Waste Gas Purifier Patents (Class 422/168)
  • Patent number: 8870735
    Abstract: The waste disposal system disclosed herein includes a chamber operated at high ampere and low voltage, the chamber configured to inject smoke on a stream of free radicals. In one implementation, the stream of free radicals is generated from a plasma igniter and the smoke is generated from waste products, such as hospital waste products.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 28, 2014
    Assignee: Strategic Environmental & Energy Resources, Inc.
    Inventor: Fortunato Villamagna
  • Patent number: 8871164
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment including: an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced; and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and a wet type electric dust collector for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 28, 2014
    Assignee: Mitsubushi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20140314648
    Abstract: Methods related generally to the removal of atmospheric pollutants from the gas phase, are provided, as well as related apparatus, processes and uses thereof. A single-stage air scrubbing apparatus is provided that includes at least one reaction vessel, at least one introduction duct, and a turbulence component, wherein a residence time is sufficient to allow the conversion of at least one atmospheric pollution compound to at least one other compound, molecule or atom. In some embodiments, the at least one atmospheric pollution compound comprises nitrogen oxide, sulfur oxide or a combination thereof. Additionally, methods of removing atmospheric pollution compounds from a waste gas stream are disclosed that include introducing a waste gas stream and at least one additional gas stream, mist stream, liquid stream or combination thereof into a single-stage air scrubbing apparatus at a flow rate sufficient to allow for conversion of the at least one atmospheric pollution compound.
    Type: Application
    Filed: January 7, 2013
    Publication date: October 23, 2014
    Inventors: Robert George Richardson, Roger Glenn Miller, Larry Kent Barnthouse
  • Patent number: 8865097
    Abstract: A flue-gas purification system includes a flue-gas cycling system, a reactor, and an absorbent adding system having at least a catalytic absorbent, wherein the catalytic absorbent is being gasified for reacting with the flue-gas in the reactor in a homogenous gas-gas phase reacting manner. Therefore, the purification system has fast reaction rate between the pollutants of the flue-gas and the catalytic absorbent, which is preferably ammonia, to efficiently remove pollutants, so as to effectively purify the flue-gas.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 21, 2014
    Inventors: Baoquan Zhang, Xiaoqing Zhang
  • Patent number: 8865082
    Abstract: A catalyst and method of forming the catalyst includes a catalyst body having hydrocarbon adsorber material and oxygen storage capacity material disposed thereon.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 21, 2014
    Inventors: David B. Brown, Wei Li
  • Publication number: 20140308175
    Abstract: A catalytic combustor (2) in a gas turbine engine (GT) includes a casing (54) for accommodating a catalyst carrier (10) therein, a catalyst retaining body (62) interposed between the casing (54) and the catalyst carrier (10) for retaining an outer peripheral surface of the catalyst carrier (10) to an inner peripheral surface of the casing (54) and also for preventing a gas (G2) from leaking in a downstream direction through an outer periphery of the catalyst carrier (10), a support material (64) disposed on a downstream side of the direction of flow of the gas to be treated in the catalyst carrier (10) for holding the catalyst carrier (10), and a downstream side regulating member (72) disposed on the downstream side of the catalyst retaining body (62) for avoiding a movement of the catalyst retaining body (62) in a direction of flow of the gas (G2).
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Yasushi DOURA, Masahiro OGATA
  • Patent number: 8858905
    Abstract: A system and a process for capture and absorption of sulfur dioxide and carbon dioxide by an ammonia method at normal pressure are disclosed.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: October 14, 2014
    Assignee: Anhui Huaihua Co. Ltd.
    Inventors: Jingyao Xu, Lin Chen, Mingxu Zhang, Song Han, Chuanhao Su, Fanfel Min, Hanxu Li
  • Patent number: 8858890
    Abstract: The aim of the invention is to devise a flue gas purification system which allows the use of only one absorber even for large systems. The flue gas purification system according to the invention comprises a fluidized-bed reactor having a flue gas inlet unit and a flue gas outlet unit, the flue gas outlet unit having at least two flue gas outlets which are arranged at an angle to each other.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Hamon Enviroserv GmbH
    Inventors: Markus Feldkamp, Rüdiger Baege, Markus Dickamp, Joachim Greimann, Christian Moser
  • Patent number: 8858907
    Abstract: Methods and systems for selective catalytic reduction of NOx with an ammonia reductant and a zeolite catalyst loaded with at least two metals selected from the group of tungsten, cobalt, and vanadium. An exhaust stream including NOx and a reductant stream including ammonia are provided to a catalytic reactor having the metal loaded zeolite catalyst at suitable operating temperatures for NOx reduction of at least 90%.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup, Jason M. McMullan
  • Publication number: 20140301906
    Abstract: A double impregnation method and composition for producing three way catalysts (TWC) are disclosed. The TWC may generally include a substrate, a washcoat, a first and second impregnation compositions, and optionally at least an overcoat over the impregnation compositions. The first impregnation composition may include a composition of a perovskite, base metal oxides, and alkaline earth carbonates. The method for applying the first impregnation composition may include combining all base metals in the composition, adding Pd, drying, and adding a heat treatment. The method for applying the second impregnation composition may include adding a remainder of Pd as a Pd solution over the first impregnation, drying, and applying a heat treatment.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: CDTI
    Inventor: Randal Hatfield
  • Publication number: 20140301927
    Abstract: In one embodiment, a carbon dioxide capturing system includes an absorption tower configured to bring a treatment target gas containing carbon dioxide into contact with an absorption liquid, and to discharge the absorption liquid having absorbed the carbon dioxide. The system further includes a regeneration tower configured to make the absorption liquid discharged from the absorption tower dissipate the carbon dioxide, and to discharge the absorption liquid having dissipated the carbon dioxide. The system further includes a treatment target gas line configured to introduce the treatment target gas into the absorption tower, a first introduction module configured to introduce a first gas having a higher carbon dioxide concentration than the treatment target gas into the treatment target gas line, and a second introduction module configured to introduce a second gas having a lower carbon dioxide concentration than the treatment target gas into the treatment target gas line.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 9, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuru Udatsu, Masatoshi Hodotsuka, Hideo Kitamura, Satoshi Saito, Haruki Fujimoto, Noriko Chiba
  • Patent number: 8852540
    Abstract: An apparatus and method for removing sulfur dioxide from a flue gas is described. The apparatus has sequentially operable scrubbing zone and regeneration zone, which communicate with one another via a molten eutectic mixture of lithium, sodium and potassium carbonates. In the scrubbing zone, an ingress flue gas interacts with the molten carbonates, resulting in chemical absorbance of the sulfur dioxide and in discharge of reaction gases. In the regeneration zone, ether a chemical or electrochemical melt regeneration takes place resulting in formation of sulfur-containing vapor which is cooled down for converting the sulfur-containing vapor into a liquid and solid phase for a further collection and utilization.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 7, 2014
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Igor Lubomirsky, Valery Kaplan
  • Publication number: 20140290214
    Abstract: A reductant system for an aftertreatment system of an internal combustion engine is disclosed. The reductant system includes at least one reductant feed line and a reductant system component such as a dosing module. The feed line is connected to the dosing module with a fluid connector. The fluid connector includes a body made from a first material that has a low heat conductivity and an insert made from a second material that has a greater heat conductivity than that of the first material. The insert extends from the body of the fluid connector into a storage chamber of the dosing module, and conducts heat from heated reductant in the feed line to the reductant stored in the storage chamber.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: John Heichelbech, Jim F. Burke, John Anthis, Andrew Myer
  • Publication number: 20140284521
    Abstract: This invention provides a CO2 desorption catalyst that has an excellent CO2 desorption activity and that can be used to replace metal filler.
    Type: Application
    Filed: November 22, 2012
    Publication date: September 25, 2014
    Applicant: THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Deguchi, Tsunenori Watanabe, Yasuyuki Yagi
  • Publication number: 20140271384
    Abstract: A Cu—Mn—Fe spinel on a plurality of support oxides is disclosed as ZPGM catalyst. The active phase for ZPGM samples may be Cu—Mn—Fe spinel on ZrO2 or Niobium-Zirconia support oxide. TWC activity may be increased and the effect of support oxide on performance of Cu—Mn—Fe spinel optimized to provide enhanced levels of NO, CO, and HC conversion even when compared to materials used for binary systems of Cu—Mn spinel. Cu—Mn—Fe spinel on support oxide provides optimal and stable spinel phase at a range of temperatures below 900° C. Bulk powder material including the disclosed ternary system may provide active catalyst for TWC applications having a chemical composition substantially free from PGM for cost effective manufacturing.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140260471
    Abstract: A method and apparatus for cleaning carbon oxides, sulfur oxides and nitrogen oxides, from stack gas, from combustion of coal, combustion of natural gas or propane, or from a cement kiln by reaction using calcium zeolite and sodium zeolite catalysts. The method also includes cleaning the catalytic beds with nitrogen to remove the collected reactants and recover a fertilizer product and the catalysts for reusable.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: THREE D STACK, LLC
    Inventor: James Gary DAVIDSON
  • Publication number: 20140271452
    Abstract: Described are catalyst materials and catalytic articles comprising a metal exchanged SAPO material comprising a plurality of substitutional sites consisting essentially of Si(4Al) sites and substantially free of Si(0Al) sites. The materials and catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Subramanian Prasad, Martin C. Wende, Jaya L. Mohanan
  • Publication number: 20140271383
    Abstract: Methods of removing iron from a catalytic converter having an accumulation of one or more iron compounds and regenerating a catalytic converter are provided. A catalytic converter having an accumulation of one or more iron compounds embedded or deposited thereon can be treated with a substantially aqueous alkaline solution in which the substantially aqueous alkaline solution includes an antioxidant.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: STEAG ENERGY SERVICES GMBH
    Inventors: Birgit Marrino, Thies Hoffmann
  • Patent number: 8834801
    Abstract: A vertical downflow type flue gas denitrification apparatus which has a plurality of catalyst blocks, each incorporating a catalyst unit provided therein, is provided with a first ash accumulation baffle plate and a second ash accumulation baffle plate which are slidable into a gap between catalyst blocks adjacent to each other, and processes an exhaust gas emitted from a combustor and turned to a vertical downflow. The denitrification apparatus has a simple configuration where the ash accumulation baffle plates prevent ash or the like from being accumulated in the gap between the catalyst blocks. The thermal expansion of the ash accumulation baffle plate can be absorbed even under the operating conditions which produce a change in temperature, and charging and replacing the catalyst in the catalyst blocks are possible without on-site welding of the ash accumulation baffle plates.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 16, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Tomokazu Harada, Satoru Shishido, Toru Ogasahara
  • Publication number: 20140255261
    Abstract: An emissions-control catalyst brick includes a plurality of formed metal ribbons that together define a repeating pattern of open cells. The ribbons are joined together in layers with the open cells of each layer offset from those of the adjacent layer. A catalyst wash coat is applied to the plurality of metal ribbons.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Mark Greiner, Lawrence M. Rose
  • Publication number: 20140255282
    Abstract: Both a system and a method for scrubbing a contaminated gas stream with a glycerol solution are disclosed. The system includes a contaminated gas stream in need of purification, along with a column which receives the contaminated gas stream. A glycerol solution is also received by the column and is used to scrub the contaminated gas stream in the column. The glycerol solution is used to reduce at least three contaminants from the gas stream, and includes greater than 50% glycerol and less than 98% glycerol. In one embodiment, the glycerol solution includes between 0.5% to 10% salts, wherein the salts are sodium based, potassium based or a combination thereof. The salts act catalytically to convert glycerol and carbon dioxide to glycerol carbonate.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: Whole Energy Fuels Corporation
    Inventors: Orion Lekos, Atul Deshmane
  • Patent number: 8828339
    Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
  • Publication number: 20140248186
    Abstract: An aftertreatment system and method treats exhaust gasses produced by an internal combustion process or a similar process. The aftertreatment system includes an aftertreatment module having a sleeve extending between a first end and a second end. One or more aftertreatment bricks are axially inserted into a sleeve opening disposed in the first end of the sleeve. To prevent the aftertreatment bricks from unintentionally exiting the sleeve, a captive ring is disposed around the first end of the sleeve as a loose fitting collar. The captive ring is restrained on the sleeve by a circumferential bead protruding about the first end. The captive ring can couple with a retention ring placed adjacent the first end. When coupled to the captive ring, a portion of the retention ring extends partially across and blocks the sleeve opening, preventing the aftertreatment brick from exiting the sleeve.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Caterpillar Inc.
    Inventors: Andrew M. Denis, Thomas W. Manning, Ian Aguirre, Rick E. Jeffs, Nagaraju Manchikanti
  • Publication number: 20140248187
    Abstract: An exhaust treatment device includes an inlet tube having an end in communication with a cavity within a housing. An exhaust treatment component for treating engine exhaust is positioned within the housing. A metal mounting member includes a mounting provision. A retaining plate is engaged with the metal mounting member and fixed to the housing to retain the mounting member between the housing and the retaining plate.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: Tenneco Automotive Operating Company Inc.
    Inventors: Megan Wikaryasz, Douglas Otrompke, Pavel Robles
  • Publication number: 20140248206
    Abstract: A CO2 recovery system includes an absorption apparatus that brings a CO2 absorption liquid into contact with an exhaust gas treated by a pre-treatment apparatus so that CO2 in the exhaust gas is absorbed into the CO2 absorption liquid; a regeneration apparatus that separates CO2 from the CO2 absorption liquid; an absorption liquid circulation path that circulates the CO2 absorption liquid between the absorption apparatus and the regeneration apparatus; and an impurity removal unit that removes impurities having a high concentration in the absorption liquid circulation path, in the absorption liquid circulation path and/or in the pre-treatment apparatus in advance.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Takahito Yonekawa, Shintaro Honjo, Masayuki Inui, Koji Nakayama, Takashi Kamijo, Hiromitsu Nagayasu
  • Patent number: 8821818
    Abstract: A method and apparatus for cleaning carbon oxides, sulfur oxides and nitrogen oxides, from stack gas, from combustion of coal, combustion of natural gas or propane, or from a cement kiln by reaction using calcium zeolite and sodium zeolite catalysts. The method also includes cleaning the catalytic beds with nitrogen to remove the collected reactants and recover a fertilizer product and the catalysts for reusable.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 2, 2014
    Assignee: Three D Stack, LLC
    Inventor: James Gary Davidson
  • Patent number: 8821803
    Abstract: Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: September 2, 2014
    Inventors: Charles E. Ramberg, Stephen A. Dynan, Jack A. Shindle
  • Publication number: 20140241964
    Abstract: An oxidation catalyst for treating an exhaust gas produced by a combustion engine, wherein the oxidation catalyst comprises a substrate and a catalyst layer, wherein the catalyst layer comprises: a first support material; a first noble metal; and a second noble metal; wherein the catalyst layer is disposed on a surface of the substrate, and the catalyst layer has a non-uniform distribution of the first noble metal in a direction perpendicular to the surface of the substrate. The oxidation catalyst can be used to oxidise carbon monoxide (CO), hydrocarbons (HCs) and also oxides of nitrogen (NOx) in such an exhaust gas.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: David BERGEAL, Paul Richard PHILLIPS, Andrew Francis CHIFFEY, John Benjamin GOODWIN
  • Patent number: 8815187
    Abstract: The present invention provides a novel process for quenching heat, scrubbing, cleaning and neutralizing the hot and dirty fossil fuel fired flue gas liberated by a fossil fuel fired boiler using the high temperature and high pressure present in fossil fuel fired boiler blow-down comprising the steps of quenching the fossil fuel fired flue gas by evaporating sufficient quantity of water from sea water/scrubbing liquid and mixing vapors thus generated with hot and dirty flue gas; using the high temperature and high pressure present in fossil fuel fired boiler blow-down (waste water) for atomizing/spraying high alkalinity sea water/scrubbing liquid on said flue gas to neutralize the acidic substances in said flue gas.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: August 26, 2014
    Inventor: Subrahmanyam Kumar
  • Patent number: 8815193
    Abstract: A selective non-catalytic reduction apparatus for exhaust gases comprising a reactor for elevated temperature reduction of NOx comprising an injection zone, internal structure zone and rear zone. The internal structure zone includes packing materials and provides a surface area of 5.0 m2/g to 20 m2/g where the packing material is present in the reactor at a level of 10% to 50% of the reactor volume. The reactor provides one or more of the following: (1) a residence time for exhaust gas of 0.1 seconds to 5.0 seconds; (2) a pressure drop of less than or equal to 1400 Pa/m at an exhaust gas velocity of 1.0 meter/second.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 26, 2014
    Assignee: Southwest Research Institute
    Inventors: Maoqi Feng, Rijing Zhan, Jeffrey N. Harris
  • Publication number: 20140219878
    Abstract: An emission control catalyst for treating an engine exhaust includes non-precious metal group (“NPGM”) mixed phase oxide catalyst having a mullite phase containing optionally in close contact with other metal oxides. The mixed phase catalyst may be included in one or more layers or zones of a multi-layered or multi-zoned emission control catalyst and optionally in combination with precious metal catalysts such as Pt, Pd and Au.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 7, 2014
    Applicant: SHUBIN, INC.
    Inventors: Geoffrey Mccool, Xianghong Hao, Deepak Srivastava, Bulent Yavuz
  • Patent number: 8795621
    Abstract: Methods and systems are provided for selective catalytic reduction of NOx with a low molecular low molecular weight aldehyde, e.g., acetaldehyde, as a reductant using a catalyst system including two catalysts. An exhaust stream containing an amount of NO from a combustion operation is provided. A portion of the exhaust stream is introduced to a first catalyst to convert the NO to NO2. The exhaust stream from the first catalyst with NO2 and a reductant stream containing a low molecular weight aldehyde, e.g., acetaldehyde, are introduced to the second catalyst to convert the NO2 to N2. The first catalyst can be bulk Co3O4, Ru or Pt loaded on alumina; the second catalyst can be various zeolites, or zeolites loaded with potassium.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 5, 2014
    Assignee: ExxonMobil Research and Engineering
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup, Jason M. McMullan
  • Patent number: 8795420
    Abstract: An apparatus for removing unwanted contaminates from gases, wherein the apparatus can include a housing that has at least one removable portion. The apparatus can also include a reaction chamber formed within the housing. A cartridge can be disposed in the reaction chamber. The cartridge can be connected to the removable portion of the housing.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 5, 2014
    Assignee: Vapor Point, LLC
    Inventors: Jefferey St. Amant, Kenneth R. Matheson, Keith Nathan
  • Patent number: 8795616
    Abstract: A system and method of using a double-effect-reactor to dispose incinerated flue gas and improve cement yields. The double-effect-reactor features an incinerated reaction chamber and a gas-solid suspension mixing chamber. The system includes the double-effect-reactor, a high temperature dust-arrester, a system for recovery of thermal energy and dust removal, a triple valve, and an independent chimney. Also disclosed is a method in which combines the double-effect-reactor with a cement production system.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: August 5, 2014
    Assignee: Satarem Technologies Limited
    Inventor: Ching Chiu Leung
  • Patent number: 8790603
    Abstract: An apparatus for purifying a controlled-pressure environment in a chamber, including: a piece of lithium-aluminum alloy located in the chamber; an activation element arranged to impart energy to the piece of lithium-aluminum alloy to sublimate lithium from the piece of lithium-aluminum alloy; a feedback control system including a sensor system arranged to measure a condition within the chamber, and a controller in communication with the sensor and configured to control operation of the activation element according to an evaluation of the condition; and a collection plate located in the chamber and arranged to form a layer of the sublimated lithium on a surface of the collection plate.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: July 29, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Guorong V. Zhuang, Gildardo Delgado
  • Patent number: 8789359
    Abstract: An exhaust purification system of an internal combustion engine, having an exhaust purification catalyst in the exhaust passage of the engine of a vehicle, a fuel supply device provided in the exhaust passage upstream the exhaust purification catalyst and supplies fuel to an exhaust gas flowing into the catalyst, a heating device which heats the fuel supplied from the fuel supply device, and a controller which controls the heating device. The controller controls the heating device, when a first processing request based on a state of the exhaust purification catalyst is standing and a second processing request based on an operating state of the vehicle is not standing (t2), to a pre-heating temperature lower than an ignition threshold capable of igniting the fuel and, when the first processing request and the second processing request are standing (t3), to an ignition temperature higher than the ignition threshold.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenichi Tsujimoto
  • Publication number: 20140205523
    Abstract: Provided are catalyst composites whose catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. The catalyst composites have a two-metal layer on a carrier, the two-metal layer comprising a rhodium component supported by a first support comprising a refractory metal oxide component or a first ceria-zirconia composite; a palladium component supported by a second support comprising a second ceria-zirconia composite; one or more of a promoter, stabilizer, or binder; wherein the amount of the total of the first and second ceria-zirconia composites in the two-metal layer is equal to or greater than the amount of the refractory metal oxide component. Methods of making and using the same are also provided.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 24, 2014
    Applicants: BASF SE, BASF Corporation
    Inventors: Mirko Arnold, Stefan Kotrel, Attilio Siani, Stephan Siemund, Thomas Schmitz, Burkhard Rabe, Gary A. Gramiccioni, Oliver Seel, Torsten Neubauer, Knut Wassermann
  • Publication number: 20140205507
    Abstract: A sterilizer is connectable to an external chamber. A sterilization gas generator is configured to generate sterilization gas. A gas supply system including a first gas supply system which is configured to supply the sterilization gas from the sterilization gas generator to a sterilization chamber; and a second gas supply system which is different from the first gas supply system and configured to supply the sterilization gas from the sterilization gas generator to the external chamber.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicant: PANASONIC HEALTHCARE CO., LTD.
    Inventors: Yasuhiko YOKOI, Hiroshi YAMAMOTO, Atsushi NAKAO, Jiro OHNISHI, Shinji FUKUI, Akifumi IWAMA, Masaki HARADA, Yoshiaki SUGIMURA, Katsuya HIRAI
  • Patent number: 8784757
    Abstract: The present disclosure is directed to the introduction of an additive to a contaminated gas stream. An additive introduction system uses a compressor and carbon dioxide separator to provide a treated carrier gas for introduction of an alkaline additive to a contaminated gas stream.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 22, 2014
    Assignee: ADA-ES, Inc.
    Inventors: Martin A. Dillon, Gregory M. Filippelli
  • Patent number: 8778297
    Abstract: A sulfur recovery unit comprising: a reaction furnace configured to carry out a high-temperature Claus reaction between hydrogen-sulfide-containing gas and oxygen-containing gas introduced to the reaction furnace; a sulfur condenser configured to cool reaction gas discharged from the reaction furnace and condense sulfur contained in the reaction gas; and a pipe that connects the reaction furnace to the sulfur condenser, wherein the reaction furnace is fixed to the ground; and the sulfur condenser and the pipe are arranged so as to be able to move relative to the reaction furnace.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: July 15, 2014
    Assignee: JGC Corporation
    Inventors: Tatsuo Kamisuki, Hiroyuki Kosasayama, Yasushi Yamada, Shingo Arai, Mitsuru Kida
  • Publication number: 20140193306
    Abstract: An exhaust gas oxidation catalyst characterised as an exhaust gas oxidation catalyst comprising a catalyst substrate, wherein a plurality of exhaust gas channels has been formed, and a catalyst layer formed on the surface of the exhaust gas channels in the catalyst substrate; wherein a catalyst layer consisting of a bottom catalyst layer, a top catalyst layer exposed within the exhaust gas channels, and an intermediate catalyst layer located between the bottom catalyst layer and top catalyst layer, is provided so as to cover not less than 25% of the exhaust gas channel surface, and wherein the bottom catalyst layer contains at least an oxygen-occluding agent as catalyst component but does not contain a hydrocarbon adsorbent, the intermediate catalyst layer contains at least catalyst metal, supported on a metal oxide support, and a hydrocarbon adsorbent as catalyst components, and the top catalyst layer contains at least an oxygen-occluding agent and a hydrocarbon adsorbent as catalyst components.
    Type: Application
    Filed: May 25, 2012
    Publication date: July 10, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Takeshi Kadono, Satoshi Sumiya, Lifeng Wang
  • Patent number: 8771603
    Abstract: A method for scavenging hydrogen sulfide from geothermal steam in a condenser under vacuum. A fine curtain of atomized acrolein-water droplets may be sprayed into geothermal steam condensers in an amount of approximately 2:1 molar ratio of acrolein to H2S based on hydrogen sulfide in the incoming steam from the turbine. The range being approximately 0.1 ppm to 500 ppm of sulfide. The acrolein is allowed to react with the gas phase H2S to form non-volatile aldehyde byproducts which partition into the water phase, are returned to the cooling tower and ultimately removed by normal cooling-tower blow down.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: July 8, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael L. Harless, Daniel K. Durham
  • Publication number: 20140186249
    Abstract: Conventionally air filters are particulate filters composed of fibrous materials in order to remove solid particulates such as dust, pollen, mold, and bacteria from the air. Accordingly, it would be beneficial to provide absorbent filters within such systems in order to address the removal of gaseous impurity components from the circulating air in addition to conventional particulate tillers. It would be further beneficial to provide such absorbent filters in a manner which is compatible with commercial and residential environments that represent the majority of such air circulation systems. It would be further beneficial to provide such absorbent filters in formats that are compatible with new system installations as well as retrofitting to existing system installations.
    Type: Application
    Filed: November 6, 2013
    Publication date: July 3, 2014
    Inventor: Roshdy Rady Ateya Soliman
  • Patent number: 8765084
    Abstract: Several embodiments of high-efficiency catalytic converters and associated systems and methods are disclosed. In one embodiment, a catalytic converter for treating a flow of exhaust gas comprising a reaction chamber, a heating enclosure enclosing at least a portion of the reaction chamber, and an optional coolant channel encasing the heating enclosure. The reaction chamber can have a first end section through which the exhaust gas flows into the reaction chamber and a second end section from which the exhaust gas exits the reaction chamber. The heating enclosure is configured to contain heated gas along the exterior of the reaction chamber, and the optional coolant channel is configured to contain a flow of coolant around the heating enclosure. The catalytic converter can further include a catalytic element in the reaction chamber.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 1, 2014
    Assignee: in the works
    Inventors: Todd K. Hansen, David A. Endrigo
  • Patent number: 8765089
    Abstract: A process for reducing nitrogen oxides and halogenated organic compounds in an incineration plant having at least one combustion chamber. The process comprises separating out fly ash using a dust collector. Water is added to and hydrochloric acid separated out in a first acid-operated scrubber. Water and ammonia are added so as to separate out sulphur dioxide in a second neutral or slightly acid-operated scrubber so as to form ammonium sulphite, a portion of the ammonium sulphite thereby reacts with oxygen so as to form an aqueous ammonium sulphate/ammonium sulphite solution. The aqueous ammonium sulphate/ammonium sulphite solution is introduced into an oxygen-containing smoke gas downstream of a secondary gas introduction area so as to decompose the ammonium sulphate and ammonium sulphite so as to form ammonia and sulphur dioxide.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: July 1, 2014
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventor: Hans Hunsinger
  • Publication number: 20140174058
    Abstract: A device for providing liquid reducing agent for an exhaust-gas treatment device includes a tank and a delivery unit with an intake or suction point in the tank at which reducing agent can be suctioned or drawn out of the tank. The intake point is covered by a separation layer in such a way that a closed intermediate space is formed between the intake point and the separation layer. The separation layer has a higher flow resistance to reducing agent in an outflow direction from the intermediate space into the tank than in an inflow direction from the tank into the intermediate space. A motor vehicle having the device is also provided.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Emitec Gesellschaft Fuer Emissionstechnologie MBH
    Inventors: GEORGES MAGUIN, SVEN SCHEPERS, JAN HODGSON
  • Publication number: 20140174057
    Abstract: An aftertreatment module for the treatment of exhaust gasses from a power system includes a first aftertreatment brick and a second aftertreatment brick. The first and second aftertreatment bricks can be flow-through type catalysts for catalyzing byproducts in the exhaust gasses. The aftertreatment module can include a first channel directing the incoming exhaust gasses in a first direction through the first aftertreatment brick and a second channel directing the exhaust gasses through the second aftertreatment brick. The first and second channel can be in a side-by-side arrangement. To communicate the exhaust gasses between the first and second channels, a traverse channel can redirect the gas flow within the aftertreatment module.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Jacob K. Ludeman, Brian J. DeCaires
  • Publication number: 20140178260
    Abstract: A catalytic converter for use in motor vehicle exhaust systems includes a housing and a catalytic substrate disposed in the housing. The housing includes a central shell fixed to an inlet end cone and an outlet end cone. The catalytic substrate includes a primary body section disposed in an internal chamber of the central shell and a secondary body section disposed in an inlet chamber of the inlet end cone. The secondary body section includes a shaped face surface that is exposed to hot exhaust gases supplied to the inlet chamber to assist in improved light-off and improved purification efficiency.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: DENSO INTERNATIONAL AMERICA, INC.
    Inventor: Andre DUDA
  • Patent number: 8758712
    Abstract: A wet scrubber (8) for cleaning a process gas containing sulphur dioxide comprises an absorption vessel (40) operative for bringing the process gas into contact with an absorption liquid to absorb sulphur dioxide from the process gas. The wet scrubber (8) further comprises an acidification system (90) operative for mixing absorption liquid that has absorbed sulphur dioxide from the process gas with a carbon dioxide containing gas, an absorbent dissolution tank (54) operative for adding an absorbent material to at least a portion of the absorption liquid, and a return pipe (104) operative for returning to the absorption vessel (40) at least a portion of the absorption liquid that has been mixed with the carbon dioxide containing gas.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 24, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Stefan O. H. Åhman
  • Publication number: 20140161679
    Abstract: An exhaust system, and a catalyzed substrate, is disclosed. The system comprises a catalyzed substrate, a counterflow urea injector downstream of the catalyzed substrate, and a first selective catalytic reduction (SCR) catalyst downstream of the counterflow injector. The catalyzed substrate has an inlet end, an outlet end, an axial length extending from the inlet to the outlet, an inlet zone extending from the inlet, and an outlet zone extending from the outlet. The inlet zone comprises an oxidation catalyst and the outlet zone comprises a catalyst selected from the group consisting of a urea hydrolysis catalyst and a second SCR catalyst. The counterflow urea injector directs urea toward the outlet zone of the catalyzed substrate so that at least a portion of the urea contacts the outlet zone prior to contacting the first SCR catalyst.
    Type: Application
    Filed: November 7, 2013
    Publication date: June 12, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis CHIFFEY, Cathal Francis PRENDERGAST