Addition Of Fugitive Material Patents (Class 419/36)
  • Patent number: 5950063
    Abstract: Provided is a powder and binder system for manufacturing sintered parts from particulate material, and a method of injection molding parts for sintering. The particulate material includes ceramic, metallic and intermetallic powders. Preferably, selected powder particles are coated with one or more additives depending on their shape and surface chemistry to create a powder system. The additives may include antioxidants, coupling agents, surfactants, elasticizing agents, dispersants, plasticizer/compatibilizers and lubricants. The surface active additives are designed to improve the interface between the powder and the binder. The powder system may be mixed or compounded with a binder system in an inert atmosphere to form a powder and binder system, or feedstock, for powder molding. The binder system, may contain one or more components which are removed prior to the sintering the powder. The powder and binder system may also be molded about an expendable core which is extracted prior to sintering.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: September 7, 1999
    Assignee: Thermat Precision Technology, Inc.
    Inventors: Karl Frank Hens, Joseph A. Grohowski, Jr.
  • Patent number: 5940674
    Abstract: A process for making a component includes the steps of: depositing a layer of a porous material; positioning a mask near to the deposited layer; applying a bonding material that will cause any contacted portions of the porous material to become bonded together, over and through the mask, such that the bonding material is applied to one or more selected regions of the recently deposited layer of porous material; and repeating the foregoing three steps a selected number of times to produce a selected number of successive layers, said bonding material causing each of said successive layers to become bonded to an adjacent layer. Any unbonded porous material that is not at the selected regions is easily removed. The mask may be an open stencil mask, or a screen mask. If open stencil masks are used, there may be more than one mask for a single layer of porous material. Successive masks may be positioned by a continuous sheet, a rotating disk, or individually, such as by a robot.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: August 17, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Emanuel M. Sachs, Michael J. Cima
  • Patent number: 5935514
    Abstract: A method of making a shaped article involves forming an aqueous mixture comprising inorganic powder material, supercritical fluid, organic binder component a portion of which is essentially insoluble in water, and aqueous vehicle, and extruding the mixture into a shaped article.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: August 10, 1999
    Assignee: Corning Incorporated
    Inventors: C. Edward Ford, Jr., Ronald E. Johnson, Dell J. St. Julien
  • Patent number: 5933701
    Abstract: The invention relates to ZrB.sub.2 /Cu composites, and more specifically to methods of making ZrB.sub.2 /Cu composite electrodes and methods of using ZrB.sub.2 /Cu composite electrodes. ZrB.sub.2 powder is contacted with a polymer and shaped to a desired form. The polymer is vaporized and the ZrB/.sub.2 powder is sintered. The sintered ZrB.sub.2 is contacted with Cu and heated above the melting point of Cu which causes the Cu to infiltrate the ZrB.sub.2, forming the ZrB.sub.2 /Cu composite electrode.
    Type: Grant
    Filed: January 19, 1998
    Date of Patent: August 3, 1999
    Assignee: Texas A & M University System
    Inventors: Brent E. Stucker, Walter L. Bradley, Philip T. Eubank, Bedri Bozkurt, Somchintana Norasetthekul
  • Patent number: 5925308
    Abstract: A method of producing a formable mixture involves combining a powder material, and a plurality of gel-forming polymers, wherein at least one gel-forming polymer is a proton donor, and at least one gel forming polymer is a proton acceptor. A method of making a monolithic structure involves producing a formable mixture of powder material which can be ceramic, metal, glass, glass ceramic, molecular sieve and combinations thereof, a plurality of gel-forming polymers as described above, extruding the mixture to form a green monolithic structure, and drying and firing the green structure.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: July 20, 1999
    Assignee: Corning Incorporated
    Inventors: Edward J. Fewkes, Frances M. Smith, Lung-Ming Wu
  • Patent number: 5922978
    Abstract: A pressable powder is formed by a method comprising mixing, in essentially deoxygenated water, a first powder selected from the group consisting of a transition metal carbide and transition metal with an additional component selected from the group consisting of (i) a second powder comprised of a transition metal carbide, transition metal or mixture thereof; (ii) an organic binder and (iii) combination thereof and drying the mixed mixture to form the pressable powder, wherein the second powder is chemically different than the first powder. The pressable powder may then be formed into a shaped part and subsequently densified into a densified part, such as a cemented tungsten carbide.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: July 13, 1999
    Assignee: OMG Americas, Inc.
    Inventor: Daniel F. Carroll
  • Patent number: 5908588
    Abstract: A process of molding inorganic materials into desired shapes comprises mixing the material with a dispersant, milling, molding the mixture, drying the mixture and sintering.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: June 1, 1999
    Assignee: Eastman Kodak Company
    Inventors: Syamal K. Ghosh, Dilip K. Chatterjee, James S. Reed, Steven R. Arrasmith
  • Patent number: 5900207
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: May 4, 1999
    Assignees: Rutgers, the State University Old Queens, Stratasys, Inc.
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren, William R. Priedeman, Jr.
  • Patent number: 5897962
    Abstract: A method of making flowable tungsten/copper composite powder by milling an aqueous slurry of a mixture of the desired weight ratio of tungsten powder and copper oxide powder and, optionally, a small amount of cobalt powder, spray-drying the slurry to form spherical, flowable agglomerates, and reducing the agglomerates in a hydrogen atmosphere.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: April 27, 1999
    Assignee: Osram Sylvania Inc.
    Inventors: David L. Houck, Nelson Kopatz, Muktesh Paliwal, Sanjay Sampath
  • Patent number: 5881355
    Abstract: A method of fabricating a cathode member or pellet is provided, which realizes the sufficiently large increase of the electron emission capability by the current activation process and that prevents the maximum cathode current from being lowered as long as an electron emissive agent exists in the cathode member. First, (a) a nickel powder and a rare-earth-metal oxide powder are provided. (b) The nickel powder and the rare-earth-metal oxide powder are uniformly mixed together, thereby producing a first powder mixture. (c) The first powder mixture is heated in a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere, thereby producing an intermetallic compound of nickel and the rare-earth metal in the first powder mixture. (d) The first powder mixture containing the intermetallic compound is uniformly mixed with an electron-emissive agent powder, thereby producing a second powder mixture. (e) The second powder mixture is sintered by a HIP process, thereby forming a cathode member.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: March 9, 1999
    Assignee: NEC Corporation
    Inventors: Toshikazu Sugimura, Maki Narita, Taro Hirai, Shoichi Hata
  • Patent number: 5877270
    Abstract: A water solvent extraction degreasing method capable of reducing degreasing time without consideration of abrupt decomposition/vaporization and swelling caused by heat. An organic binder is removed from a molded product that is produced by a powder material mixed with the organic binder and this organic binder contains at least one water-soluble organic compound and at least one water-insoluble thermoplastic resin. The degreasing step of this method includes a water solvent extraction step for extracting the water-soluble organic compound from the organic binder contained in the molded product, using water as a solvent.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: March 2, 1999
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Takemori Takayama, Yoshitaka Ohyama, Masato Miyake, Katsuyoshi Saito, Hiroshi Ono
  • Patent number: 5861115
    Abstract: The present invention includes a method for freeze molding, comprising the steps of: mixing poly(vinyl alcohol) or a modified additive thereof with a material slurry to obtain a mixture; pouring the mixture into a molding die; and subjecting the mixture in a molding die to at least one cycle of cooling and heating so as to obtain a compact. A compact obtained in this method is free from melting and can maintain its configuration even if the compact is kept at a temperature of freezing point or higher. Further, since the method does not require vacuum drying, the compact can easily be dried.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: January 19, 1999
    Assignee: NGK Insulators, Ltd.
    Inventors: Shinzo Hayashi, Sadaaki Hirai
  • Patent number: 5860055
    Abstract: In a process for producing granular material in which at least one hard material phase is mixed with a metal powder and a binder and granulated, no premixing of the hard material phase and the metal powder takes place before mixing with the binder and the binder has a viscosity of from 20 to 200 cm.sup.3 /10 min, preferably from 30 to 100 cm.sup.3 /10 min, in accordance with DIN 53735 at 195.degree. C. and a load of 2.16 kg.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: January 12, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hesse, Knut Bittler
  • Patent number: 5854379
    Abstract: A low-cost thermal decomposition degreasing method capable of drastically reducing the time required for a degreasing process which involves heating, vaporization and thermal decomposition, while assuring the shape retention property of an injection molded product during degreasing. The degreasing process comprises: (i) a first step wherein a molded product placed under a reduced pressure less than or equal to atmospheric pressure is heated at a temperature lower than the melting point of a thermoplastic binder so that the thermoplastic binder partially evaporates by 5 wt % or more, and then the molded product is further heated at a temperature lower than higher one of the melting points of a more volatile organic compound and a thermoplastic resin whereby the thermoplastic binder further evaporates by 10 wt % or more, and wherein the final temperature is set to 200.degree. C.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: December 29, 1998
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Takemori Takayama, Yoshitaka Ohyama, Kazuo Okamura, Masato Miyake, Katsuyoshi Saito, Hiroshi Ono
  • Patent number: 5852248
    Abstract: Shaped article replicas which are proportionately accurate replicas of a shaped article and which are equal, greater or smaller in size than said shaped article are made by preparing a swellable polymer cavity mold from said shaped article; immersing said swellable polymer cavity mold in a swelling agent system under conditions which will enlarge said cavity mold to a predetermined extent; forming a powder compact in said casting mold or a replica thereof and heating said powder compact to produced a proportionately accurate solid replica of a predetermined size.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: December 22, 1998
    Assignee: Den-Mat Corporation
    Inventor: Thomas Chadwick
  • Patent number: 5852766
    Abstract: Shaped articles such as dental onlays and inlays having at least one surface adapted to mate with a mating surface of a second shaped article are produced by a procedure which includes immersing a swellable polymer casting mold in a swelling agent system to swell such casting mold to an extent which compensates for the shrinkage which occurs when a sinterable powder compact made therein or in a solid replica thereof, is heated.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: December 22, 1998
    Assignee: Den-Mat Corporation
    Inventors: Thomas Chadwick, Ron DeMoss
  • Patent number: 5846664
    Abstract: A process is provided for the manufacture of porous metal components. The process involves preparing a colloidal suspension comprising a metal-containing powder in admixture with a binder system, and a plasticizer in an organic solvent. Optionally, a particulate pore forming agent may be added to the suspension. The suspension is cast into a thin sheet and air dried to thereby form a tape. The tapes are layered and formed by compacting at predetermined pressures to laminate the tapes, thus forming a green body. Optionally, a second pore-forming agent may be introduced between, or associated with, the tape layers. The green body is heated at a controlled rate to form a brown body, and finally sintered under controlled conditions to produce the finished component.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: December 8, 1998
    Assignee: Westaim Technologies, Inc.
    Inventors: Christine E. Third, Stephen F. J. Corbin, Prasad S. Apte
  • Patent number: 5848350
    Abstract: A nickel-free stainless steel having the following composition in weight percent:______________________________________ Chromium 23-27 Molybdenum 2-7 Carbon 0.2 maximum Iron balance plus incidental impurities ______________________________________is made into a fine powder. Alternatively, the powder may be made by mixing powders of the pure elements or master alloys (e.g., pure chromium, iron-chromium, etc.) in the disclosed proportions. The metal powder is combined with a plasticizer to form a mixture when is then subjected to metal injection molding techniques to form an article which, after sintering and secondary operations, can be used in contact with the human body.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: December 8, 1998
    Assignee: FloMet, Inc.
    Inventor: Matthew K. Bulger
  • Patent number: 5815789
    Abstract: A method for producing self lubricating powder metal cylinder bore liners for an internal combustion engine includes the steps of loading a powder metal mixture into a die cavity, compacting the powder metal mixture in the die cavity and forming the powder metal cylinder bore liner having a porous structure, sintering the powder metal cylinder bore liner, and impregnating the porous structure of the cylinder bore liner with lubricant.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: September 29, 1998
    Assignee: Ford Global Technologies, Inc.
    Inventor: Edward Akpan
  • Patent number: 5812925
    Abstract: A method for joining a first metal surface to a second metal surface that includes providing powder metal particles substantially all of which have hardnesses lower than the hardnesses of the first and second metal surfaces, at normal temperatures; locating the particles in a layer between the first and second metallic surfaces, to form an assembly; heating the assembly to an elevated temperature or temperatures below the softening temperature of the first and second metallic surfaces; and effecting compression of the layer by and between the first and second surfaces at a pressure level or levels below the compressive yield strengths of the first and second surfaces, and above the compressive yield strengths of the particles, and for a time duration to effect a bond between the first and second metallic surfaces.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: September 22, 1998
    Inventor: Gunes M. Ecer
  • Patent number: 5798469
    Abstract: A sintered structure is formed from a powdered material by the steps of providing a first, green powdered material which can be a ceramic or metallic ceramic material. A second, preformed mold blank material to the green powdered material, wherein the preformed mold blank will not fuse with the first, green powdered material. The mold blank material is different green material having a higher sintering temperature than the first green powdered material. Then the structure is fired at the sintering temperature of the first, green powdered material; and the preformed mold blank material from the fired powdered material is removed. Grooves can be formed by pressing non-sinterable lines into a green sheet prior to firing. A wave guide unit can be formed in the ceramic. A ceramic structure can be formed with fracture markings in the green powdered material.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 25, 1998
    Assignee: International Business Machines Corporation
    Inventor: Robert Wolff Nufer
  • Patent number: 5782954
    Abstract: The present invention provides for iron-based metallurgical powder compositions that contain nanoparticle metal or metal oxide flow agents useful for enhancing the flow characteristics of the compositions, particularly at elevated processing temperatures. The iron-based powder compositions can be advantageously blended with a flow agent such as a silicon oxide or iron oxide, or a combination of both, to provide a powder composition having improved flow properties and ejection release characteristics.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 21, 1998
    Assignee: Hoeganaes Corporation
    Inventor: Sydney Luk
  • Patent number: 5784681
    Abstract: A method of making a sintered article is disclosed, the method comprising the steps of mixing a prealloyed ferrous powder having a composition in the following ranges in weight %: carbon 0.7-2.7/chromium 3-6/cobalt 5-10/vanadium 0.5-3/molybdenum 6-11/silicon 0.3-2/ others total 2 max/balance iron and optionally up to 3 wt % tungsten, with an addition of carbon powder of at least 0.1 wt %, compacting said powder mixture by uniaxial pressing to form a green compact of near net shape, sintering said green compact in a continuous gas atmosphere sintering furnace at a temperature in the range from 1130.degree. C. to 1250.degree. C. such that the final density of said sintered material is greater than 95% of the theoretical density as a result of the sintering operation alone.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: July 21, 1998
    Assignee: Brico Engineering Limited
    Inventors: Charles Grant Purnell, Leslie John Farthing, David Holme
  • Patent number: 5773099
    Abstract: A dental care material comprising a titanium sintered body has no harmful effects on the human body and easily produces products with complicated shapes having a high level of strength. A mixture of titanium powder and an organic binder is injection molded and subjected to binder removal and sintering processes to form a bracket for orthodontic or dental implant materials. Pure titanium powder, with an average granule diameter of no more than 40 .mu.m, a carbon content by weight of no more than 0.3%, and an oxygen content by weight of no more than 0.6%, preferably is used to produce a titanium sintered body of combined carbon and oxygen content by weight of no more than 1.0%. Colored layers can be formed on the surface of the titanium sintered body using various methods as needed.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: June 30, 1998
    Assignees: Injex Corporation, Matsumoto Dental College
    Inventors: Naoki Tanaka, Hiroshi Ohtsubo, Michio Ito
  • Patent number: 5766394
    Abstract: A polycrystalline diamond layer is bonded to a cemented metal carbide substrate by this process. A layer of dense high shear compaction material including diamond or cubic boron nitride particles is placed adjacent to a metal carbide substrate. The particles of diamond have become rounded instead of angular due to high shear compaction in a multiple roller process. The volatiles in the high shear compaction material are removed and binder decomposed at high temperature, for example, 950.degree. C., leaving residual amorphous carbon or graphite in a layer of ultra hard material particles on the carbide substrate. The substrate and layer assembly is then subjected to a high pressure, high temperature process, thereby sintering the ultra hard particles to each other to form a polycrystalline ultra hard layer bonded to the metal carbide substrate.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: June 16, 1998
    Assignee: Smith International, Inc.
    Inventors: Nathan R. Anderson, Ronald K. Eyre, Madapusi K. Keshavan, Ghanshyam Rai
  • Patent number: 5746957
    Abstract: Parts from ceramic and/or metal powder(s) are shaped by a process that comprises the steps of (1) forming a mixture comprising ceramic and/or metal powder(s), a gel-forming material chosen from the class of polysaccharides known as "agaroids", a gel-forming solvent, and a gel strength enhancing agent, and said mixture being formed in a blender that provides a shearing action and being heated to raise the temperature of the mixture to about 70.degree. C. to 100.degree. C.; and (2) molding the mixture at a temperature sufficient to produce a self-supporting structure comprising the powder and gel. The parts exhibit excellent green strength and are rapidly fired without cracking, distortion or shrinkage problems.
    Type: Grant
    Filed: February 5, 1997
    Date of Patent: May 5, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Anthony Fanelli, Mohammad Behi, Clifford Palmer Ballard, Jr., Joan V. Burlew
  • Patent number: 5738817
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: April 14, 1998
    Assignee: Rutgers, The State University
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren
  • Patent number: 5737683
    Abstract: In a process for producing a metallic shaped part by processing an injection-molding composition, wherea. the injection-molding composition is processed to give the shaped part andb. a part of the binder present in the shaped part is removed at from 90.degree. to 600.degree. C. andc. the shaped part thus obtained is sintered,the shaped part is sintered on a support which has approximately the contour of the finished shaped part, with the contour of the support being essentially maintained during the sintering process.
    Type: Grant
    Filed: September 13, 1995
    Date of Patent: April 7, 1998
    Assignee: BASF Aktiengesellschaft
    Inventor: Hans-Josef Sterzel
  • Patent number: 5734959
    Abstract: The invention is directed to a method of forming an implant having a porous surface using an organic binder compound to enhance the bonding between the porous surface layer and implant. Preferably, the binder is formed from a water-soluble protein that carbonizes during the sintering process to alloy with the metal of the porous surface layer. The porous surface layer may be in the form of beads or of fiber metal and can be preformed to fit with an implant or formed over the surface of the implant.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: March 31, 1998
    Assignee: Zimmer, Inc.
    Inventors: Steve Krebs, Clarence Panchison, H. Ravindranath Shetty
  • Patent number: 5723083
    Abstract: A method for forming parts from inorganic particulate materials is diclosed. The method utilizes a two-component binder composition which is removable at a faster rate than conventional binder compositions, thereby reducing the formation of voids and cracks that occur during binder removal. No toxic materials are required and the method does not rely on solvents. The method may be used with ceramics, metals, and cermets.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: March 3, 1998
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Richard Anthony Einhorn
  • Patent number: 5722032
    Abstract: Method of making pole segment for a Lundell-type AC generator rotor from a mixture of ferromagnetic particles and a fugitive binder where the teeth of the rotor are molded concurrently with the base of the rotor but from a mixture of particles which is different from the mixture used to mold the base. Thereafter the segment is fired to remove the binder and sinter the metal particles together.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 24, 1998
    Assignee: General Motors Corporation
    Inventor: David Earl Gay
  • Patent number: 5714700
    Abstract: This invention provides a self-lubricating composite material which has excellent strength and oxidation resistnce at a high temperature and can be used in air and in vacuum, and a production method thereof, the composite material is a Cu--Ni--Sn type composite sintered body containing 20 to 70 vol % of mixed particles of graphite and WS.sub.2 as the solid lubricant components and having a porosity of not greater than 25 vol %, and a matrix is a two-phase alloy comprising Cu--Ni alloy particles and an Sn single phase or an Sn--Ni intermetallic compound dispersed uniformly in the grain boundary of the alloy particles and firmly bonding them, and this matrix encompasses the solid lubricant particles. The matrix consists of 5 to 40 wt % of Ni, 4 to 15 wt % of Sn and the balance of Cu and unavoidable impurities as the alloy composition.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: February 3, 1998
    Assignee: Nippon Steel Corporation
    Inventors: Tokuhiko Nishida, Shoichi Sekiguchi, Toru Ono, Yuko Tsuya
  • Patent number: 5698800
    Abstract: The present invention provides a mixed raw material which is capable of producing a porous metal sintered product having high porosity and fine and uniform pores. The mixed raw material for producing a porous metal sintered product is a composition including 0.05 to 10% of water-insoluble hydrocarbon organic solvent having 5 to 8 carbon atoms, 0.05 to 5% of surfactant, 0.5 to 20% of water-soluble resin binder, 5 to 80% of metallic powder having an average particle size of 0.5 to 500 .mu.m, optionally 0.1 to 40% of combustible agent for accelerating pore formation, and optionally, 0.1 to 15% of plasticizer consisting of at least one of polyhydric alcohols, oils and fats, ethers and esters, with a balance of water.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: December 16, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Toru Kohno
  • Patent number: 5697043
    Abstract: The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of:(a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide;(b) making a layer by depositing an amount of said powder slurry in a confined region;(c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and(d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: December 9, 1997
    Assignee: Battelle Memorial Institute
    Inventors: Suresh Baskaran, Gordon L. Graff
  • Patent number: 5695708
    Abstract: Three-dimensional modeling method and apparatus for receiving information with respect to a three-dimensional object to be formed and for forming a three-dimensional physical object through the use of two building materials and a third filling material. The first building material is typically a photopolymer. The second building material has at least one of the following characteristics: elastomeric properties, engineering plastic thermoset properties, is suitable for lost wax casting, is impregnated with metallic materials, is impregnated with ceramic material, or is sinterable. The filling material is typically a support material to provide structural support to the model during building.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: December 9, 1997
    Assignee: Cubital Ltd.
    Inventors: Michael Karp, Herbert Meningher, Yehuda Baron
  • Patent number: 5689796
    Abstract: The method of the invention is concerned with the manufacture of a molded copper-chromium family metal based alloy article which involves the steps of injection-molding a mixture of copper powder, a chromium family metal powder, an iron family metal powder and a thermoplastic organic binder made up of a polymer binder and low molecular binder in a ratio by volume of 5:1 to 1:1, dewaxing a molded body formed by the injection-molding by heating in a reducing atmosphere, and then sintering the dewaxed molded body at 1,100.degree. to 1,450.degree. C. in a reducing atmosphere. According to this method, molded articles having a high dimensional accuracy and high density can be provided.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: November 18, 1997
    Assignees: Citizen Watch Co., Ltd., Toho Kinzoku Co., Ltd.
    Inventors: Takao Kasai, Naoto Ogasawara, Naoyoshi Akiyoshi, Takeo Hamada
  • Patent number: 5678165
    Abstract: A plastically deformable aqueous mixture capable of being shaped into a body, the mixture being composed of any one or combination of ceramic, glass-ceramic, glass, molecular sieve, carbon, or metal powders, cellulose ether organic binder, water insoluble hydrophobic polymer co-binder having an average molecular weight of at least about 8,000, plasticizer, and water. A method of making a body which involves mixing the above components in a high shear mixer at a temperature of about 30.degree. C. to 70.degree. C. to form a homogeneous mixture, extruding the mixture at a temperature of about 30.degree. C. to 70.degree. C. into a green body, followed by drying and firing to produce the product body.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: October 14, 1997
    Assignee: Corning Incorporated
    Inventor: Shy-Hsien Wu
  • Patent number: 5667742
    Abstract: The present invention relates to novel methods for shaping a filler material into a porous preform and subsequently filling at least a portion of the porous preform with a second material to form a composite body. Specific aspects of the invention include novel combinations of materials to form the preform in combination with novel processing techniques for shaping the combinations of materials into a porous preform.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: September 16, 1997
    Assignee: Lanxide Technology Company, LP
    Inventors: Ratnesh Kumar Dwivedi, Thomas James Henderson, David Francis Friel
  • Patent number: 5666631
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: September 9, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5665289
    Abstract: A new class of binders for binding finely divided inert inorganic molding particles when shaped into objects by known mechanical shaping techniques such as injection molding. The novel binders are solid polymer solutions containing a major fraction of a low molecular weight solid relatively non-volatile chemical as solvent in which is substantially dissolved a minor fraction of at least one high molecular weight solid polymer. The solid polymer solution binders when molten are homogeneous solutions and can be readily uniformly mixed with the usual inorganic molding particles into a readily flowable mixture which can be shaped and solidified. When solidified, the polymer and solid chemical remain a substantially homogeneous solution without appreciable phase separation.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: September 9, 1997
    Assignee: Chang I. Chung
    Inventors: Chan I. Chung, Miao Yong Cao
  • Patent number: 5655209
    Abstract: Process for producing multilayer ceramic substrates using greensheet technology and thin dielectric ceramic greensheets for miniaturization purposes. The process avoids the screening of the thin greensheets by forming self-supporting fusible particulate metal electrode layers, interposing them with the thin greensheets and sintering the assembly to form the multilayer substrates such as integrated capacitors.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: August 5, 1997
    Assignee: International Business Machines Corporation
    Inventors: Jon Alfred Casey, John Paul Gauci, Dinesh Gupta, Robert Anthony Rita, Robert J. Sullivan
  • Patent number: 5649277
    Abstract: An apparatus and process for the free-forming manufacture of three-dimensal components. A powder-binder mixture, or a material with a high melting point, is plasticized or made molten, by raising the temperature inside a process chamber. The resulting molten material is discharged under pressure through a nozzle which is arranged at the end of the process chamber. The material inside the process chamber is deposited in layers. The processing direction and processing speed of the nozzle are programmed. An embodiment of the invention is disclosed in which a non-molten powder is deposited and supported by the deposition of a second powder alongside the non-molten powder.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: July 15, 1997
    Assignee: Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Mathias Greul, Ewald Staskewitsch, Wilhelm Steger, Theo Pintat, Martin Geiger, Klaus Melchior
  • Patent number: 5641920
    Abstract: Provided is a powder and binder system for manufacturing sintered parts from particulate material, and a method of injection molding parts for sintering. The particulate material includes ceramic, metallic and intermetallic powders. Preferably, selected powder particles are coated with one or more additives depending on their shape and surface chemistry to create a powder system. The additives may include antioxidants, coupling agents, surfactants, elasticizing agents, dispersants, plasticizer/compatibilizers and lubricants. The surface active additives are designed to improve the interface between the powder and the binder. The powder system may be mixed or compounded with a binder system in an inert atmosphere to form a powder and binder system, or feedstock, for powder molding. The binder system, may contain one or more components which are removed prior to the sintering the powder. The powder and binder system may also be molded about an expendable core which is extracted prior to sintering.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: June 24, 1997
    Assignee: Thermat Precision Technology, Inc.
    Inventors: Karl Frank Hens, Joseph A. Grohowski, Jr.
  • Patent number: 5613183
    Abstract: The disclosure relates to a method of binder removal from a green body before sintering or the like wherein the green body is initially heated to a temperature above the melting or flow point of the binder to liquify the binder and, at the elevated temperature, a small portion of the green body is brought into intimate contact with a non-supporting porous body of lower capillarity potential for the liquid binder. The liquid is drawn from all parts of the green body to the region of contact between the porous body and the green body and enters the body of lower capillarity potential preferentially, removing liquid from the green body through the surface of the green body only at said region of contact. The draining is continued with or without further increase in temperature until the green body is opened or becomes permeable.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 18, 1997
    Assignee: Witec Cayman Patents Limited
    Inventor: Raymond E. Wiech, Jr.
  • Patent number: 5604919
    Abstract: The preferred sintered parts made of oxygen-sensitive, non-reducible powders and their production by injection-molding are distinguished by the powders used being freed of their oxide layer by attritor milling in a water-free organic solvent, in the presence or absence of an additional reductant, the oxide particles being removed if necessary by filtration or screening in the presence of the organic solvent, the oxide-free powder being mixed as suspension with a polyacetal as binder under a protective gas, the organic solvent being distilled off, the mixture of powder and polyacetal being heated above the melting point of the polyacetal and being compounded to give a homogeneous composition, the granular material thus obtained being processed in an injection-molding machine made inert with argon to give shaped bodies, the shaped bodies being freed of binder under the action of oxalic acid in a closed ceramic container which nevertheless allows pressure equilibration under protective gas at atmospheric pressur
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: February 18, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Josef Sterzel, Hans Wohlfromm
  • Patent number: 5603071
    Abstract: Disclosed is a method of preparing a cemented carbide or a cermet alloy by mixing and kneading cemented carbide powder or cermet alloy powder with an organic binder, shaping this mixed powder into a prescribed configuration by an injection molding method and thereafter removing the organic binder from this compact and sintering the same, in order to obtain a dense alloy. Removal of the organic binder is performed in a first step in an inert gas atmosphere as a first removal step, and then continued in a second step in a vacuum of not more than 1 Torr. In the first removal step, the pressure is held in excess of the atmospheric pressure, to prevent the formation of imperfections in the compact. After continuous pores are formed in the interior of the compact, the atmosphere pressure is brought close to a vacuum, thereby facilitating the evaporation of gas from the surface and desorption of gas generated in the interior of the compact.
    Type: Grant
    Filed: April 4, 1995
    Date of Patent: February 11, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuyuki Kitagawa, Toshio Nomura
  • Patent number: 5602197
    Abstract: Thermoplastic binder compositions comprising a high molecular weight polymer component and a molten wax component are compounded with sinterable ceramic or other inorganic powders. Upon cooling, a thermally reversible gel is formed in the binder by the gelation of the polymer in the molten wax. Ceramic batches comprising these binders behave as shear-thinning and thermally reversible gels. They exhibit substantially improved dewaxing performance and, preferably, extensibility sufficient for sheet reforming processes.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: February 11, 1997
    Assignee: Corning Incorporated
    Inventors: Ronald E. Johnson, Jean M. News
  • Patent number: 5594931
    Abstract: A sintered hardmetal (cemented tungsten carbide) product has a core made of a first grade of cobalt or nickel bonded cemented tungsten carbide with a surface layer of a second grade of distinctively different cobalt or nickel bonded cemented tungsten carbide. The first grade, or core, is generally a relatively tough (impact resistant or shock resistant) grade of cobalt or nickel bonded hardmetal while the surface layer is a relatively hard (wear resistant) grade of cobalt or nickel bonded hardmetal. The surface layer may, however, be designed to provide corrosion resistance or crater resistance to the article. If desired, multiple layers can be provided with gradient layers included between the core and surface layer. Typical uses of such layered composite carbide articles are as tool materials such as cutting tools or cutting tool inserts, mining tools or wear parts of any design typically manufactured in the cemented carbide industry.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 14, 1997
    Assignee: Newcomer Products, Inc.
    Inventors: Jack Krall, Rodger Plyler
  • Patent number: 5590383
    Abstract: A porous membrane produced by preparing a slurry made from at least one micropyretic substance and at least one liquid carrier. The slurry is dried into a green form having a desired geometric configuration. Combustion of the green form produces the porous membrane.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: December 31, 1996
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Jainagesh A. Sekhar, James J. Liu, Naiping Zhu
  • Patent number: 5590387
    Abstract: Metal and ceramic sintered bodies and coatings are produced using a combination of:(a) nanocrystalline metal or ceramic powder wherein less than 1% of the individual particles have a deviation of more than 40%, and no individual particles have a deviation of more than 60%, from the average grain size, and(b) at least one low molecular-weight organic compound having at least one functional group that can react and/or interact with groups present on the surface of the powder particles, the materials (a) and (b) being dispersed in water and/or a polar organic solvent as dispersion medium.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: December 31, 1996
    Assignee: H. C. Starck, GmbH & Co, KG
    Inventors: Helmut Schmidt, Rudiger Nass, Mesut Aslan, Sener Albayrak, Ertugrul Arpac, Theo Konig, Dietmar Fister