Bidirectional Patents (Class 398/72)
  • Patent number: 8208811
    Abstract: A first node receives a first phase modulated optical signal at a first wavelength from a master node. The first node also transmits a first amplitude modulated optical signal to the master node at the first wavelength using a portion of the first phase modulated optical signal as a light source.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 26, 2012
    Assignee: Verizon Business Global LLC
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8200088
    Abstract: A communication unit inhibits delay and jitter during network communication, improving the communication quality. For this purpose, the communication unit includes: a first terminator that terminates a communication channel in the first optical communication scheme established between the communication unit and another communication unit; a second terminator that terminates a signal in the second optical communication scheme; and a path setting switch that switches between a first signal path setting and a second signal path setting.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Susumu Kinoshita
  • Publication number: 20120128359
    Abstract: A method for bidirectional optical communication comprising the steps of:—at a first optical line terminal, directly modulating a laser source to generate a downstream optical signal which has an optical power spectrum comprising two peaks having a frequency separation and a non zero power difference at generation;—propagating said downstream optical signal at a distance along an optical line comprising at least a first optical fiber propagating said downstream optical signal to a second optical line terminal;—at the second optical line terminal: power splitting said downstream optical signal to generate a first and a second power portion of said downstream optical signal, spatially separated; passive filtering said first power portion of said downstream optical signal so as to increase in absolute value a respective power difference of said two peaks, so as to obtain a filtered optical signal which is thereafter detected; and amplitude modulating the second power portion of the downstream optical signal so a
    Type: Application
    Filed: May 20, 2009
    Publication date: May 24, 2012
    Inventors: Rinaldo Mazzone, Mauro Rudi Casanova
  • Publication number: 20120128360
    Abstract: The present invention relates to an open optical access network system in which one optical access network is open to enable a plurality of service providers and a plurality of subscribers to simultaneously use the optical access network, to thereby improve the efficiency of using the optical access network, wherein each subscriber can be provided with a plurality of different services from the plurality of service providers, thereby enabling the flexible selection of services and the flexible change in services, thus improving the efficiency of using an optical infrastructure.
    Type: Application
    Filed: August 18, 2010
    Publication date: May 24, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Han-Hyub Lee, Seung-Hyun Cho, Eui-Suk Jung, Eun-Gu Lee, Jong-Hoon Lee, Jie-Hyun Lee, Sang-Soo Lee
  • Patent number: 8184977
    Abstract: In a GPON system conforming to ITU-T Recommendations G.984.3, an optical line terminal is provided which has an active bandwidth allocation function that preferentially puts small bandwidth signals in a particular segment of a frame, e.g., at a head of the frame, to prevent fragmentations that may occur particularly when allocating small bandwidths of about 100 kbits/s.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 22, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Kenichi Sakamoto, Ryosuke Nishino
  • Patent number: 8184974
    Abstract: A modular, scalable, extensible, In-Flight Entertainment (IFE) data communication system is described. In one embodiment, the system comprises a hub providing connection between one or more server/switch line replaceable unit including at least one server and a plurality of passenger video display units. A server, such as, for example, an audio server, a video server, an audio/video server, a game server, an application server, a file server, etc., provides data (e.g., entertainment programming, internet file data, etc.) to the video display unit. In one embodiment, the connection between the plurality of server/switch line replacement units, the hub and the plurality of video display units is provided by passive fiber optic links.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 22, 2012
    Assignee: Lumexis Corporation
    Inventor: James Douglas Cline
  • Patent number: 8184987
    Abstract: A method, a device, and a system for realizing data transmission extension in a passive optical network (PON) are provided. Between a burst-mode clock and data recovery (BCDR) module and an electrical-optical (E/O) amplification module, the device includes a delimiter matching module and a preamble buffering and compensating module. The delimiter matching module is adapted to receive a data frame sent by the BCDR module and determine a location of a delimiter in the data frame. An optical-electrical (O/E) amplification module performs O/E conversion, amplification, and shaping on the data frame. The BCDR module then performs clock and data recovery processing on the data frame.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: May 22, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Juan Chen, Shimin Zou, Jianlin Zhou
  • Patent number: 8180220
    Abstract: A protocol configuration method for use by a substation to be coupled to a main station in an optical access network is described.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: May 15, 2012
    Assignee: Alcatel Lucent
    Inventors: Tom Van Caenegem, Edwin Augustus Philomena Ringoot
  • Patent number: 8180222
    Abstract: Transmitting and receiving data includes a process of transferring data over a coaxial network between an optical node and a plurality of cable modems of a hybrid fiber-coaxial cable network. A data transfer system which sends and receives data over a coaxial network located at an optical node of a hybrid fiber-coaxial cable network.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: May 15, 2012
    Assignee: Aurora Networks, Inc.
    Inventors: Guy Sucharczuk, Oleh J Sniezko, Krzysztof Pradzynski, Thomas K Fong
  • Patent number: 8175458
    Abstract: Techniques, apparatus and systems for optical communications, including fiber ring networks with protection switching to maintain optical communications when an optical failure occurs and to automatically revert to normal operation when the optical failure is corrected, fiber ring networks that provide a circulating optical probe signal at an optical probe wavelength within the gain spectral range of optical amplifiers used in a fiber ring network to detect an optical failure, and fiber ring networks that support broadcast-and-select optical WDM signals carrying communication traffic to the optical ring nodes without regeneration at each optical ring node and one or more overlaid in-band node-to-node optical signals carrying communication traffic with regeneration at each node.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 8, 2012
    Assignee: Vello Systems, Inc.
    Inventor: Winston I. Way
  • Patent number: 8175459
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 8, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 8170414
    Abstract: Methods and systems for an optical line termination including instructions stored on a computer-readable medium, the instructions including a digital diagnostic table, and a plurality of entries within the diagnostic table, wherein a first entry is associated with a first optical network unit, the first entry including at least one setting for performing burst mode digital diagnostic processes using a first burst mode transmission received from the first optical network unit.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 1, 2012
    Assignee: Finisar Corporation
    Inventors: JinXiang Liu, HuiJie Du, Miatsu Okitsu
  • Patent number: 8160457
    Abstract: A system is disclosed for an improved ROSA that has increased sensitivity for permitting greater numbers of ONTs to be connected to an optical network per defined transmission line distances. The ROSA configuration includes a digital optical module with improved performance characteristics. This digital optical module has replaced a conventional photodiode with a PIN detector that is coupled with the TIA. The resulting digital optical module containing this PIN/TIA configuration when incorporated in a ROSA provides a single ROSA solution that will meet or exceed the ITU/IEEE FTTx standards for short and long distances under substantially all operating conditions.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 17, 2012
    Assignee: Phyworks
    Inventors: Simon McCaul, Stuart Millard
  • Patent number: 8160447
    Abstract: An OLT transmits and receives a CMTS/CM apparatus control signal through an apparatus physical management interface which is physically identical to or different from a main signal interface (NNI) and processes the CMTS apparatus control signal by itself. When connection of a new ONU is detected by an ONU apparatus control signal, an IP address is allocated by using the CM apparatus control signal in a manner similar to the CM. The CM apparatus control signal regarding the ONU is transmitted and received by using the IP address and a mutual conversion is performed between the CM apparatus control signal and the ONU apparatus control signal. The ONU processes the ONU apparatus control signal in a manner similar to the ONU based on an ordinary PON standard.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Munetoshi Tsuge, Takashi Mori, Masanobu Kobayashi, Yoshio Miyamori, Shinobu Gohara
  • Patent number: 8155523
    Abstract: In a Wavelength Division Multiplexed Passive Optical Network (WDM-PON) including, a system for overlaying an analog broadcast signal. An Optical Line Terminal of the WDM-PON includes a broadband light source for generating uplink seed light for each uplink channel of the WDM-PON, and a modulator for modulating the analog broadcast signal onto the uplink seed light. An Optical Network Terminal of the WDM-PON receives the uplink seed light from the Optical Line Terminal, and includes an optical divider for dividing the received seed light into a first signal and a second signal; a light source for generating an uplink data signals using the first signal as seed light; and an RF receiver for detecting the analog broadcast signal modulated on the second signal.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 10, 2012
    Assignee: LG-Ericsson Co., Ltd.
    Inventors: Bin Cao, Rong Chen
  • Patent number: 8155528
    Abstract: Methods for authenticating an optical transceiver module to a host are disclosed. The transceiver comprises a receive signal line for transferring data from the transceiver to the host and a transmit signal line for transferring data from the host to the transceiver in preparation for transmission to a communications network. The transceiver includes a controller having a processor in communication with the host, and a first memory register assignable by the processor. A consolidated laser driver/post amplifier is also included and features a pattern generator and a data switch. The pattern generator produces a string of bit values that serve as an authenticating data portion. The data switch selectively inputs the authenticating data portion to the receive signal line of the transceiver according to the state of the first memory register, enabling the authenticating data portion to be received by the host, thereby authenticating the transceiver.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 10, 2012
    Assignee: Finisar Corporation
    Inventor: Stephen T. Nelson
  • Patent number: 8150272
    Abstract: Systems and methods for transferring incoming single-ended burst signals of which at least one characteristic varies widely from burst to burst onto a pair of differential lines. The systems comprise an input for receiving an incoming burst signal, a signal adaptation block for adapting said widely varying characteristic and a single-ended-to-differential converter. In a first aspect a reset signal for resetting a settings determination block, which controls the signal adaptation block, is sent backwards over the differential lines, preferably using a common-mode signal. In a second aspect, a status freezing mechanism is employed for freezing the settings of the settings determination block after the end of the preamble of an incoming burst.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: April 3, 2012
    Assignees: IMEC, Universiteit Gent
    Inventors: Peter Ossieur, Tine De Ridder, Johan Bauwelinck, Xing Zhi Qiu, Jan Vandewege
  • Patent number: 8139940
    Abstract: There is provided a wavelength division multiplexing transmission system and apparatuses used therein, in which a remote apparatus to be newly added to a station apparatus autonomously sets a wavelength to be used in the remote apparatus, thereby avoiding the need for presetting a wavelength to be used in the remote apparatus. The remote apparatus includes wavelength determining means that determines an available wavelength on the basis of an optical signal received from the station apparatus. The wavelength determining means may determine the wavelength of an unreceived optical signal as the available wavelength or may determine the wavelength of a received optical signal as the available wavelength, and may set that wavelength as a transmission and reception wavelength to be used in the remote apparatus.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventor: Shigekazu Harada
  • Patent number: 8135285
    Abstract: An optical transmission system for performing frequency synchronization even with a client signal with low frequency accuracy, and for transmitting thereof by accommodating/multiplexing without causing a bit slip. A new overhead is added to the entire client signal, and the signal including the new overhead being stuffed is transmitted in conjunction with a plurality of stuffing bits as an optical signal wherein a data storing bit for a negative stuffing, a stuffing information notification bit, and a stuff bits inserting bit for a positive stuffing in the payload are defined in plurality as stuffing bits for adjusting clock frequencies of the client signal in this new overhead.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: March 13, 2012
    Assignee: NTT Electronics Corporation
    Inventors: Yoshiaki Kisaka, Shigeki Aisawa, Yutaka Miyamoto, Masahito Tomizawa, Yasuyuki Endoh, Kazuhito Takei
  • Patent number: 8126332
    Abstract: Described is a method for controlling the wavelength of a laser in a wavelength division multiplexed (WDM) system. The method includes generating broadband light having a dithered optical power and a wavelength spectrum that includes a plurality of WDM wavelengths. The broadband light is spectrally filtered to generate a spectrally-sliced optical signal having a wavelength spectrum that includes one of the WDM wavelengths. The spectrally-sliced optical signal is injected into a laser and a dithered optical power of the laser is determined. A parameter of the laser is controlled in response to the determination of the dithered optical power to thereby align a wavelength of the laser to the wavelength spectrum of the spectrally-sliced optical signal.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 28, 2012
    Assignee: LG-Ericsson Co., Ltd.
    Inventors: John Bainbridge, Tom Luk, Bin Cao
  • Patent number: 8116628
    Abstract: The present invention relates to a wavelength-division multiplexed passive optical network (WDM-PON) which embodies wavelength-independence of wavelength-locked Fabry Perot-Laser Diode (F-P LD).
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: February 14, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Ki-Man Choi
  • Publication number: 20120033973
    Abstract: Systems and methods according to these exemplary embodiments provide for methods and systems that allow for either reducing signal loss or improving the optical signal strength in a PON for increasing optical signal range.
    Type: Application
    Filed: November 27, 2007
    Publication date: February 9, 2012
    Inventors: Elmar Trojer, Stefan Dahlfort
  • Patent number: 8102851
    Abstract: A method of signaling and detecting end-of-transmission on a data communications link that uses scrambling comprises, by a transmitting node of the network, appending an end of burst delimiter (EBD) binary sequence to burst data and transmitting the burst data and the EBD over the communication link to a headend of the network. In a 10 G EPON using a 64B/66B transmission code, the EBD is exemplarily a 198 bit pattern.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 24, 2012
    Assignee: PMC-Sierra Israel Ltd.
    Inventors: Jeff Mandin, Valentin Ossman
  • Patent number: 8098990
    Abstract: A network system and method include a wireless base station integrated at a central office of a service provider. The wireless base station is configured to provide portable and fixed services to customers. A passive optical network is coupled to the wireless base station at the central office to provide a link to extend an antenna for wireless operations of the wireless base station to a remote site such that a wireless signal from the wireless base station is transmitted in parallel with a passive fiber network signal through the link.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 17, 2012
    Assignees: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Junqiang Hu, Ting Wang, Dayou Qian, Yuanqiu Luo, Yoshihiko Suemura, Makoto Shibutani
  • Patent number: 8090261
    Abstract: A general object of the present invention is to provide an optical communication system in which an optical transmission power of an optical communication apparatus is controlled to be a required minimum power that apparatuses of all subscribers in the optical communication system meet a prescribed error rate. An optical line terminating apparatus (OLT) transmits data to multiple optical network apparatuses (ONUs) at an optical intensity calculated based on information acquired from the multiple ONUs, which is related to optical intensities of signals that the multiple ONUs receive from the OLT, the optical intensity being calculated so that a minimum optical intensity of the optical intensities of the signals is greater than a predetermined value.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 3, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Toshiki Sugawara, Hiroki Ikeda, Yusuke Yajima, Tohru Kazawa
  • Patent number: 8086104
    Abstract: In a dual rate gigabit passive optical network, an optical line termination (OLT) transmits a first rate (GPON) message frame interleaved with a second rate (NGPON) message frame. An unused ATM partition of the GPON message frame is provided with a header and payload portion of the NGPON message frame so that the message frame remains at a predetermined length required by the network.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: December 27, 2011
    Assignee: Alcatel Lucent
    Inventor: Dusan Suvakovic
  • Patent number: 8078056
    Abstract: Generating oscillator signals with which selected signals may be mixed. Such oscillator signals may be generated by dividing a pilot tone, such as a 120 MHz pilot tone found on many cable TV systems. Oscillator signals for demodulating received selected signals may be similarly generated.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: December 13, 2011
    Assignees: Verizon Services Corp., Verizon Communications Inc.
    Inventors: Jacob Needle, Dimitrios Kokkinos
  • Patent number: 8073329
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: December 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghua Dong
  • Patent number: 8073331
    Abstract: According to one embodiment of the present invention, a wavelength-shifted dynamic intelligent bidirectional access optical system utilizes key optical elements such as: a quantum dot enabled semiconductor optical amplifier, a phase modulator and an intensity modulator to provide upstream optical signals. These key optical elements reduce the Rayleigh backscattering effect on the transmission of optical signals. to enable a longer-reach access network topology between a subscriber unit and a super node (e.g., many local nodes collapsed into one super node). Such a longer-reach access network topology eliminates operational and capital costs related routers and switches. Furthermore, a wavelength to a subscriber unit may be protected and dynamically varied for on-Demand bandwidth, information and services and also a subscriber's unit may be configured with any array of connectivity options.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 6, 2011
    Inventor: Mohammad A. Mazed
  • Patent number: 8069475
    Abstract: A Passive Optical Network (PON) includes an Optical Network Terminal (ONT) and an Optical Line Terminal (OLT). The ONT is configured for providing controlled port operations of authenticator Port Access Entity (PAE) functionality and the OLT is configured for providing entity authentication operations of the authenticator PAE functionality. The controlled port operations of authenticator PAE functionality includes inhibiting transmission of non-authentication messages from the ONT, transmitting a supplicant authentication request to the OLT and enabling transmission of non-authentication messages from the ONT in response to receiving supplicant authentication confirmation. The entity authentication operations of the authenticator PAE functionality include facilitating authentication of an identity of the supplicant and facilitating transmission of supplicant authentication confirmation for reception by the ONT in response to the identity being authenticated.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: November 29, 2011
    Assignee: Alcatel Lucent
    Inventors: Sudheer Dharanikota, Luc Absillis, Gopal Surya
  • Patent number: 8064763
    Abstract: An optical system with a first and second network tiers. The first network tier includes a plurality of major nodes optically interconnected by at least one transmission path. The second network tier includes a plurality of minor nodes disposed along the transmission path and the minor nodes are connected to at least one of the major nodes. The minor node is configured to transmit all traffic to an adjacent major node, and the major nodes are configured to transmit to and receive information from other major nodes and minor nodes on transmission paths connected to the major node.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 22, 2011
    Assignee: Level 3 Communications, LLC
    Inventor: David F. Smith
  • Patent number: 8059962
    Abstract: An apparatus comprising a plurality of data framers, a time division multiplexer coupled to the data framers, and an optical transmitter coupled to the time division multiplexer. Also disclosed is an apparatus comprising an optical receiver, a time division demultiplexer coupled to the optical receiver, and a data framer coupled to the time division demultiplexer. Also disclosed is an apparatus comprising at least one component configured to implement a method comprising combining a first plurality of data frames corresponding to a first plurality of channels into a first plurality of combined data frames using time division multiplexing and transmitting the first combined data frames over a single optical channel.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Patent number: 8050560
    Abstract: A distributed resources sharing method using weighting factors of sub-domains in an optical network includes connecting working paths to an optical network according to a request of a subscriber, and calculating weighting factors for measurement of concentration of the sub-domains including the working paths by using information on connected working paths. The method also includes setting up the backup paths by using the weighting factors, and allocating resources in response to connection request at the time of setting up the backup path and sharing the allocated resources. With this method, it is possible to prevent a waste of idle resources caused from concentration of allocated resources. In addition, since the information of the idle resources in the network can be sensed at the time of selecting the backup paths by using a weight factor, the shared resources can be distributed, thereby maximizing efficiency of the resources.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 1, 2011
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Hyeon Park, Byung Ho Yae
  • Patent number: 8050562
    Abstract: Provided is an apparatus for implementing an electro-optical cable distribution network in which a coaxial cable is replaced with an optical cable in order to provide a service integrating broadcast data and communication data by solving a frequency constraint problem in a cable television (CATV) network employing a conventional hybrid-fiber coaxial (HFC) network architecture. The apparatus includes an optical network unit (ONU) which converts a downstream signal received from a system operator (SO) into an optical signal and transmits the optical signal to an optical cable; and an optical cable modem which receives the optical downstream signal from the ONU and converts the received signal into an electrical signal. In addition, the ONU and the optical cable modem control signal quality of an optical path.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Heyung Sub Lee, Jae Hoon Yu, Dong-Beom Shin, Hong Soon Nam, Young Sun Kim
  • Patent number: 8045261
    Abstract: A Reflective Semiconductor Optical Amplifier (RSOA) for compensating for light loss in an optical link, an RSOA module for improving polarization dependency using the RSOA, and a Passive Optical Network (PON) for increasing economical efficiency and practical use of a bandwidth using the RSOA are provided. The PON includes a central office comprising a plurality of optic sources transmitting a downstream signal and a plurality of first receivers receiving an upstream signal; at least one optical network terminal (ONT) including a second receiver receiving the downstream signal and an RSOA which receives the downstream signal, remodulates the downstream signal into the upstream signal, and transmits the upstream signal in loopback mode; and a remote node interfacing the central office with the ONT. The upstream signal and the downstream signal are transmitted between the remote node and the ONT via a single optical fiber. The remote node includes an optical power splitter at its port connected to the ONT.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: October 25, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Mahn Yong Park, Woo-Ram Lee, Tae Yeon Kim
  • Patent number: 8041219
    Abstract: A method of optical communication includes generating an amplified optical signal from at least a portion of a first optical signal having a first carrier wavelength, ?1. The amplified optical signal is applied to Brillouin media to stimulate generation of a Brillouin effect signal at a wavelength ?2. The Brillouin effect signal is modulated to produce a second optical signal having a second carrier wavelength, ?2. In one embodiment, the first optical signal is a downstream optical signal and the second optical signal is an upstream optical signal of a passive optical network.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: October 18, 2011
    Assignee: Tellabs Operations, Inc.
    Inventors: José Antonio Lázaro Villa, Josep Joan Prat Gomá, Mireia Esther Omella Cancer
  • Patent number: 8041215
    Abstract: A method, a computer readable medium, and a system for discovering an Optical Network Terminal (ONT) in a Dense Wave Division Multiplex (DWDM) hybrid Passive Optical Network (PON) Line Terminal (LT), comprises implementing, by an Optical Line Termination (OLT), a ranging procedure on at least one downstream link, wherein the OLT is communicably coupled to the ONT, discovering at least one new ONT, by the OLT, on the at least one downstream link based on the ranging procedure, discovering an unranged ONT, by the OLT, during the ranging procedure, and determining, by the OLT, that the unranged ONT resides on the at least one downstream link.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 18, 2011
    Assignee: Alcatel Lucent
    Inventors: Joseph Lee Smith, David Eckard
  • Patent number: 8036531
    Abstract: A optical switch and switching system is provided for effecting a switchover from a first optical fiber to a second optical fiber includes a first, large scale switching component and a second, small scale switching component. The first, large scale switching component is configured to establish a cross connect between the second optical fiber and the second, small scale switching component. The second, small scale switching component may then be configured to select the cross connect following establishment of the cross connect, thereby ensuring rapid switchover from the first fiber to the second fiber, regardless of the speed of the first large scale switching component.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 11, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8036532
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 11, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Patent number: 8027586
    Abstract: A passive optical network (PON) system which enables plural types of ONUs having different signal transmission speeds to be connected to one OLT. An optical line terminating apparatus (OLT) connected to plural types of ONUs having different signal transmission speeds through an optical distribution network includes an optical transmitter-receiver connected to the optical distribution network, a transmission/reception line interface connected to a wide area network, a downstream frame processing section for converting a packet received by the transmission/reception line interface from the wide area network into a downstream frame containing identification information on a destination ONU in a header, and a downstream transmission controller for modulating the downstream frame at a speed corresponding to a signal transmission speed of the destination ONU and outputting the modulated frame to an electrical/optical converter connected to the optical transmitter-receiver.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: September 27, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroki Ikeda, Masahiko Mizutani, Toshiki Sugawara, Shinobu Gohara
  • Patent number: 8023824
    Abstract: Data is transmitted between a central office and customer premises by a wavelength division multiplex passive optical network. Two laser beams with separate wavelengths are transmitted from the central office to an optical network unit in the customer premises. Both laser beams carry downstream data. One laser beam is intensity modulated by on/off keying. The other laser beam is phase modulated by differential phase shift keying, which maintains a constant optical intensity. The first laser beam is received by a first optical receiver, which demodulates the first downstream data. The second laser beam is split in two. One laser beam is sent to a second optical receiver, which demodulates the second downstream data. The other laser beam is sent to a reflective semiconductor amplifier, which modulates the beam with upstream data and transmits the beam back to a receiver in the central optical system.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: September 20, 2011
    Assignee: NEC Laboratories America, Inc.
    Inventors: Jianjun Yu, Yuanqiu Luo, Junqiang Hu, Ting Wang
  • Patent number: 8023823
    Abstract: In accordance with the teachings of the present invention, a system and method for transmitting upstream traffic in an optical network is provided. In a particular embodiment, the method includes transmitting upstream traffic at a first wavelength from a first downstream terminal to a distribution node and transmitting upstream traffic at a second wavelength from a second downstream terminal to the distribution node. The method also includes combining the upstream traffic in the first wavelength and the upstream traffic in the second wavelength at a coupler in the distribution node without multiplexing the upstream traffic in the first wavelength and the upstream traffic in the second wavelength. The method also includes forwarding the combined traffic from the distribution node to a single upstream terminal.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: September 20, 2011
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Patent number: 8019217
    Abstract: An object of the present invention is to continue to send and receive to/from a host when a failure has occurred in a storage device interface. A storage system includes a host and a storage device connected to the host via a communication line, wherein the storage device comprises a communication controller performing data communication with the host by using optical modules, and wherein the communication controller is provided with first optical modules performing data communication with the host; a second optical module performing data communication with the host, in place of a first optical module; and a controller switching, when a failure has occurred in any of the first optical modules, the first optical module in which the failure has occurred to the second optical module.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 13, 2011
    Assignee: Hitachi, Ltd.
    Inventor: Hideyuki Aihara
  • Patent number: 8019221
    Abstract: Systems and methods which facilitate broadband transmission of signals using a delivery point tuning technique to provide a extended frequency passive optical network (EF-PON) are shown. Embodiments provide an extended frequency optical transition node (EF-OTN) at each of a plurality of delivery points to provide a frequency translation interface between equipment disposed at the delivery point locations and a network utilizing transmission bandwidth which is incompatible with that equipment. The foregoing frequency conversion is preferably transparent to the equipment receiving the network transmissions. Embodiments utilize a single wideband tuner for providing frequency conversion with respect to a plurality of equipment disposed a delivery point.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: September 13, 2011
    Assignee: Zoran Corporation
    Inventor: Gregory J. Zancewicz
  • Patent number: 8014673
    Abstract: A management method of an optical fiber network system is disclosed. The optical fiber network system includes at least one user apparatus and an optical network unit (ONU), and the ONU is connected with the user apparatus. The management method includes the steps of: adopting at least one information string, which is set by an ONU management and control interface (OMCI), by the optical network unit; packing the information string into a management packet; and transmitting the management packet to the user apparatus by the optical network unit according to an Ethernet protocol.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: September 6, 2011
    Assignee: Accton Technology Corporation
    Inventor: Chuan-Wei Liu
  • Patent number: 8014672
    Abstract: According to the present invention, a star-type wavelength multiplexed communication network using optical TX/RX devices capable of assigning the wavelengths can be provided without using the monitoring light. In an embodiment of the present invention, an optical TX/RX device for transmitting and receiving a wavelength-multiplexed signal light comprises an optical receiver capable of varying the RX wavelength and an optical transmitter capable of varying the TX wavelength. The optical TX/RX device detects RX wavelengths not in use via the optical receiver, and assigns the RX wavelength of the optical receiver to one of the RX wavelengths not-in-use, and assigns the TX wavelength of the optical transmitter to a TX wavelength corresponding to the RX wavelength according to a correspondence table of TX and RX wavelengths in the memory. Then, the optical TX/RX device transmits a signal light on this TX wavelength, and detects the response on the RX wavelength.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: September 6, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroo Suzuki, Takashi Yamada, Katsumi Iwatsuki
  • Patent number: 8014674
    Abstract: A method for operating PON (passive optical network) user terminal and a PON user terminal equipment, when there is only few data service request in the PON, the PON user terminal operates in power saving manner which maintains low speed connection, the method comprises: a judgment condition that the PON user terminal changes to power saving state is set; the PON user terminal determines whether its own state meet the judgment condition changing to power saving state, if so, it transmits a request to change to power saving state to the OLT (optical line terminal); after the PON user terminal receives the respond that the OLT has accepted the request, it controls parts of the modules therein to change to power saving state, and intermittently switch over between power saving state and normal state. The invention allows saving power under the condition that keeps the low speed service uninterrupted, in the meanwhile alleviates the pressure of ONU terminal thermal design.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: September 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yong He
  • Patent number: 8014675
    Abstract: A passive optical network communication system transmits an optical time-division multiplexed signal from a central office through a passive optical coupler to a number of subscribers, and transmits optical encoded signals from the subscribers through the passive optical coupler to the central office. Optical encoded signals from different subscribers are separated by a decoding process performed at the central office. All operations can be synchronized with a clock signal which is generated at the central office and recovered from the optical time-division multiplexed signal by the subscribers' equipment. The communication range can be extended inexpensively by using a single high-power light source at the central office while using relatively low-power light sources at the subscribers' equipment.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 6, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Masahiro Sarashina, Masayuki Kashima
  • Patent number: 8005363
    Abstract: In one embodiment, a passive optical network is provided that includes: an optical line terminal (OLT) configured to transmit a plurality of downstream signals into a corresponding plurality of passive optical networks and to receive a corresponding plurality of upstream signals from the plurality of passive optical networks, wherein each downstream signal is separated in wavelength from the remaining wavelength signals, and wherein each upstream signal is separated in wavelength from the remaining upstream signal; a Mux/Demux configured to multiplex the downstream signals from the OLT into a optical fiber and to demultiplex upstream signals from the optical fibers to the OLT; and a splitter configured to split the downstream signals from the OLT to a plurality of optical network units such that each optical network unit receives the plurality of downstream signals.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: August 23, 2011
    Assignee: Hitachi Communication Technologies, Inc.
    Inventors: Yanming Liu, Richard Chen
  • Patent number: 8005361
    Abstract: While continuously providing a service in an existing optical communication system, a service at another communication speed is realized at low cost. For this reason, a station-side optical network terminal apparatus is configured so that to one light-emitting unit connected are a first processing unit that performs a process to output an optical signal at one communication speed by the light-emitting unit and a second processing unit that performs a process to output an optical signal at another communication speed by the light-emitting unit.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 23, 2011
    Assignee: NEC Corporation
    Inventors: Hiroshi Nakaishi, Tatsuya Kubota