And Means Heating Or Cooling Loop Or Reaction Mass Located Therein Patents (Class 422/235)
  • Patent number: 11421192
    Abstract: A process for infusing a consumable substance is described. The process includes the steps of placing a desired amount of an infusion material into a chamber at atmospheric pressure, placing a desired amount of consumable substance into said chamber, sealing said chamber from the surrounding atmosphere, and applying at least one reduced pressure cycle within said chamber. Methods for separating the infusion material from the consumable substance after completion of the infusion process are also described. In addition, devices for infusing liquids or consumable substances, and/or brewing beverages are described.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 23, 2022
    Assignee: BKON LLC
    Inventors: Dean J. Vastardis, Lou Vastardis
  • Patent number: 9982199
    Abstract: The invention relates to a process for continuously converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water, the process comprising: converting at least part of the carbonaceous material by pressurising the feed mixture to an operational pressure in the range 150-400 bar, heating the feed mixture to an operational temperature in the range 300-450° C., and maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200° C.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: May 29, 2018
    Assignee: STEEPER ENERGY APS
    Inventor: Steen Brummerstedt Iversen
  • Patent number: 9011814
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 21, 2015
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Patent number: 8968574
    Abstract: A method and device for the wet oxidation treatment of liquid waste laden with mineral matter in suspension. The device comprises a reactor including a treatment column, first and second heat exchangers placed upstream and downstream, respectively, of the reactor. The solution to be treated, laden with mineral matter to which an oxidizing gas has been added, is injected into the reactor for treatment after being preheated in the first heat exchanger. When the solution exits the reactor, the hot treated mixture is divided into two hot stream fragments. The first hot treated mixture stream fragment, the flow rate of which is kept constant by a diaphragm column, is used for controlling the temperature of the first heat exchanger and then discharged after being used in the first heat exchanger. The second hot treated mixture stream fragment is directly cooled and discharged when the second hot treated mixture stream fragment leaves the reactor.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 3, 2015
    Assignee: Granit Technologies S.A.
    Inventor: Boris Correa
  • Patent number: 8951407
    Abstract: A simplified process is provided for creating hybrid crude oils and hybrid crude fractions with characteristics superior to the original. The process uniquely combines gases with crude oil or crude fractions in an effervescent turbulent manner at low temperatures and pressures and without the further aid of catalysts. The process breaks large chain hydrocarbons into smaller chain hydrocarbons, molecularly combines carbon, hydrogen, and/or hydrocarbon molecules from the gases with and into hydrocarbon molecules of the crude or crude fraction, and separates contaminants and impurities.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 10, 2015
    Assignee: Clean Global Energy, Inc.
    Inventors: Robert Miller, Delmar Guenther, Rick Lutterbach, Jeff Nichols
  • Patent number: 8673244
    Abstract: The present invention relates to an apparatus for producing alcohols from olefins, comprising: a hydroformylation reactor wherein aldehydes are produced from olefins; a catalyst/aldehydes separator; a hydrogenation reactor wherein the aldehydes are hydrogenated to produce alcohols; and a distillation column. The hydroformylation reactor is equipped with a distributor plate, which has a broad contact surface for providing sufficient reaction area for reactants such as olefins and synthesis gas, and allows the reaction mixture to circulate and mix sufficiently, which contribute to excellent efficiency in terms of production of aldehydes. In addition, the hydrogenation reactor suppresses sub-reactions to improve the production yield of alcohols.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong-Hyun Ko, Sung-Shik Eom, Yong-Jin Choe, Chan-Hong Lee, Moo-Ho Hong, O-Hak Kwon, Dae-Chul Kim, Jae-Hui Choi
  • Patent number: 8673227
    Abstract: A system for removal of carbon dioxide from a process gas includes an absorption arrangement arranged to allow contact between the process gas and an ammoniated solution within the absorption arrangement such that at least a part of the carbon dioxide of the process gas is captured by the ammoniated solution. The absorption arrangement is arranged to, with regard to the ammoniated solution, only accommodate ammoniated solution without solids. A first heat exchanger is arranged to cool the ammoniated solution including captured carbon dioxide after it has exited the absorption arrangement. A separator is arranged to remove at least a part of any solids in the cooled ammoniated solution. A second heat exchanger is arranged to heat the ammoniated solution after it has exited the separator and returned to the absorption arrangement.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: March 18, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Sean E. Black, Sanjay K. Dube, David J. Muraskin, Frederic Z. Kozak
  • Patent number: 8658123
    Abstract: Method for the production of a coarse-grained ammonium sulphate product by crystallization and installation for carrying out the method from an ammonium sulphate solution in a DTB type crystallizer having an internal suspension circuit and a clarifying zone, from which a clarified partial flow of solution is constantly drawn off into an external circuit, is heated in a heat exchanger to dissolve the solids contained therein and is guided back as a clear solution into the lower region of the crystallizer. A fine crystal suspension flow is drawn off from the clarifying zone as a further partial flow and guided back into the internal circuit of the crystallization stage without any previous dissolution of the solid proportion contained therein.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 25, 2014
    Assignee: GEA Messo GmbH
    Inventors: Günter Hofmann, Holger Leptien, Johannes Widua
  • Patent number: 8563756
    Abstract: In an embodiment of the invention, an apparatus for preparing hydroxymethylfurfural (HMF) is provided. The apparatus includes a reaction area including a first organic layer including sugar and a solvent and a second organic layer including a solvent mixture with azeotropy and extractability, a boiling area including a mixing solution formed by the hydroxymethylfurfural and the solvent mixture, connected with the reaction area, and a distilling area including water and a liquid layer including the solvent mixture, connected to the reaction area. In another embodiment of the invention, a method for preparing hydroxymethylfurfural (HMF) is provided.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 22, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ruey-Fu Shih, Hsi-Yen Hsu
  • Patent number: 8519094
    Abstract: Process for heating a polymer-containing stream being transferred from a polymerization reactor to a separation zone or device, by passing the stream through at least two heaters operating in parallel, each heater having at least one transfer line for the stream and a heater for heating the transfer line. The average particle of the polymer is below 3 mm, the temperature of the polymer-containing stream at the outlet of all heaters is maintained above the dew point of the stream, and no heater has a volumetric flowrate of polymer-containing stream more than three times that of any other heater.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 27, 2013
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Daniel Marissal, Marc Parisel, Brent Walworth
  • Patent number: 8449848
    Abstract: Production of polycrystalline silicon in a substantially closed-loop process is disclosed. The processes generally include decomposition of trichlorosilane produced from metallurgical grade silicon.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 28, 2013
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Satish Bhusarapu, Yue Huang, Puneet Gupta
  • Patent number: 8383078
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: February 26, 2013
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Patent number: 8298490
    Abstract: The present invention is directed to systems and methods of synthesizing trichlorosilane. The disclosed systems and methods can involve increasing the concentration of the solids in the slurry to recover or separate the volatilized metal salts and reduce the obstructions created by the solidification of the metal salts in downstream operations of the during trichlorosilane synthesis. Rather than heating to raise the temperature to vaporize chlorosilane compounds, and subsequently condensing the volatilized chlorosilane compounds, the present invention can involve increasing the solids concentration in the slurry stream by utilizing a non-condensable gas, such as hydrogen, to volatilize the chlorosilane components, which can consequently promote evaporative conditions that can reduce the slurry temperature. The lower slurry temperature results in a lower volatility of the metal salts, which reduces the likelihood of carryover to downstream unit operations.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: October 30, 2012
    Assignee: GTAT Corporation
    Inventors: Scott Fahrenbruck, Bruce Hazeltine
  • Patent number: 8105400
    Abstract: A process for treating biomass comprises providing a material that contains an amount of residual moisture. The material is heated to a torrefying temperature in a low-oxygen atmosphere in a torrefaction reactor to convert it into a torrefied material. The material with the contained residual moisture is essentially fully dried in a drying chamber by evaporation of residual moisture. The torrefaction reactor comprises a torrefying chamber, in which the torrefaction of this dried material is essentially carried out. The material is conveyed through the torrefaction reactor. The drying of the material in the drying chamber is carried out by introducing into it a hot drying gas that flows therethrough cocurrently with the material. The torrefaction of the material in the torrefying chamber of the torrefaction reactor is carried out by introducing into it a hot torrefying gas that flows through the torrefying chamber countercurrently with the material.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: January 31, 2012
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventor: Peter Christiaan Albert Bergman
  • Publication number: 20110260113
    Abstract: The present application thus provides an integrated gasification combined cycle system. The integrated gasification combined cycle system may include a water gas shift reactor system and a heat recovery steam generator. The water gas shift reactor system may include a recirculation system with a recirculation heat exchanger to heat a flow of syngas. The heat recovery steam generator may include a diverted water flow in communication with the recirculation heat exchanger.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ashok Kumar Anand, Mahendhra Muthuramalingam, Jegadeesan Maruthamuthu
  • Patent number: 8034884
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: October 11, 2011
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Publication number: 20110135544
    Abstract: The present invention relates to a method for preparing aldehydes by reacting olefins with a synthesis gas including carbon monoxide and hydrogen, and to an apparatus therefore. More particularly, the present invention relates to a method for preparing aldehydes, characterized by spraying and supplying olefins, synthesis gas including carbon monoxide and hydrogen, and a catalyst composition into an oxo reactor through a nozzle, and to an apparatus therefore. According to the present invention, the hydroformylation efficiency can be improved, thereby obtaining desirable aldehydes with a high yield.
    Type: Application
    Filed: January 17, 2011
    Publication date: June 9, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Moo-Ho Hong, Dong-Hyun Ko, Sang-Oeb Na, Sung-Shik Eom, Sang-Gi Lee, O-Hark Kwon, Dae-Chul Kim, JAE-Hui Choi
  • Publication number: 20110110839
    Abstract: The present invention is directed to systems and methods of synthesizing trichlorosilane. The disclosed systems and methods can involve increasing the concentration of the solids in the slurry to recover or separate the volatilized metal salts and reduce the obstructions created by the solidification of the metal salts in downstream operations of the during trichlorosilane synthesis. Rather than heating to raise the temperature to vaporize chlorosilane compounds, and subsequently condensing the volatilized chlorosilane compounds, the present invention can involve increasing the solids concentration in the slurry stream by utilizing a non-condensable gas, such as hydrogen, to volatilize the chlorosilane components, which can consequently promote evaporative conditions that can reduce the slurry temperature. The lower slurry temperature results in a lower volatility of the metal salts, which reduces the likelihood of carryover to downstream unit operations.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: GT SOLAR INCORPORATED
    Inventors: Scott Fahrenbruck, Bruce Hazeltine
  • Patent number: 7931795
    Abstract: The present invention relates to a novel economical on-site electrochemical based membrane cell based process with the capability of producing high strength sodium hypochlorite and/or elemental chlorine gas in any ratio as required by the needs of a water or wastewater treatment plant. The system is compact and modular, using membrane cell based electrolyzers and utilizing novel process modifications and sensors to allow for the unattended control and safe operation of the process. The process allows the operator to produce elemental chlorine gas and sodium hypochlorite in any product ratio, such that 5% to 100% of the total chlorine produced by the process can be converted to high strength bleach. The process has the flexibility to produce stable high quality, low to high strength sodium hypochlorite solutions in concentrations ranging from about 2 to 15% trade as NaOCl.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 26, 2011
    Assignee: Electrolytic Technologies Corp.
    Inventors: Jerry J. Kaczur, Derek B. Lubie, Edmund M. Cudworth, Charles W. Clements, Martin E. Nelson
  • Patent number: 7871577
    Abstract: Higher molecular weight hydrocarbon compounds or oxygenates are produced from a gas comprising methane in a process comprising the steps of generating synthesis gas (“syngas”) comprising carbon monoxide and hydrogen by reaction of a gas comprising methane with steam and/or an oxidant gas comprising oxygen, producing higher molecular weight hydrocarbon compounds or oxygenates in a syngas conversion process, removing offgas comprising unreacted hydrogen and unreacted carbon monoxide from said syngas conversion process and separating cryogenically unreacted hydrogen from said offgas or from a gas derived therefrom to produce separated hydrogen product that is substantially free of unreacted carbon monoxide and a first cryogenic liquid comprising unreacted carbon monoxide. The unreacted hydrogen is preferably separated from the offgas in a liquid methane wash column.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 18, 2011
    Assignee: GTLpetrol LLC
    Inventors: Rodney Allam, Andrew Weaver, Vincent White, David B. Byard
  • Patent number: 7862783
    Abstract: A separation system for a methyl acetate hydrolysis is provided. The separation system comprises a reactive distillation system, a reflux system, a first separation system and a second separation. The reactive distillation system allows the hydrolysis of a methyl acetate solution to generate a first mixture and a second mixture. The reflux system is packed with a heterogeneous catalyst and coupled to the reactive distillation system, which refluxes the first mixture to the reactive distillation system. The first separation system is coupled to the reactive distillation system, which directs the second mixture thereinto so as to isolate an acetic acid and a third mixture therefrom. The second separation system is coupled to the first separation system, which directs the third mixture thereintio so as to separate a methanol therefrom. The methyl acetate feeding system is coupled to, one of the reactive distillation system and the reflux system, which feeds the methyl acetate solution thereinto.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: January 4, 2011
    Assignee: National Taiwan University
    Inventors: Hsiao-Ping Huang, Cheng-Ching Yu, Ming-Jer Lee, Yu-De Lin, Jian-Kai Cheng
  • Patent number: 7749468
    Abstract: An apparatus is provided for carrying out a cavitation induced reaction comprising a reaction chamber for a liquid reaction medium, means for producing cavitation in the liquid reaction medium, at least one reactant inlet to the reaction chamber, an inert gas inlet conduit with a sparger for injecting a flowing stream of dry inert gas into the reaction chamber, a venting outlet for removal of a stream of the inert gas from the reaction chamber, and a recirculation conduit for re-circulating a stream of the inert gas from the venting outlet to the inert gas inlet conduit.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: July 6, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Ion C. Halalay
  • Patent number: 7722844
    Abstract: An exhaust smoke denitrating apparatus in which using an NH3 injection unit, compressed air is fed from blower to ejector for extracting of exhaust gas from HRSG1, and with thus obtained mixed gas, NH3-containing gas is produced from NH3 water by NH3 water evaporator, the NH3-containing gas injected through NH3-containing gas injection nozzle of the HRSG1 disposed on a front stream side of denitration catalyst layer. As any high-temperature exhaust gas is cooled and diluted by compressed air, there is no danger of oxidation of NH3 during the stage of evaporation of NH3 water. The moisture level of exhaust gas can be lowered, thereby enabling inhibition of any drain generation in exhaust gas extraction piping. Air warming within NH3 water evaporation system can be carried out at an early stage.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: May 25, 2010
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Ryosuke Nakagawa, Tetsurou Hikino
  • Patent number: 7713499
    Abstract: Apparatuses and methods for preparing sol-gel solutions are provided. Specifically, apparatuses include a vessel optionally containing a stirrer; a pump; a fluidized bed reaction column; and multiple fluid lines. The multiple fluid lines connect the vessel and the pump in a first circulation loop and connect the vessel, the pump and the fluidized bed reaction column in a second circulation loop. Processes for preparing sol-gel solutions using such apparatuses are also disclosed.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 11, 2010
    Assignee: Xerox Corporation
    Inventors: Timothy P. Bender, David T. Borbely, Frank Ping-Hay Lee, Nan-Xing Hu
  • Publication number: 20100074811
    Abstract: The integrated processes of the dry reforming or partial oxidation upstream of the carbon nanotube-producing reactor are described allowing the carbon monoxide to be produced on an as-needed basis, negating the need to transport carbon monoxide to the production site or store large quantities of carbon monoxide on-site. The apparatuses allowing to carry out such integrated processes are also provided. Carbon dioxide emissions may be eliminated from the carbon nanotube production process. This may be achieved by recycling the carbon dioxide byproduct and mixing it with the feed to the partial oxidation process.
    Type: Application
    Filed: May 6, 2009
    Publication date: March 25, 2010
    Inventors: Kevin MCKEIGUE, Weibin JIANG, Ramachandran KRISHNAMURTHY
  • Patent number: 7682597
    Abstract: The invention relates to a method for extracting hydrogen from a gas containing methane, especially natural gas. Hydrocarbons contained in the gas are catalytically broken down in a reformer (4) by steam in order to form hydrogen, carbon monoxide and carbon dioxide. Catalytic conversion of the obtained carbon monoxide with steam occurs in a downstream conversion step in order to form carbon monoxide and water. Carbon dioxide is removed from the converted gas flow (8) by gas washing (7), and the washed hydrogen-rich gas flow (10) is subsequently divided in a pressure-swing adsorption system (11) into a product gas flow (12) made of hydrogen and a waste gas flow (13). The waste gas flow (13) is introduced with hydrogen (14), which is separated from the gas flow (10) after gas washing, into a reformer (4) which is essentially a carbon-free combustible gas, and is combusted there. The invention also relates to a system for carrying out the method.
    Type: Grant
    Filed: July 24, 2004
    Date of Patent: March 23, 2010
    Assignee: Uhde GmbH
    Inventors: Michael Blumenfeld, Vincent Liu, Bernd Mielke, Marcus Michel
  • Patent number: 7682574
    Abstract: The present invention relates to a thermal reactor apparatus used to treat industrial effluent fluids, for example waste effluent produced in semiconductor and liquid crystal display manufacturing processes. Specifically, the present invention relates to improved monitoring and control features for the thermal reactor apparatus, including a flame sensing device, an intrinsically safe flammable gas sensing device, and a sequential mode of operation having built-in safety redundancy. The improved monitoring and control features ensure the safe and efficient abatement of waste effluent within the thermal reactor apparatus.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ho-Man Rodney Chiu, Daniel O. Clark, Shaun W. Crawford, Jay J. Jung, Youssef A. Loldj, Robbert Vermeulen
  • Publication number: 20100056742
    Abstract: The present invention relates to a process for preparing alkyl methacrylates and their conversion products which can be used in a multitude of chemical synthesis processes which can lead to a wide variety of different further processing products, and to an apparatus for performing this process.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 4, 2010
    Applicant: Evonik Roehm GmbH
    Inventors: Udo Gropp, Robert Weber, Thomas Schaefer, Andreas Perl, Rudolf Sing, Thomas Mertz
  • Patent number: 7670586
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 2, 2010
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Patent number: 7604720
    Abstract: The present invention relates to a novel economical on-site electrochemical based membrane cell based process with the capability of producing high strength sodium hypochlorite and/or elemental chlorine gas in any ratio as required by the needs of a water or wastewater treatment plant. The system is compact and modular, using membrane cell based electrolyzers and utilizing novel process modifications and sensors to allow for the unattended control and safe operation of the process. The process allows the operator to produce elemental chlorine gas and sodium hypochlorite in any product ratio, such that 5% to 100% of the total chlorine produced by the process can be converted to high strength bleach. The process has the flexibility to produce stable high quality, low to high strength sodium hypochlorite solutions in concentrations ranging from about 2 to 15% trade as NaOCl.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: October 20, 2009
    Assignee: Electrolytic Technologies Corp.
    Inventors: Jerry J. Kaczur, Derek B. Lubie, Edmund M. Cudworth, Charles W. Clements, Martin E. Nelson
  • Patent number: 7601303
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: October 13, 2009
    Assignee: Elenac GmbH
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Patent number: 7556784
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically producing aromatic discarboxylic acids. The process reduces costs associated with hydrogenation by forming a final composite product containing unhydrogenated acid particles.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 7, 2009
    Assignee: Eastman Chemical Company
    Inventors: Robert Lin, Marcel de Vreede
  • Patent number: 7507384
    Abstract: According to the present invention, a temperature profile within a preferential oxidation reactor is controlled using a two phase water/steam system to provide a temperature range within the reactor (10) which favors the selective oxidation of CO in a hydrogen rich reformate stream. The reformate is flowed in a mixture with oxygen over a preferential oxidation catalyst (17). The temperature profile is controlled by flowing a stream of water proximate to the preferential oxidation catalyst (17) so as the stream of water and the reformate stream passing over the catalyst (17) are in a heat transfer arrangement. The stream of water is maintained as a two phase stream from a point at which the water reaches its boiling temperature to a point proximate an outlet from which the stream of water exits the reactor (10).
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: March 24, 2009
    Assignee: Nuvera Fuel Cells, Inc.
    Inventors: Darryl Pollica, William F. Northrop, Chunming (Frank C.) Qi, Mark R. Hagan, Alexis Smith, Lawrence Clawson
  • Publication number: 20090029846
    Abstract: The regeneration of HF alkylation acid in an alkylation unit is improved by withdrawing a vapor stream from the HF regenerator tower and condensing the stream to form a liquid fraction which is accumulated in a side distillation zone; the collected liquid fraction, comprising HF acid, water and some stripping medium is distilled in a batch or continuous type operation to drive off the HF acid (along with stripping medium) and the vapor is returned to the regenerator-stripper vessel. The distillation of the sidedraw liquid is continued until the composition of the liquid attains the azeotropic value or as near to that value as desired. The azeotrope, comprising water and acid can then be dropped out of the distillation vessel for disposal by neutralization in the conventional way.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Jeffrey M. Fitt, Curtis A. Lawrence, Richard M. Janclaes, Brett Keegan Johnson, Michael W. Boyea, Nicholas Steiner Conley
  • Patent number: 7442348
    Abstract: A sulfur-bearing residue treatment system is provided for the recovery of valuable organic components and the reduction of capital costs and operating costs. The treatment system involves the use of a stripping vessel in conjunction with a heating apparatus. All elements of the treatment system may be coupled together to form one integral piece of equipment.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: October 28, 2008
    Assignee: Rohm and Haas Company
    Inventors: Curtis Instad Carlson, Jr., Michael Stanley DeCourcy, Jamie Jerrick John Juliette, Thomas Albert Kaminski, Nelson Ivan Quiros, Paul Benjamin Schladenhauffen
  • Patent number: 7435864
    Abstract: Disclosed is a device for the production of alkylate(s) by sulfuric acid alkylation of at least one isoparaffin such as isobutane with at least one olefin, such as butylenes. The device includes a mixing chamber for preparing a mixture of the isoparaffin with recycled reaction products. It also includes an emulsion chamber for preparing a first hydrocarbons-in-sulfuric acid emulsion, where the mixture prepared in the mixing chamber is injected in multiple parallel jets into a sulfuric acid composition. The device further includes a pre-reaction chamber for preparing a second emulsion, where a given portion of the olefin is injected in jet streams into the first hydrocarbons-in-sulfuric acid emulsion coming from the emulsion chamber.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: October 14, 2008
    Assignee: Orgral International Technologies Corporation
    Inventor: Semen Gershuni
  • Patent number: 7311885
    Abstract: A batch reaction system for simultaneously conducting reactions in at least two separate reactors (CSTR reactors), is provided wherein the at least two batch reactors, containing mixing means and a fluid inlet, a fluid feed common conduit is present for feed fluid to the reactors, which is connected to the inlet of each reactor of a fluid inlet conduits, and further includes a fluid discharge common conduit which is connected to the outlet of each reactor wherein in each fluid inlet conduit and/or in each fluid outlet conduit a non-return valve is arranged to prevent contamination but can provide simultaneous reactions wherein the reactors can be easily isolated from one another during reaction.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: December 25, 2007
    Assignee: Avantium International A.B.
    Inventors: Anton John Nagy, Peter John van den Brink, Bashir Husein Harji
  • Patent number: 7226565
    Abstract: Ethylenically unsaturated monomers are polymerized in a gas-phase fluidized-bed reactor comprising a reactor space (1) in the form of a vertical tube, a calming zone (2) adjoining the upper part of the reactor space, a circulated gas line (3), a circulated gas compressor (4), a cooling apparatus (5), a gas distributor plate (6) which forms the lower boundary of the reactor space and, if desired, a flow divider (7), wherein the gas distributor plate (6) has a plurality of gas flow orifices (8) whose outlet sides are widened conically.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 5, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Benno Knauer, Peter Hennenberger, Klaus Hilligardt, Eckard Schauss, Horst Bullack
  • Patent number: 7220290
    Abstract: The present invention relates to a composition and method for storage and controlled release of hydrogen. In particular, the present invention relates to the use of borohydride based solutions as a hydrogen storage source and a catalyst system to release hydrogen therefrom.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: May 22, 2007
    Assignee: Millennium Cell, Inc.
    Inventors: Steven C. Amendola, Michael Binder, Stefanie L. Sharp-Goldman, Michael T. Kelly, Phillip J. Petillo
  • Patent number: 7008707
    Abstract: A fuel cell system including a fuel reforming processor having a catalyst therein constructed and arranged to produce a reformate stream including hydrogen and carbon monoxide, a water gas shift reactor downstream of the fuel reforming processor and wherein the water gas shift reactor includes a catalyst therein constructed and arranged to reduce the amount of carbon monoxide in the reformate stream, a preferential oxidation reactor downstream of the water gas shift reactor and wherein the preferential oxidation reactor includes a catalyst therein constructed and arranged to preferentially oxidize carbon monoxide into carbon dioxide and to produce a hydrogen-rich stream, and a fuel cell stack downstream of the preferential oxidation reactor constructed and arranged to produce electricity from the hydrogen-rich stream, a first direct water vaporizing combustor constructed and arranged to combust fuel producing a high-temperature fuel combustion byproducts exhaust and to produce steam from water sprayed into th
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: March 7, 2006
    Assignee: General Motors Corporation
    Inventor: Steven G. Goebel
  • Patent number: 6986797
    Abstract: An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: January 17, 2006
    Assignee: Nuvera Fuel Cells Inc.
    Inventors: Lawrence G. Clawson, Matthew H. Dorson, William L. Mitchell, Brian J. Nowicki, Jeffrey M. Bentley, Robert Davis, Jennifer W. Rumsey
  • Patent number: 6872367
    Abstract: A method for processing a gas containing at least hydrogen sulfide (H2S) and at least sulfur dioxide (SO2), includes the following stages: contacting the gas with a liquid solvent containing at least one catalyst in a contacting stage, recovering a gaseous effluent substantially containing no hydrogen sulfide and no sulfur dioxide, and a mixture containing liquid sulfur, liquid solvent and solid by-products resulting from the degradation of the catalyst, separating the liquid sulfur from the liquid solvent in a decantation zone, extracting a liquid fraction F containing at least the solid by-products from a layer between the liquid solvent and the liquid sulfur in the decantation zone, sending the liquid fraction F to a processing stage distinct from the contacting stage, and recovering at least a stream F1 comprising most of the solid by-products and a stream F2 mostly comprising solvent nearly free of the solid by-products from the processing stage.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: March 29, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Fabrice Lecomte, Christian Streicher, Daniel Benayoun, Cécile Barrere-Tricca
  • Patent number: 6872368
    Abstract: A method for processing a gas containing at least hydrogen sulfide (H2S) and at least sulfur dioxide (SO2), includes the steps of contacting the gas with a liquid solvent containing at least one catalyst in a contacting stage, recovering gaseous effluent substantially containing no hydrogen sulfide and no sulfur dioxide from the contacting stage, and separating liquid sulfur from liquid solvent in a decantation zone downstream of the contacting stage. In order to remove by-products resulting from degradation of the catalyst, a liquid fraction F containing at least solvent, catalyst, sulfur and the solid by-products resulting from degradation of the catalyst is extracted from after the contacting stage.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: March 29, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Fabrice Lecomte, Christian Streicher, Cécile Barrere-Tricca
  • Patent number: 6818190
    Abstract: An apparatus for preparing non-photosensitive fatty acid silver salt grains having a first feeding device for feeding a silver ion-containing solution, the solvent of which is water or a mixture of water and an organic solvent, to a closed mixing device; a second feeding device for feeding a solution of a fatty acid alkali metal salt, the solvent of which is water, an organic solvent, or a mixture of water and an organic solvent, to the closed mixing device; a third feeding device for feeding water, or a mixture of water and an organic solvent to the closed mixing device; and the closed mixing device for mixing matter fed from the first, second and third feeding devices, and discharging a liquid containing non-photosensitive fatty acid silver salt grains.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: November 16, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Naoyuki Kawanishi, Takashi Ando
  • Patent number: 6818186
    Abstract: A recycling and recovery system and process comprising a flash gas separator that receives a slurry comprising liquid medium and solid polymer particles. The flash gas separator separates the diluent from the solid polymer particles as a vapor stream comprising at least diluent and heavies. A line receives the vapor stream from the flash gas separator. The line leads to a heavies removal system that yields a liquid that is relatively concentrated in heavies and a diluent vapor that is relatively free of heavies. The liquid is passed to a heavies column, while the diluent vapor is passed to a diluent recycle chamber and then recycled to a slurry polymerization reactor without additional treatment to remove heavies.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: November 16, 2004
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: David H. Burns, Donald W. Verser
  • Patent number: 6800120
    Abstract: A recovery plant for recovery of a gaseous component from a process gas has an absorber employing a lean solvent and a semi-lean solvent that absorb the gaseous component from the process gas, thereby producing a rich solvent, a semi-rich solvent, and a lean process gas. A regenerator extracts the gaseous component from the rich solvent, thereby regenerating the lean solvent and the semi-lean solvent. A solvent flow control element combines at least part of the semi-rich solvent and the semi-lean solvent to form a mixed solvent, and a cooler cools the mixed solvent that is subsequently fed into the absorber. In a method of removing a gaseous component from a process gas, a stream of lean solvent and a stream of semi-lean solvent are provided. In another step, the stream of lean solvent and the stream of semi-lean solvent contact the process gas in an absorber to produce a stream of semi-rich solvent and rich solvent.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: October 5, 2004
    Assignee: Fluor Corporation
    Inventors: Ray Won, Peter Condorelli, Jeffrey Scherffius, Carl L. Mariz
  • Patent number: 6746497
    Abstract: A waste is dry-distilled in a gasification furnace and generated combustible gas is combusted in a combustion furnace. A temperature in the combustion furnace is set to be substantially constant at a first preset temperature or more. When the temperature in the combustion furnace is greater than the first preset temperature by combustion of other fuels, the combustible gas is introduced. When the temperature in the combustion furnace reaches a second preset temperature or more by the combustion of only the combustible gas, the combustion of the other fuels is finished. When the temperature in the combustion furnace falls below a third preset temperature the combustion of the other fuels is resumed. When the temperature in the gasification furnace falls below a fourth preset temperature, the combustion of the other fuels is finished.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 8, 2004
    Assignee: Kinsei Sangyo Co., Ltd.
    Inventor: Masamoto Kaneko
  • Patent number: 6730278
    Abstract: In a process for the production of urea, substantially pure ammonia and carbon dioxide are reacted in a reaction space (1) from which comes out a reaction mixture subjected to stripping (2) to obtain a partially purified mixture sent to a urea recovery section (3, 4, 7, 8). From the recovery section (3, 4, 7, 8) it is obtained a dilute carbamate solution, which is subjected to stripping (9) with recycling of vapors to the reaction space (1) after condensation (6). This process achieves high conversion yield with reduced energy consumption and low implementation costs.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: May 4, 2004
    Assignee: Urea Casale
    Inventors: Giorgio Pagani, Umberto Zardi
  • Patent number: 6712908
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 30, 2004
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 6689330
    Abstract: Apparatus suitable for the conversion of synthesis gas to liquid hydrocarbon products, comprising a plurality of injector-mixing nozzles, a tank reactor, a gas recycle line having a first end and a second end and a slurry recycle line having a first end and a second end. The plurality of injector-mixing nozzles is arranged at or near the top of the tank reactor, each injector mixing nozzle having a first inlet for a suspension of a catalyst in a liquid medium, at least one second inlet for synthesis gas and an outlet positioned within the tank reactor for discharging a mixture of synthesis gas and the suspension from the injector-mixing nozzles in a downwards direction into the tank reactor. The tank reactor has a first outlet for discharging a product suspension at or near the bottom thereof and a second outlet for a gaseous recycle stream at or near the top thereof.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: February 10, 2004
    Assignee: BP Exploration Operating Company Limited
    Inventors: Graham Walter Ketley, Barry Nay, David Newton