, etc. Switching data paths on the data communications network is no longer transparent to the server. A message from the network equipment is received and decoded by a holographic enterprise interface coupled to the server and to a virtual network operation centers. The network equipment reports network switch conditions to the holographic enterprise interface and other connected servers. In response to the network switch conditions, the holographic enterprise interface may automatically reprovision data traffic on the network quickly enough to prevent server timeouts and workload interruptions. The switching is then shown in real time in the virtual network operations center.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Casimer M DeCusatis, Michael J Osias
  • Publication number: 20140023363
    Abstract: Systems and methods for enrolling nodes into an ad hoc network associated with a multi-roomed structure. Nodes within the ad hoc network comprise a communication module configured to communicate with the ad hoc network using at least one of room-limited communications and room-transparent communications.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Applicant: The Procter & Gamble Company
    Inventors: Raj B. Apte, Christopher Paulson, Erik John Hasenoehrl
  • Publication number: 20140016932
    Abstract: A free space optical communication system (100) and method including: several optical beam expanders (414) for receiving incoming optical signals from ground sites and neighboring satellites; several optical preamplifiers (412) for preamplifying the received optical signals; one or more optical main amplifiers (404) for amplifying the preamplified optical signals; and an optical switch (408) for directing respective amplified optical signals to respective destinations via a respective optical beam expander. The respective amplified optical signals are inputted to a respective optical beam expander (414) for transmission to said respective destinations, as outgoing optical signals.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Gary D. Coleman, C. Thomas Hastings, JR., Duane Smith, David Filgas
  • Patent number: 8625989
    Abstract: Multi-laser transmitter optical subassemblies (TOSAs) for optoelectronic modules. In one example embodiment, a multi-laser TOSA includes first and second lasers configured to generate first and second optical signals, respectively, a polarization beam combiner (PBC), first and second collimating lenses positioned between the first and second lasers, respectively, and the PBC, a half waveplate positioned between the first laser and the PBC, and a focusing lens. The half waveplate is configured to rotate the polarization of the first optical signal. The PBC is configured to combine the first and second optical signals and transmit the combined first and second optical signals toward the focusing lens.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Finisar Corporation
    Inventors: Tengda Du, Bernd Huebner
  • Patent number: 8625994
    Abstract: The present invention provides a directionless reconfigurable optical add/drop multiplexer (ROADM) system. The present invention provides a scalable all-optical switching element that includes a combination of 1×N wavelength selective switches (WSS), 1×N splitters/combiners, optical amplifiers, and tunable filters to provide a fully non-blocking solution which can be deployed in a scalable manner. The 1×N splitters are configured to split multiples copies of a plurality of drop wavelengths which can be amplified and sent to a tunable filter which selects out a particular wavelength for drop. The 1×N combiners are configured to combine multiple add wavelengths for egress transmission.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 7, 2014
    Assignee: Ciena Corporation
    Inventors: Jean-Luc Archambault, Michael Y. Frankel, Loudon Blair, Sashisekaran Thiagarajan
  • Publication number: 20130343754
    Abstract: A coaxial physical layer device operates in at least two different modes: a discovery mode and a normal mode. In the discovery mode, a first orthogonal frequency-division multiplexing (OFDM) coaxial signal is received that has a preamble including a plurality of first training fields and at least one second training field. Each first training field is shorter than each second training field. In the normal mode, a second OFDM coaxial signal is received that has a preamble including a single training field. The single training field is shorter than an OFDM symbol.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: Qualcomm Atheros, Inc.
    Inventors: Stephen J. SHELLHAMMER, Juan MONTOJO
  • Patent number: 8611751
    Abstract: Systems, apparatus and method for modulating digital data onto an optical carrier to produce a modulated optical carrier in which symbol-modulated optical signals of orthogonal polarizations are temporally interleaved and adapted to be processed by electronic time-division demultiplexing to recover the digital data modulated onto the orthogonal polarizations of the optical signals.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 17, 2013
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 8611742
    Abstract: Optical switches can include collimator elements that accommodate two or more optical ports. This increases the number of ports the switch can accommodate without having to increase the size of other optical components within the switch. Separate deflectors can be used to accommodate optical signals from two different groups of ports. In some embodiments cross-coupling of signals between the two groups can be accomplished through use of re-direction optics.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: December 17, 2013
    Assignee: Capella Photonics, Inc.
    Inventors: Long Yang, Jeffrey E. Ehrlich, Massimo Martinelli
  • Patent number: 8611749
    Abstract: A reconfigurable optical switching device comprising a Tunable Filters Array (TFA) unit incorporating tunable optical filters, wherein the arrangement is such that one and the same TFA unit is utilized both for performing a drop function of the device in a colorless and reconfigurable manner, and a through function of the device in a reconfigurable manner.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 17, 2013
    Assignee: ECI Telecom Ltd.
    Inventors: Avi Levy, Eyal Lichtman
  • Publication number: 20130287395
    Abstract: A method for enabling AC coupling or DC coupling when receiving burst data signals comprises generating a hold-over pattern, wherein the hold-over pattern is a AC balanced pattern when an AC coupling is required and a low-logic value signal when a DC coupling is required; inputting the generated hold-over pattern to an AC coupling circuit, when no burst data signal is received; inputting only a received burst data signal to the AC coupling circuit, during the reception of such signal; and upon receiving of the entire burst data signal, generating a reset signal causing to input the generated holdover pattern to an AC coupling circuit.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventor: Amiad DVIR
  • Publication number: 20130286847
    Abstract: An optical system may include: a demultiplexer to receive an optical signal and to demultiplex the optical signal into a plurality of optical channels; a detector circuit to: receive the plurality of optical channels, and identify a predetermined channel identification trace tone frequency for an optical channel of the plurality of optical channels; and a receiver to: receive the optical channel with the identified predetermined channel identification trace tone frequency from the detector circuit, and process the optical channel.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: Juniper Networks, Inc.
    Inventors: Theodore J. SCHMIDT, Roberto Marcoccia
  • Publication number: 20130287394
    Abstract: An optical communications system and method at least doubles the data rate of the optical fiber link without requiring a redesign of the backplane ASIC. This is made possible in part through the incorporation of at least one gearbox integrated circuit (IC) is incorporated into the system that is compatible with the current ASIC design. The gearbox IC receives N lanes of electrical data signals from the ASIC, with each electrical data signal having a data rate of X Gbps, and outputs N/2 lanes of electrical data signals, with each electrical data signal having a data rate of 2X Gbps. The high-speed optical transceiver module receives the N/2 electrical data signals output from the gearbox IC and produces N/2 respective optical data signals having a data rate of 2X Gbps for transmission over the optical fiber link.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Faouzi Chaahoub, Georgios Asmanis, Samir Aboulhouda, Michael A. Robinson
  • Patent number: 8571409
    Abstract: An optical ring network for fixed length messages from a plurality of nodes for transmission to different nodes uses a plurality of wavelengths for transmission, and messages for transmission are ordered and arranged on a per-wavelength basis to minimize a transmit finish time. Each node may be operated in an ADM (add drop multiplexer) mode where an optical node removes information on a particular wavelength and adds information on the same particular wavelength, or each node may be operated in a CDC (colorless, directionless, contentionless) mode where information is assigned to a wavelength according to a selection algorithm which may place it on any wavelength without regard to an original node wavelength. The selection algorithm optimizes selection of messages and wavelengths for transmit finish time.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 29, 2013
    Assignee: Intelligent Fiber Optic Systems, Inc.
    Inventors: Rui Wang, Behzad Moslehi, Richard J. Black
  • Publication number: 20130279914
    Abstract: Apparatus and methods for providing content to devices in a content distribution network. In one embodiment, a hybrid fiber/coax network provides optical signals to an amplification and combination node, the signals which are converted to radio frequency (RF) signals and transmitted to a series of cascading amplification and combination apparatus. The converted signals are combined with legacy RF signals at the combination apparatus, and distributed further downstream to serviced premises as well as other portions of the network cascade. Time division techniques are used to mitigate interference between the various amplification and combination nodes within the cascade. The programmable time division devices allow for rapid spectrum reallocation, and for insertion of different content at each different node of the network.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Inventor: Paul D. Brooks
  • Publication number: 20130272698
    Abstract: The present invention discloses a method for real time optical orthogonal frequency division multiplexing (OOFDM) transceivers by adaptively utilising available channel spectral characteristics.
    Type: Application
    Filed: November 6, 2011
    Publication date: October 17, 2013
    Applicant: Bangor University
    Inventors: Xianqing Jin, Jianming Tang
  • Publication number: 20130266314
    Abstract: A visible light communication (VLC) transmitting apparatus modulates source data to an orthogonal frequency division multiplexing (OFDM) symbol according to an OFDM modulation method, inserts a diffusion code that is allocated to the VLC transmitting apparatus into a frequency axis of the OFDM symbol, converts the OFDM symbol in which the diffusion code is inserted to a visible light modulation signal, and transmits the converted visible light modulation signal. Thereby, a signal of the VLC transmitting apparatus in which a VLC receiving apparatus wants can be easily detected.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 10, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Electronics and Telecommunications Research Institute
  • Patent number: 8553725
    Abstract: A node is configured to receive an instruction to establish a channel having a bandwidth that corresponds to an operating spectrum an optical fiber; obtain information that identifies a channel spacing and a pointer that identifies where, within the spectrum, to establish bandwidth allocations; identify a group of bandwidth segments based on the spectrum and the channel spacing; and generate bit words that correspond to the bandwidth allocations, where the bit words includes bits that, when set to a value, cause sets of segments to be reserved within the spectrum, and where the sets of segments identify where the bandwidth allocations begin and end, within the spectrum, relative to the pointer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 8, 2013
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Abinder Dhillon, Zhong Pan, Marco E. Sosa
  • Patent number: 8553534
    Abstract: Delivering multicast data traffic over a communication network includes a first network node delivering multicast data traffic to second network nodes. The first and second network nodes are connected by a transmission network in a ring architecture and implement a point-to-multipoint layer 2 protocol. A method includes at the first network node: collecting alarms signals indicative of a failure along the whole ring and of the second network nodes. Based on a current state of the alarm signals, delivering the multicast data traffic either in a first delivery direction along the ring, or in a second delivery direction along the ring opposite to the first delivery direction, or in both the first and second delivery directions. At each of the second network nodes: collecting alarm signals indicative of a failure of the transmission network locally to the second network node and of the second network node.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 8, 2013
    Assignee: Telecom Italia S.p.A.
    Inventors: Andrea Allasia, Marco Schiano, Laura Serra, Luigi Varetto
  • Patent number: 8548323
    Abstract: Embodiments of a scalable optical network unit (ONU) architecture for multi-dwelling units (MDUs) that has a low initial cost (or first port cost) and a low maintenance cost are provided herein. The ONU architecture is scalable in that a growing number of end users can share a single drop fiber that couples the ONU to a passive optical network. The ONU architecture utilizes a multiplexer module to allow the ONU to be daisy chained with one or more additional ONUs.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: October 1, 2013
    Assignee: Broadcom Corporation
    Inventors: Ryan Edgar Hirth, Robin C. Grindley, Rajiv S. Dighe, Glen Kramer, Thyagarajan T. Subramanian, Vafa Christopher Moezzi, Edward Wayne Boyd
  • Patent number: 8542994
    Abstract: In a PON system in which communication is performed at a plurality of types of transmission rate (L, M, and H) in an upstream direction from a plurality of terminals connected to a station apparatus through optical fibers, within a discovery period for allowing an unregistered terminal to be recognized by station apparatus, the terminal makes a discovery response at one type of transmission rate (L). With this configuration, station apparatus can wait for a discovery response with a receive function being allowed to support transmission rate (L).
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: September 24, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiroshi Murata
  • Patent number: 8542999
    Abstract: This invention relates to provisioning wavelength-selective switches and reconfigurable optical add-drop multiplexers to minimize the bandwidth narrowing effect from the optical filters. Novel architectures and methods are disclosed that can significantly reduce bandwidth-narrowing on channels in a reconfigurable WDM network where a large number of optical filter elements are cascaded. Instead of blocking unused channels as in the prior art, unused channels are selectively provisioned depending on the state of their adjacent channels. Unused adjacent channels of an active channel are provisioned to follow the same path as the active channels. As each channels is deployed, the channel frequency is selected so as to minimize bandwidth narrowing.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 24, 2013
    Assignee: Vello Systems, Inc.
    Inventors: Chris Wilhelm Barnard, Piotr Myslinski
  • Patent number: 8543957
    Abstract: An optical network design apparatus includes a memory and a processor. The memory stores a connection limit corresponding to the number of connections between ports. The processor provisionally designs a traffic path across an optical network independently of a connection limit of an asymmetric optical hub, calculates a penalty allowance with respect to the penalty limit of the traffic path, calculates an additional penalty caused on a detour path derived by replacing a port with a replacement port in the asymmetric optical hub, and if an asymmetric optical hub is included in the detour path, generates asymmetric optical hub information about the included asymmetric optical hub, generates, based on the connection limit, penalty allowance, additional penalty, and asymmetric optical hub information, a constraint condition for adopting the traffic path satisfying the connection limit and penalty limit, and calculates the traffic path by mathematical programming under the constraint condition.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Limited
    Inventors: Yutaka Takita, Tomohiro Hashiguchi, Kazuyuki Tajima
  • Publication number: 20130243428
    Abstract: A frame transmitting apparatus includes a transmitting unit which transmits, when a change is made to a value in a predetermined field of a frame, the frame including the predetermined field with the changed value a predetermined number of times in succession. A frame receiving apparatus includes a receiving unit which receives the frame and an acceptance processing unit which recognizes the value in the predetermined field of the received frame and conducts acceptance processing. The acceptance processing unit compares, when the value is different from a currently accepted value, the value with an expected value; accepts the value when the value matches the expected value; and accepts, when the value does not match the expected value, the value after receiving the same value the predetermined number of times in succession.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Ryoichi MUTOH, Hiroyuki KITAJIMA
  • Publication number: 20130236175
    Abstract: A space division multiplexed (SDM) transmission system that includes at least two segments of transmission media in which a spatial assignment of the two segments is different is provided. For example, the SDM transmission may include a first segment of transmission media having a first spatial assignment and a second segment of transmission media having a second spatial assignment, wherein the first spatial assignment differs from the second spatial assignment. An example method obtains an optical signal on a first segment of transmission media having a first spatial assignment and forwards the optical signal on a second segment of transmission media with a different spatial assignment. The transmission media may be a multi-core fiber (MCF), a multi-mode fiber (MMF), a few-mode fiber (FMF), or a ribbon cable comprising nominally uncoupled single-mode fiber (SMF).
    Type: Application
    Filed: September 4, 2012
    Publication date: September 12, 2013
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Alan H. Gnauck
  • Publication number: 20130236172
    Abstract: In a coherent optical receiver device, the dynamic range considerably decreases in the case of selectively receiving the optical multiplexed signals by means of the wavelength of the local oscillator light, therefore, a coherent optical receiver device according to an exemplary aspect of the invention includes a coherent optical receiver receiving optical multiplexed signals in a lump in which signal light is multiplexed; a variable optical attenuator; a local oscillator connected to the coherent optical receiver; and a first controller controlling the variable optical attenuator by means of a first control signal based on an output signal of the coherent optical receiver; wherein the coherent optical receiver includes a 90-degree hybrid circuit, a photoelectric converter, and an impedance conversion amplifier, and selectively detects the signal light interfering with local oscillation light output by the local oscillator out of the optical multiplexed signals; and the variable optical attenuator is disposed
    Type: Application
    Filed: September 26, 2011
    Publication date: September 12, 2013
    Applicant: NEC CORPORATION
    Inventor: Kouichi Suzuki
  • Publication number: 20130230318
    Abstract: There are provided a communications interface apparatus and a method of operating the same. The communications interface apparatus includes: a transmission line including a conductor line and a plastic optical fiber for optical communications; a signal transmitting unit transmitting a first data signal through the plastic optical fiber and transmitting a second data signal through the conductor line; and a signal receiving unit receiving the first data signal and the second data signal, wherein the signal transmitting unit differentiates a signal as the first data signal or the second data signal based on at least one of a level and a frequency of the signal to be transmitted.
    Type: Application
    Filed: June 26, 2012
    Publication date: September 5, 2013
    Inventors: Eung Ju Kim, Won Jin Baek, Kyung Uk Kim
  • Publication number: 20130230324
    Abstract: A method of communicating using an optical line terminal (OLT), the method comprising acquiring encapsulated data by a digital subscriber line (DSL) physical media specific transmission convergence (PMS-TC) sublayer from a protocol specific transmission convergence (TPS-TC) sublayer, and framing the encapsulated data into a frame by the PMS-TC sublayer for transmission to a corresponding PMS-TC sublayer in a customer premises equipment (CPE).
    Type: Application
    Filed: February 27, 2013
    Publication date: September 5, 2013
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventor: Sanjay Gupta
  • Publication number: 20130223843
    Abstract: Aspects of the present invention include apparatus and methods for transmitting and receiving signals in communication systems. A beam splitter splits an optical signal into a plurality of signals. At least one QPSK modulator generates a plurality of QPSK modulated signals from the plurality of signals. An optical multiplexer combines the plurality of QPSK modulated signals into a multiplexed signal. The multiplexed signal is then transmitted.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: ZTE (USA) INC.
    Inventor: ZTE (USA) INC.