Addition Of Fugitive Material Patents (Class 419/36)
  • Patent number: 5585428
    Abstract: The invention relates to(1) a method of preparing sintered shapes, comprising the steps of forming a green body from a mixture comprising (A) a major amount of at least one inorganic powder with (B) at least one reaction product of a alkanol-amine with a hydrocarbyl-substituted carboxylic acylating agent provided that when the hydrocarbyl group of the acylating agent contains less than 40 carbon atoms then the carboxylic acylating agent is a polycarboxylic acylating agent; and (2) sintering the body. Sintered shapes made from the methods of the present invention have relatively high fired densities and small uniform grain sizes; and low porosity. The reaction products of the present invention help disperse the inorganic powder. These reaction products also improve deagglomeration of the inorganic powder and help prevent reagglomeration of the powder.
    Type: Grant
    Filed: August 1, 1995
    Date of Patent: December 17, 1996
    Assignee: The Lubrizol Corporation
    Inventors: Robert E. Quinn, W. Michael Burk
  • Patent number: 5581798
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight % binder phase with extremely good properties at intermittent machining of materials difficult to machine. The method relates to the use of a raw material comprising a complex cubic carbonitride containing the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.86.ltoreq.X.sub.IV .ltoreq.0.970.44.ltoreq.X.sub.C .ltoreq.0.55where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: December 3, 1996
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf Oskarsson
  • Patent number: 5579532
    Abstract: A composite jet engine compressor ring is made by casting a tape reinforced with ceramic fibers, winding the cast tape around a mandrel to form an unconsolidated ring, heating the ring to drive off binder, and pressing at a high temperature to form a unitary composite ring. Compression of the ring in an axial direction during hot pressing results in a desired axial spacing between adjacent fibers. The tape is preferably cast from a mixture of titanium base metal particles and a polyisobutylene binder dissolved in an organic solvent.
    Type: Grant
    Filed: June 16, 1992
    Date of Patent: November 26, 1996
    Assignee: Aluminum Company of America
    Inventor: Jon F. Edd
  • Patent number: 5574957
    Abstract: An improved method is disclosed for encasing an object in a shell or layer of outer material. The encased object and the outer material are formed from sinterable metal or ceramic particulate material. Both the object to be encased and the shell or encasement are formed by extrusion. Novel methods are disclosed by which the object and the outer material can be simultaneously formed by co-extruding the sinterable particulate materials, or by extruding the outer layer onto a formed object using the die assembly of the invention.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: November 12, 1996
    Assignee: Corning Incorporated
    Inventors: John M. Barnard, Ronald E. Johnson, Kathleen A. Wexell
  • Patent number: 5574959
    Abstract: A metal casing for a semiconductor device is manufactured by a powder metallurgy injection molding process which uses infiltration. The metal casing includes a base member and an enclosure member arranged on the base member. The base member and the enclosure member are formed of an alloy including 20 to 50 percent by volume of copper, equal to or less than 1 percent by weight of nickel and remainder of tungsten or molybdenum. The metal casing is manufactured as a net-shape product by a process which includes the steps of mixing tungsten powder and nickel powder having average particles sizes equal to or less than 40 .mu.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: November 12, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masanori Tsujioka, Junzoh Matsumura
  • Patent number: 5568653
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at semifinishing operations at turning. The method relates to the use of a raw material consisting of a complex cubic carbonitride comprising the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.85.ltoreq.X.sub.IV .ltoreq.0.990.58.ltoreq.X.sub.C .ltoreq.0.69where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: October 22, 1996
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf Oskarsson
  • Patent number: 5561831
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at fine to medium coarse milling. The method relates to the use of a raw material consisting of a complex cubic carbonitride comprising the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.89.ltoreq.X.sub.IV .ltoreq.0.970.52.ltoreq.X.sub.C .ltoreq.0.61where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: October 1, 1996
    Assignee: Sandvik AB
    Inventors: Ake Ostlund, Rolf Oskarsson
  • Patent number: 5554338
    Abstract: The invention relates to a method of preparing a composite sintered body having inner and outer portions fitted with each other. The method includes the steps of: (a) preparing an inner powder compact; (b) preparing an outer powder compact; (c) fitting the inner and outer powder compacts with each other so as to prepare a composite powder compact; and (d) sintering the composite powder compact so as to prepare the composite sintered body. The inner and outer powder compacts are respectively selected such that, during the step (d), the amount of growth of the inner powder compact becomes greater than that of the outer powder compact. Each of the inner and outer composite powder compacts is made of one member selected from the group consisting of a wax-type segregation prevention powder mixture and a metal-soap-type segregation prevention powder mixture. At least one of the inner and outer composite powder compacts is made of the wax-type segregation prevention powder.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: September 10, 1996
    Assignees: Nissan Motor Co., Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Hiroshi Sugihara, Hiroyuki Ishikawa, Tsutomu Uemura, Akira Fujiki, Hiromasa Imazato, Shinichi Umino
  • Patent number: 5552109
    Abstract: This invention relates to a process of forming a sintered article of powder metal comprising blending graphite and lubricant with a pre-alloyed iron based powder, pressing said blended mixture to shape in a single compaction stage sintering said article, and then high temperature sintering said article in a reducing atmosphere to produce a sintered article having a density greater than 7.4 g/cc.
    Type: Grant
    Filed: June 29, 1995
    Date of Patent: September 3, 1996
    Inventors: Rohith Shivanath, Peter Jones, Danny T. D. Thieu
  • Patent number: 5552108
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at extreme fine machining when turning with high cutting rates. The method relates to the use of a raw material comprising a complex cubic carbonitride containing the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.86.ltoreq.X.sub.IV .ltoreq.0.990.74.ltoreq.X.sub.C .ltoreq.0.83where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: September 3, 1996
    Assignee: Sandvik AB
    Inventors: Gerold Weini, Rolf Oskarsson
  • Patent number: 5531958
    Abstract: The present invention provides a method of increasing debinding rates in Powder Injection Molding of metal and ceramic parts by use of a catalytic binding system.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: July 2, 1996
    Assignee: BASF Corporation
    Inventor: David C. Krueger
  • Patent number: 5531956
    Abstract: A method for producing a ribbed electrode for a fuel cell including the steps of depositing a suspension of a powdered electrode metal onto the face of a substantially flat porous electrode metal substrate, forming a plurality of raised structures on the face of the electrode, and sintering the electrode.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: July 2, 1996
    Assignee: Institute of Gas Technology
    Inventors: Estela T. Ong, Nellie Burton-Gorman
  • Patent number: 5527624
    Abstract: The invention relates to a process for preparing sintered shapes, comprising the steps of:(1) forming a green body from a mixture comprising a major amount of at least one inorganic powder; and one or more additives selected from the group consisting of: (A) at least one reaction product of a hydroxy compound with a carboxylic acylating agent; (B) at least one Mannich reaction product; (C) at least one hydrocarbyl-substituted amine; (D) at least one aminophenol; (E) at least one reaction product of a nitrophenol and amino compound; (F) at least one basic nitrogen-containing polymer; (G) at least one carboxylic acylating agent; (H) at least one aromatic acid or derivative thereof; (I) at least one aromatic oxime; and (J) at least one overbased or gelled overbased metal salt of an acidic organic compound provided that when the carboxylic acylating agent is a hydrocarbyl-substituted carboxylic acylating agent and the hydrocarbyl group contains less than an average of 40 carbon atoms, then the carboxylic acylatin
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: June 18, 1996
    Assignee: The Lubrizol Corporation
    Inventors: William Higgins, Fred E. Heller, Reed H. Walsh, Ralph E. Kornbrekke, Stephen A. DiBiase
  • Patent number: 5525291
    Abstract: The invention relates to a method of forming honeycomb structures having cross-directional flow channels, such as cross-flow cellular bodies using a novel movable die which is adapted to move while extrudate is passing through the die, thus causing the cells or channels to alternate between straight-through flow, Z-flow, L-flow, U-flow or other similar cross-directional flow patterns. This novel die arrangement may be comprised of either a single movable die body, or a plurality of die parts or sections all of which are independently movable relative to the other.
    Type: Grant
    Filed: November 17, 1994
    Date of Patent: June 11, 1996
    Assignee: Corning Incorporated
    Inventor: Dell J. St. Julien
  • Patent number: 5525293
    Abstract: Disclosed is a powder metallurgical mixed powder capable of preventing the defective dispersion, that is, the segregation of physical property improving powders and a lubricant powder without reduction in lubricity, and of suppressing the generation of dust upon handling of powders; and a powder metallurgical binder capable of realizing such a mixed powder. The binder including a copolymer containing monomer components of ethylene and propylene, which may be combined with a liquid binder having a specified composition as needed, is added to a powder metallurgical raw powder.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: June 11, 1996
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Akihiko Kagawa, Kazuhisa Fujisawa, Hironori Suzuki, Masahiro Murakami, Kunihiro Yoshioka, Hirotaka Hanaoka
  • Patent number: 5523049
    Abstract: A heat sink composed of thermally conductive particles dispersed in a monolithic structure having a continuous microstructure; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with thermally conductive particles, debinding the molded heat sink and densifying the debound heat sink into a monolithic structure.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: June 4, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5520878
    Abstract: An unsintered aluminum nitride body including:(a) 1 to 5 weight percent of a vitreous solid of boria, alumina, and calcia in the proportions of (1) boria between 3 and 25 weight percent, (2) alumina between 10 and 50 weight percent, and (3) calcia between 40 and 80 weight percent; and(b) aluminum nitride powder as the balance of the aluminum nitride body.The invention further relates to a method of forming the unsintered aluminum nitride body and then sintering it at a temperature between 1550 and 1650 degrees Centrigrade so as to form a dense, thermally conductive aluminum nitride body.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: May 28, 1996
    Assignee: International Business Machines Corporation
    Inventors: Peter R. Duncombe, Subhash L. Shinde, Takeshi Takamori
  • Patent number: 5514327
    Abstract: Apparatus for use in cooling an integrated circuit structure. The apparatus includes a heat sink having a first portion configured for thermal engagement with an integrated circuit device and a second portion configured for the dissipation of heat into an ambient fluid, such as air. The heat sink is made from a powdered metal which, in one preferred embodiment, includes copper. The heat sink may be formed from the plurality of discrete layers, each layer having a button projecting from one surface, and a depression formed in an opposing surface. The depression is configured to receive a projecting button portion from another layer. In an alternative embodiment the heat sink includes a plurality of plugs projecting from the generally flat surface.
    Type: Grant
    Filed: December 14, 1993
    Date of Patent: May 7, 1996
    Assignee: LSI Logic Corporation
    Inventor: Mark R. Schneider
  • Patent number: 5512236
    Abstract: A process of coining sintered articles of powder metal comprising: blending carbon, ferro manganese, and lubricant with compressible elemental iron powder, pressing the blended mixture to form the articles, high temperature sintering of the articles in a reducing atmosphere and then coining the sintered articles to final shape so as to narrow the tolerance variability of coined articles and substantially eliminate secondary operations.
    Type: Grant
    Filed: August 25, 1994
    Date of Patent: April 30, 1996
    Assignee: Stackpole Limited
    Inventors: Peter Jones, Roger Lawcock
  • Patent number: 5503795
    Abstract: A process is disclosed for forming a pressed metal part in which a preform is inserted into a pressed metal mold. The mold is then filled with powdered metal. The powdered metal and preform are compacted to create a compacted metal part wherein the preform defines an adjacent volume next to the compacted metal part. The compacted metal part is ejected from the mold and sintered to create a sintered metal part. The preform is removed by the sintering step in such a way that the adjacent volume becomes a void region. The preform can be formed of copper so that, upon sintering, the preform is removed from the sintered metal part through infiltration. Alternatively, the preform can be formed of zinc so that, upon sintering, the preform is vaporized and thereby removed from the sintered metal part. The void region created by the removal of the preform can be an undercut, a taper, an annular groove, a thread or an internal cavity.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: April 2, 1996
    Assignee: Pennsylvania Pressed Metals, Inc.
    Inventor: Theodore R. Hubbard
  • Patent number: 5490968
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: February 13, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5482671
    Abstract: A method is provided for manufacturing interlocking parts, in which at least one part is manufactured by powder injection molding. To compensate for the amount of contraction of one of the parts manufactured by powder injection molding and, if desired, to produce an additional clearance, a separation layer of plastic material is applied between the interlocking parts. After the injection process to form the separation layer, the separation layer and the binder are removed by a binder-removing and sintering process step. The method is also applicable to powdered metal extrusion for manufacture of double-layered metal parts.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: January 9, 1996
    Assignee: fischerwerke, Artur Fischer GmbH & Co. KG
    Inventor: Wilfried Weber
  • Patent number: 5480469
    Abstract: A powder metallurgical mixture and a method for the production thereof are described. In addition to powders of base metal and additives, such as graphite, Cu, Ni, Mo, MnS, Fe.sub.3 P etc and, optionally, a lubricant, the mixture comprises a binder which is at least one diamide wax of the general Formula I: ##STR1## wherein R.sub.1 and R.sub.2 are the same or different and represent a straight, saturated, optionally OH-substituted alkyl group having 13-24 carbon atoms, Q is ##STR2## and n is 1-10, the binder being present in molten and subsequently solidified form for binding together the powder particles of the additives with the base metal particles. When producing the mixture, the binder is added to the mixture, and a homogeneous mixture is provided by mixing, the homogeneous mixture is heated to about 90.degree.-160.degree. C. during mixing and melting of the binder, and subsequently the mixture is cooled during mixing, until the binder has solidified.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: January 2, 1996
    Assignee: Hoganas AB
    Inventors: Helge Storstrom, Bengt Floren
  • Patent number: 5480728
    Abstract: A conductive contact for use with metal oxide superconductors is described. The conductive contact comprises a metal contact which is attached by a diffusion bonding means to a superconductive metal oxide substrate. In a preferred embodiment, diffusion bonding means comprises a metal paint which includes metal particles and an organic binder which is heated to pyrolized the organic binder and form metallic diffusion bonds to the metal contact and metal oxide substrate. The invention also comprises a method for forming the conductive contact which includes selecting the superconducting metal oxide substrate, coating the substrate with a metal paint, placing the metal contact in touching contact with the metal paint and heating the combination of materials described above to pyrolized the organic binder and coalesce the metal particles.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 2, 1996
    Assignee: General Electric Company
    Inventor: John E. Tkaczyk
  • Patent number: 5472661
    Abstract: Method of distributing and retaining insoluble additive particles uniformly throughout a mass of moldable metal particles. The additive particles are suspended in a solution of a polymeric binder and spray-coated onto the metal particles. When the solvent evaporates, the additives remain glued to the metal particles by the binder.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: December 5, 1995
    Assignee: General Motors Corporation
    Inventor: David E. Gay
  • Patent number: 5470525
    Abstract: Tantalum anode pellets or tantalum powders are treated to remove carbon content (mostly attributable to binders used in pressing the powders to pellet form and/or sintering of the pellets) by an aqueous leach at 50.degree.-200.degree. F. in lieu of the conventional complex distillation/decomposition methods.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: November 28, 1995
    Assignee: H. C. Starck, Inc.
    Inventors: Terrance B. Tripp, Malcolm Shaw
  • Patent number: 5468445
    Abstract: A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: November 21, 1995
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Renuka S. Divakaruni, Govindarajan Natarajan, Srinivasa S. N. Reddy, Manfred Sammet
  • Patent number: 5466311
    Abstract: A method of manufacturing an Ni--Al intermetallic compound matrix composite comprising steps of a) providing an aluminum powder, b) providing a reinforced material, c) providing a reducing solution containing a reducing agent and nickel ions to be reduced, d) adding the aluminum powder and the reinforced material into the reducing solution, and e) permitting the reducing agent to reduce the nickel ions to be respectively deposited on the aluminum powder and the reinforced material. Such method permits the Ni--Al, Ni--Al+B intermetallic compound matrix composite to be produced inexpensively/efficiently/fastly.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: November 14, 1995
    Assignee: National Science Council
    Inventors: Chen-Ti Hu, Wen-Chih Chiou
  • Patent number: 5460640
    Abstract: A fully dense ceramic-metal body including 40-88 v/o of an oxide hard phase of, in v/o of the body, 4-88 v/o M-aluminum binary oxides, where the binary oxide has a C-type rare earth, garnet, .beta.-MAl.sub.11 O.sub.18, or perovskite crystal structure, and M is a lanthanide or indium, and 0-79 v/o .alpha.-alumina; about 10-50 v/o of a hard refractory carbide, nitride, or boride as a reinforcing phase; and about 2-10 v/o of a dispersed metal phase combining Ni and Al mostly segregated at triple points of the microstructure. The preferred metal phase contains a substantial amount of the Ni.sub.3 Al ordered crystal structure. In the preferred body, the reinforcing phase is silicon carbide partially incorporated into the oxide grains, and bridges the grain boundaries. The body including a segregated metal phase is produced by densifying a mixture of the hard phase components and the metal component, with the metal component being present in the starting formulation as Ni powder and Al powder.
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: October 24, 1995
    Assignee: Valenite Inc.
    Inventor: Sergej-Tomislav Buljan
  • Patent number: 5455000
    Abstract: The invention provides a method for in-situ powder metallurgy processing of a functionally gradient material (FGM) which uses a preceramic polymer binder system with the metal and/or ceramic powders used to produce the intermediate layers of the composite. The invention also provides a method for controlling shrinkage of the functionally gradient material during processing while still preserving the desired density of the intermediate layers by controlling the preceramic polymer binder content within the functionally gradient material.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: October 3, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: Dietmar Seyferth, Pawel Czubarow
  • Patent number: 5447681
    Abstract: A method for manufacturing a metal graphite brush comprises steps of preparing natural graphite powders of 60-70 wt %, electrolytic copper powders of 30-40 wt %, molybdenum disulfide and lead of 2.5 wt % and the mixed resin of novolak phenol resin and furfural resin powders of 1-15 wt % which are adhesives, wet-mixing graphite powders with adhesives, pulverizing mixed powders to diameters of less than 200 .mu.m, press-molding all the powders under a pressure of 2-3 ton/cm.sup.2 and heating at a temperature 700.degree. C., and attaching a lead wire thereto, simultaneously, wherein the average particle distribution of the powders is 27 .mu.m. The compound ratio of graphite powders: copper powders: molybdenum disulfide: lead is 62.5 wt %: 35 wt %: 1.5 wt %: 1.0 wt %, the adhesives comprising the mixed resin of novolak phenol resin and furfural resin by 50:50 is added by a weight ratio of 7.5 wt % to the graphite powders.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: September 5, 1995
    Assignee: Mando Corporation
    Inventors: Chung Tai Seung, Kim Seong Soo, Lee Jae Sung
  • Patent number: 5445786
    Abstract: A heat-resistant metallic monolith manufactured by forming metal powders into a honeycomb structure and by sintering the structure, a heat-resistant metal oxide coated on the surface of the cell walls and that of the pores thereof. Such a heat-resistant metallic monolith is manufactured by mixing metal powders, an organic binder and water to prepare a mixture, by forming the mixture into a shape of a desired honeycomb configuration, by sintering the shape in a non-oxidizing atmosphere at a temperature between 1000.degree. and 145.degree. C. and then by coating a heat-resistant metal oxide on a surface of the cell walls and that of the pores of the obtained sintered body.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: August 29, 1995
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Harada, Hiroshige Mizuno, Fumio Abe, Tsuneaki Ohashi
  • Patent number: 5445789
    Abstract: A plunger charged as an electrode is received in a trough charged as a counter-electrode in order to heat material in the trough above the annealing temperature of metal material or the sintering temperature of ceramic-material. The trough and plunger are situated in a vacuum chamber separated from a condenser and pump stand by a valve. The plunger can be retracted into a cover of the chamber by a hydraulic drive on the cover. The cover, drive, and plunger are removable from the lower part of the chamber as a unit.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: August 29, 1995
    Assignee: Leybold Durferrit GmbH
    Inventors: Erwin Wanetzky, Franz Hugo
  • Patent number: 5445788
    Abstract: Complex-shaped parts can be produced from powders, for example metal-matrix composites, by injection molding using a mixture of the powders with a suitable binder. The binder must be removed from the powder mixture before the final thermal treatment of the so-called green part. The present invention proposes to remove the binder by surrounding a cast part with a layer of a particulate material and to subject the cast part to isostatic pressure through the surrounding layer which can thus act as an absorbent. The surrounding layer is removed after the isostatic pressing and the part can be subjected to sintering. The method is suitable for example for aluminum-ceramic powder mixtures.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: August 29, 1995
    Assignee: National Research Council of Canada
    Inventors: Sylvain Turenne, Paul-Emile Mongeon
  • Patent number: 5441694
    Abstract: In a method for preparing a high .alpha.-type silicon nitride powder by adding to and mixing with metallic silicon powder a copper catalyst and nitriding the mixture in a non-oxidizing gas atmosphere containing nitrogen or ammonia at 1,000.degree. to 1,500.degree. C., the amount of copper catalyst is limited to from 0.05 % to less than 0.5 % by weight of copper based on the weight of the metallic silicon. There is obtained silicon nitride powder of high purity at low cost and high efficiency since the copper catalyst can be efficiently removed from the silicon nitride powder through conventional acid treatment.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: August 15, 1995
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masanori Fukuhira, Hirofumi Fukuoka, Yoshiharu Konya, Masaki Watanabe
  • Patent number: 5437832
    Abstract: An improved process is provided for preparing a porous ceramic product. By this process, a mixture of metal grains, ceramic grains, and short glass fibers is molded by a slurry casting method and dried and then sintered by heating in an oxidizing or nitriding gaseous atmosphere.
    Type: Grant
    Filed: November 5, 1993
    Date of Patent: August 1, 1995
    Assignee: Sintokogio, Ltd.
    Inventors: Masato Imamura, Kiichi Nakajima, Akira Yanagisawa
  • Patent number: 5429792
    Abstract: An improved metallurgical powder composition capable of being compacted at elevated temperatures is provided comprising an iron-based powder, an alloying powder, a high temperature compaction lubricant, and a binder. The selected binders of this invention permit the bonded powder composition to achieve increased compressibility in comparison to unbonded powder compositions while reducing dusting and segregation of the alloying powder.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: July 4, 1995
    Assignee: Hoeganaes Corporation
    Inventor: Sydney Luk
  • Patent number: 5429790
    Abstract: The object of the present invention is to provide a method for preparing small-size and large capacity multilayer dielectric powder condensers capable of employing as the inner electrode materials inexpensive copper alloys or nickel alloys.The method for preparing multilayer dielectric powder condensers according to the present invention comprises steps of:providing a fine dielectric powder having a dielectric film on the surface of a metal powder or a semiconductor powder;preparing a pasty material by kneading the dielectric powder with an organic binder;forming a filmy sheet from the pasty material;applying a paste containing a metal powder for forming electrode on the surface of the filmy sheet and drying the applied sheet;piling a plurality of the sheets;placing the piled sheets between thin glass sheets made from a paste prepared by kneading a glass powder and an organic binder and pressing them together; andsubjecting the piled and pressed sheets to a heat-treatment.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: July 4, 1995
    Inventor: Yasunori Takahashi
  • Patent number: 5427734
    Abstract: The object of the invention is to provide a manufacturing method of a complex shaped R--Fe--B type sintered anisotropic magnet improved the moldability of injection molding and preventing the reaction between R ingredients and binder and controlled the degradation of magnetic characteristics due to residual carbon and oxygen. Utilizing the R--Fe--B type alloy powder or the resin coated said alloy powder, and methylcellulose and/or agar and water, instead of the usual thermoplastic binder, it is mixed and injection molded. The molded body is dehydrated by the freeze vacuum dry method to control the reaction between R ingredients and of the R--Fe--B alloy powder and water; furthermore, by administering the de-binder treatment in the hydrogen atmosphere, and sintering it after the dehydrogen treatment, residual oxygen and carbon in the R--Fe--B sintered body is drastically reduced, improving the moldability during the injection molding to obtain a three dimensionally complex shape sintered magnet.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 27, 1995
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Masahiro Asano, Tsunekazu Saigo
  • Patent number: 5423899
    Abstract: A method for forming a sintered hard metal composite is provided in which unsintered nodules of a pre-blended hard metal powder of a first grade are uniformly dispersed into unsintered nodules of a pre-blended hard metal composite of a second grade. The pre-blended hard metal powders form a composite powder blend which is subsequently pressed and sintered to form the dispersion alloyed hard metal composite. A sufficient amount of pressing lubricant is provided to one of the pre-blended hard metal powders so that each of the hard metal powders shrinks at approximately the same rate relative to the application of pressure during the compacting process. The pressing lubricant is added to that hard metal powder which shrinks more during sintering.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: June 13, 1995
    Assignee: Newcomer Products, Inc.
    Inventors: Jack Krall, Anders Olsson
  • Patent number: 5418069
    Abstract: A formable composite magnetic flux concentrator is composed of about 65 to 90 percent ferromagnetic material, such as iron powder, and about 35 to 10 percent binder, the binder being a mixture of an epoxy and one or more catalysts. The concentrator is provided in a formable state as a putty-like body which can be worked into any desired shape dictated by the configuration of the induction heating coil used in a particular application.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: May 23, 1995
    Inventor: Thomas J. Learman
  • Patent number: 5415833
    Abstract: A method for forming molten carbonate fuel cell (MCFC) anodes by adjusting the reaction condition of pack cementation is disclosed. The method includes the steps of embedding a base metal sheet containing at least Ni in a pack containing alloy metal powder, an activator and a filler, pre-heating the pack to remove the organic material included in the base metal sheet, and maintaining the pack under a H.sub.2 /N.sub.2 atmosphere at a temperature of 500.degree. C. to 800.degree. C. for one to eight hours to form a Ni alloy. The method has a simplified procedure and is very useful to manufacture MCFC anodes having a very low creep deformation rate while porosity is in an appropriate range.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: May 16, 1995
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-jin Kweon, Hai-soo Chun, Ha-chull Chung, Je-hong Youn, Gwun-pil Park
  • Patent number: 5415830
    Abstract: The disclosure relates to a binder, and the method of formulating the said binder, which is suitable for shaping parts from metallic and/or ceramic particles by injection molding. The binder comprises materials that are mainly thermoplastics, each of which having a percentage that is determined by its thermogravimetric analysis (TGA) profile and a weight loss versus highest binder removal rate from a green body by progressive heating. The removal of this binder from the green body is performed within a much shorter period of time than those published in the prior art. An example binder comprises 40-70% HDPE, 18-30% Paraffin wax, 10-25% microcrystalline wax and 2-5% stearic acid. Another binder comprises 35-65% PP, 23-35% paraffin wax, 10-25% microcrystaline wax and 2-5% stearic acid.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: May 16, 1995
    Assignee: Advanced Materials Technologies Pte Ltd
    Inventors: Jian G. Zhang, Dunstan H. Peiris, Jun W. Zhao, Sow W. Loh
  • Patent number: 5413753
    Abstract: Methods of forming composite articles of superconducting materials and metal at ambient temperature by applying a mixture of metal and binder to a ceramic oxide preform to yield a coated preform which is then heat treated to provide composite articles of superconducting ceramic and metal.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: May 9, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: George E. Zahr
  • Patent number: 5405570
    Abstract: A method of preparing a durable air-permeable mold having dimensional accuracy and without cracks clue to the segregation of the ingredients of the aggregate and without a surface irregularity, which comprises compounding 100 parts by weight of an aggregate obtained by compounding metal powders with metal oxide powders in a weight ratio of 5:95 to 30:70, the metal of said metal oxide powders being the same as that of the metal powders, 80% or more of said metal powders and said metal oxide powders having grain sizes of 300 .mu.m or less, with 10 to 35 by weight of an auxiliary hardening material that is softened and melted during the sintering process, and 10 to 25 by weight of a binder that contains an evaporable component, mixing them to form a slurry mixture, pouring it in a pattern mold to obtain a mold, drying the thus-obtained mold, and sintering the dried mold in an oxidative atmosphere at a temperature of 600.degree. to 1200.degree. C.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: April 11, 1995
    Assignee: Sintokogio, Ltd.
    Inventors: Toyoji Fuma, Kazuyuki Nishikawa, Yojiro Hayashi, Naoshi Makiguchi, Takehiro Inagaki, Koji Nishioka, Mituo Kawaguchi
  • Patent number: 5405571
    Abstract: A fiber reinforced composite tape is made by casting a mixture comprising high temperature metal or intermetallic particles, substantially continuous ceramic fibers and a polymeric binder. The particles are preferably titanium alloy or titanium aluminide particles having a top size of greater than about 50 microns and the binder is preferably a polyisobutylene. The cast composite tape is combined with other tapes, heated in a vacuum to remove the binder and pressed at an elevated temperature and pressure to form a composite structure suitable for high temperature applications.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: April 11, 1995
    Assignee: Aluminum Company of America
    Inventors: William G. Truckner, Jon F. Edd
  • Patent number: 5403540
    Abstract: A method is presented for uniformly heating plastically deformable material, which comprises particles of electrically conducting matter. This method comprises inducing an electric current, or causing hysteresis loss within such material, by using electromagnetic radiation with frequency between about 50 Hertz and about 10 MegaHertz, to cause heating of the material.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: April 4, 1995
    Assignee: Corning Incorporated
    Inventors: Kevin R. Brundage, David L. Hickman, David F. Thompson
  • Patent number: 5403374
    Abstract: A watch exterior part is formed of cemented carbide or stellite alloy, and has a three-dimensionally curved as-sintered surface or a small hole with an as-sintered interior peripheral surface, or has a three-dimensionally curved polished surface obtained by polishing an as-sintered surface. The watch exterior part is manufactured by a method in which organic binder is milled into a material powder, and a molded body obtained by injection molding is subjected to a binder removing process and then sintered. By the manufacturing method, a watch exterior part formed of cemented carbide or stellite alloy has a high strength and a complicated configuration such as a three-dimensional curved surface and a small hole, without applying secondary machining operations such as discharge operations.
    Type: Grant
    Filed: May 28, 1992
    Date of Patent: April 4, 1995
    Assignees: Sumitomo Electric Industries, Ltd., Namiki Precision Jewel Co., Ltd.
    Inventors: Nobuyuki Kitagawa, Toshio Nomura, Yoichi Yaguchi, Hidehiro Uchiumi, Naoko Iwashimizu
  • Patent number: 5403544
    Abstract: A method for forming a wear surface on a metal substrate has a slurry which includes wear resistant particles, powdered steel, and binder system positioned on the metal substrate by retaining walls for a time sufficient for drying the slurry and forming a composite material of preselected thickness "T". The retaining walls are then removed and the substrate and the composite material are heated and passed through a rolling mill compressing the composite material.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: April 4, 1995
    Assignee: Caterpillar Inc.
    Inventors: Richard L. Adrian, James C. Henehan, Phillip J. Shankwitz
  • Patent number: 5403373
    Abstract: A hard sintered component of a cemented carbide or a stellite alloy having a complex three-dimensional shape and a small hole or the like and the high strength originally provided by the used material for making the component without any secondary working, is formed by injection molding a compact molding die having an inner mold surface roughness R.sub.max of not more than 3 .mu.m. Where a core pin is used the outer surface of the pin has a surface roughness R.sub.max of not more than 3 .mu.m. The compact is then sintered. The hard sintered component is composed of a cemented carbide or a stellite alloy. In such a hard sintered component, the surface of a complex three-dimensional shape such as a disc portion or a thin portion, or the inner surface of a small hole, is defined by a sintered surface which has a surface roughness R.sub.max of not more than 4 .mu.m.
    Type: Grant
    Filed: May 28, 1992
    Date of Patent: April 4, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuyuki Kitagawa, Toshio Nomura