Alkali Metal Containing (li, Na, K, Rb, Or Cs) Patents (Class 423/594.15)
  • Patent number: 7862797
    Abstract: Alkali metal oxide-metal oxide mixed oxide powder in the form of aggregates of pore-free primary particles, comprising from 0.005 to 5% by weight of at least one alkali metal oxide, which has a BET surface area of from 100 to 350 m2/g, has a specific DBP number, expressed as DBP number per square meter of specific surface area, greater than or equal to that of a powder which has only the metal oxide component, has the alkali metal oxide distributed in the core and on the surface of the primary particles. Silicone rubber comprising the alkali metal oxide-metal oxide mixed oxide powder.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: January 4, 2011
    Assignee: EVONIK DEGUSSA GmbH
    Inventors: Kai Schumacher, Helmut Roth, Rainer Golchert, Helmut Mangold, Mario Scholz
  • Publication number: 20100207075
    Abstract: Disclosed is a low-cost metal complex oxide material which has excellent stability at high temperatures and good crystallinity, while placing only a little burden on the environment. Specifically disclosed is a method for producing a metal complex oxide powder represented by the following general formula: ABO3 (wherein A represents an oxygen 12 coordinated metal element and B represents an oxygen 6 coordinated metal element). This method for producing a metal complex oxide powder is characterized in that a chloride containing the element A, a chloride containing the element B and an aqueous solution containing an alkali carbonate are reacted as represented by the reaction formula below for producing a precipitate, and then the thus-produced precipitate is fired. (1?x)CaCl2+x.MCl3+(2+0.5x)Na2Co3?(1?x)CaCO3?+0.5x.
    Type: Application
    Filed: August 27, 2008
    Publication date: August 19, 2010
    Applicant: Universal Entertainment Corporation
    Inventor: Koh Takahashi
  • Patent number: 7759006
    Abstract: Disclosed is a compound represented by the following formula 1. A lithium secondary battery using the same compound as electrode active material, preferably as cathode active material, is also disclosed. LiMP1-xAxO4??[Formula 1] wherein M is a transition metal, A is an element having an oxidation number of +4 or less and 0<x<1. The electrode active material comprising a compound represented by the formula of LiMP1-xAxO4 shows excellent conductivity and charge/discharge capacity compared to LiMPO4.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: July 20, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Jeong Ju Cho
  • Patent number: 7754383
    Abstract: A negative electrode material for a non-aqueous electrolyte secondary battery comprising an alloy including silicon and a transition metal selected from the group consisting of titanium, zirconium, vanadium, molybdenum, tungsten, iron, and nickel; and a silicon oxide film and an oxide film of the transition metal formed on a surface of the alloy wherein the alloy includes an A phase including silicon and a B phase including a crystalline alloy of silicon and the transition metal. The negative electrode material has a silicon oxide film and an oxide film of the transition metal on the surface of the alloy wherein the thickness ratio of the transition metal oxide film to the silicon oxide film is at least 0.44 and smaller than 1.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Teruaki Yamamoto, Masaki Hasegawa, Yasuhiko Bito
  • Publication number: 20100117025
    Abstract: In a lithium transition metal oxide having a layered structure, one is provided, which is particularly excellent as a positive electrode active material of a battery on board of an electric vehicle or a hybrid vehicle in particular. A lithium transition metal oxide having a layered structure is proposed, wherein the ratio of the crystallite diameter determined by Measurement Method 1 according to the Rietveld method with respect to the mean powder particle diameter (D50) determined by the laser diffraction/scattering-type particle size distribution measurement method is 0.05 to 0.20.
    Type: Application
    Filed: January 28, 2008
    Publication date: May 13, 2010
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Tomoya Takeuchi, Shinya Kagei, Naoki Kumada, Keisuke Miyanohara
  • Patent number: 7713504
    Abstract: A process to produce mixed metal oxides and metal oxide compounds. The process includes evaporating a feed solution that contains at least two metal salts to form an intermediate. The evaporation is conducted at a temperature above the boiling point of the feed solution but below the temperature where there is significant crystal growth or below the calcination temperature of the intermediate. The intermediate is calcined, optionally in the presence of an oxidizing agent, to form the desired oxides. The calcined material can be milled and dispersed to yield individual particles of controllable size and narrow size distribution.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: May 11, 2010
    Assignee: Altair Nanomaterials, Inc.
    Inventors: Bruce J. Sabacky, Timothy M. Spitler, Jan Prochazka
  • Patent number: 7713511
    Abstract: A lithium tantalate substrate obtained by working in the state of a substrate a lithium tantalate crystal grown by the Czochralski method is buried in a mixed powder of Al and Al2O3, followed by heat treatment carried out at a temperature kept to from 350 to 600° C., to manufacture a lithium tantalate substrate having volume resistivity which has been controlled within the range of from 1010 to 1013 ?cm. The substrate obtained has a very low pyroelectricity or no pyroelectricity, and it can be made colored and opaque from a colorless and transparent state and also sufficiently has the properties required as a piezoelectric material.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: May 11, 2010
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tomio Kajigaya, Takashi Kakuta
  • Patent number: 7700067
    Abstract: A crystallographically-oriented ceramic including first regions, in which crystal nuclei remain and which contain a specific element in a predetermined concentration range and extend at least partially in a layered shape along a crystal plane, and second regions, which contain the specific element in a different concentration range from the first regions and extend at least partially in a layered shape along the crystal plane. The regions are alternately repeated, and a compositional distribution exists in a direction orthogonal to the crystal plane. In the first region, the concentration of Na is higher, the concentration of K is lower, the concentration of Nb is lower, and the concentration of Ta is higher than the second region, and in the second region, the concentration of Na is lower, the concentration of K is higher, the concentration of Nb is higher, and the concentration of Ta is lower than the first region.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: April 20, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shohei Yokoyama, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Patent number: 7695649
    Abstract: Disclosed are primary materials, precursor materials and final materials as well as methods to prepare these materials. The final materials are mixed lithium transition metal oxides, useful as performance optimized cathode materials for rechargeable lithium batteries. The transition metal is a solid solution mixture of manganese, nickel and cobalt, M=(Mn1-uNiu)1-u-yCoy, with 0.2.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: April 13, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Jens Martin Paulsen, Ki Young Lee, Joon Sung Bae, Mun Ju Kim
  • Patent number: 7691776
    Abstract: The invention relates to an oxidic catalyst containing cesium and tungsten for the synthesis of alkyl mercaptans from alkanols and hydrogen sulfide, and to a process for the production of this catalyst, wherein the molar ratio of cesium to tungsten is <2:1.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 6, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Hubert Redlingshöfer, Christoph Weckbecker, Andreas Dörflein, Michael Rückriegel
  • Publication number: 20100044651
    Abstract: The present invention relates to a process for preparing lithium-rich metal oxides and also the lithium-rich metal oxides which can be obtained by this process. Furthermore, the invention relates to the use of lithium-rich metal oxides for producing a cathode for a battery, in particular a lithium ion battery, and also a cathode for a lithium ion battery which comprises lithium-rich metal oxides.
    Type: Application
    Filed: April 14, 2008
    Publication date: February 25, 2010
    Applicant: BASF SE
    Inventors: Kirill Bramnik, Hartmut Hibst, Julian Prölss
  • Patent number: 7666387
    Abstract: The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 23, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Jack L Collins, Leslie R Dole, Juan J Ferrada, Charles W Forsberg, Marvin J Haire, Rodney D Hunt, Benjamin E Lewis, Jr., Raymond G Wymer
  • Patent number: 7648693
    Abstract: The present invention provides a powderous lithium transition metal oxide with the composition as represented by the below Formula and prepared by solid state reaction in air from a mixed transition metal precursor and Li2CO3, with being practically free of Li2CO3 impurity: LixMyO2 wherein M=M?1?kAk, where M?=Ni1?a?b(Ni1/2Mn1/2)aCob on condition of 0.65?a+b?0.85 and 0.1?b?0.4; A is a dopant; and 0?k?0.05; and x+y=2 on condition of 0.95?x?1.05. The Ni-based lithium transition metal oxide according to the present invention has a well-layered structure, and also improved safety, cycling stability and stability against aging and low gas evolution during storage, when used as an active material for cathode of lithium secondary batteries, because it has a high sintering stability and is substantially free of soluble bases.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: January 19, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Jens M Paulsen, Hong-Kyu Park, Yong Hoon Kwon
  • Patent number: 7625837
    Abstract: A composition, containing vanadium, potassium and a support is disclosed. A method of preparing such composition is also disclosed. The composition is employed in a process to remove a heavy metal from a gaseous feed stream which can optionally include a separate heavy metal adsorption stage.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: December 1, 2009
    Assignee: ConocoPhillips Company
    Inventors: Glenn W. Dodwell, Joseph B. Cross, Marvin M. Johnson, Edward L. Sughrue, II, Jianhua Yao
  • Publication number: 20090253039
    Abstract: A lithium-transition metal complex compound has an nth order hierarchical structure in which n type structures represented by at least one unit of ath order units in a range of 1×10?(a+5) m to 10×10?(a+5) m exist in a complex form, wherein n is a natural number that is 2 or greater, and a is a natural number in a range of 1 to 5. The lithium-transition metal complex may be prepared by heat-treating a mixture including a lithium source, a transition metal source, and solvent in contact with a natural material having a hierarchical structure. A lithium battery includes an electrode including the lithium-transition metal complex compound having the nth order hierarchical structure. The lithium battery can have improved rapid charging characteristics, high power characteristics, and cycle characteristics.
    Type: Application
    Filed: March 6, 2009
    Publication date: October 8, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yoonsok KANG, Joungwon Park, Guesung Kim, Jaegu Yoon
  • Patent number: 7598194
    Abstract: It is aimed at providing an oxynitride powder, which is suitable for usage as a phosphor, is free from coloration due to contamination of impurities, and mainly includes a fine ?-sialon powder. An oxynitride powder is produced by applying a heat treatment in a reducing and nitriding atmosphere, to a precursor compound including at least constituent elements M, Si, Al, and O (where M is one element or mixed two or more elements selected from Li, Mg, Ca, Sr, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), thereby decreasing an oxygen content and increasing a nitrogen content of the precursor.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: October 6, 2009
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Takayuki Suehiro
  • Patent number: 7592288
    Abstract: The invention relates to an oxidic catalyst containing cesium and tungsten for the synthesis of alkyl mercaptans from alkanols and hydrogen sulfide, and to a process for the production of this catalyst, wherein the molar ratio of cesium to tungsten is <2:1.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: September 22, 2009
    Assignee: Evonik Degussa GmbH
    Inventors: Hubert Redlingshöfer, Christoph Weckbecker, Andreas Dörflein, Michael Rückriegel
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Patent number: 7578455
    Abstract: A particulate material is ground more efficiently using a mixture of at least two different sizes of yttrium-stabilized zirconia balls. The method facilitates preparation of photocatalysts with high activity.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: August 25, 2009
    Assignee: General Motors Corporation
    Inventors: Jin D. Kim, Wei Li, Se H. Oh
  • Patent number: 7560089
    Abstract: Grain oriented ceramics constituted of a polycrystalline body having a first perovskite-type alkali-pentavalent metal oxide compound as the main phase, in which a specific crystal plane of each grain constituting the polycrystalline body is oriented. The grain oriented ceramics are obtained by molding a mixture of a first anisotropically-shaped powder A of which developed plane has a lattice matching with a specific crystal plane of the first perovskite-type alkali-pentavalent metal oxide compound and a first reaction material capable of reacting with the first anisotropically-shaped powder A thereby forming at least the first perovskite-type alkali-pentavalent metal oxide compound such that the first anisotropically-shaped powder A is oriented, and by heating them.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 14, 2009
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hisaaki Takao, Yasuyoshi Saito, Toshihiko Tani
  • Patent number: 7547491
    Abstract: Composite cathode active materials comprising a composite oxide and an acid treated with an organic solvent are provided. The composite cathode active materials are prepared by treating mixtures of nickel-based composite oxides and organic acids with organic solvents. The active materials suppress gelation of the electrode slurries for a long period of time, even when the active materials are mixed with fluorine-based polymers, by decreasing the basicity of the slurries and the amount of lithium present on the surfaces of the active materials. As a result, electrode slurries having high stability can be prepared. Cathodes and lithium batteries comprising the slurries have excellent charge-discharge characteristics, including high capacity and excellent high rate discharge characteristics.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: June 16, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-nam Ham, Gue-sung Kim, Young-min Choi
  • Patent number: 7538068
    Abstract: A carbon dioxide gas absorbent includes a porous body containing a lithium complex oxide. The porous body includes pores having a pore diameter distribution such that main pores which consist of first pores with a diameter of 10 to 100 ?m and second pores with a diameter larger than 100 ?m and 500 ?m or smaller occupy 80 to 100%, third pores with a diameter smaller than 10 ?m occupy 0 to 10% and fourth pores with a diameter larger than 500 ?m occupy 0 to 10%, the main pores have a pore diameter distribution such that the first pores occupy 15 to 85% and second pores occupy 15 to 85%.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: May 26, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kato, Toshihiro Imada, Kenji Essaki
  • Publication number: 20090117353
    Abstract: A method for marking an substrate, comprising coating the substrate with a white or colourless solution of a soluble alkali or alkaline earth metal salt of a weak acid and irradiating areas of the substrate to be marked such that those areas change colour, wherein the substrate comprises a polysaccharide material.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 7, 2009
    Inventors: Brian Stubbs, William Green
  • Patent number: 7488465
    Abstract: Single-phase lithium-transition metal oxide compounds containing cobalt, manganese and nickel can be prepared by wet milling cobalt-, manganese-, nickel- and lithium-containing oxides or oxide precursors to form a finely-divided slurry containing well-distributed cobalt, manganese, nickel and lithium, and heating the slurry to provide a lithium-transition metal oxide compound containing cobalt, manganese and nickel and having a substantially single-phase O3 crystal structure. Wet milling provides significantly shorter milling times than dry milling and appears to promote formation of single-phase lithium-transition metal oxide compounds. The time savings in the wet milling step more than offsets the time that may be required to dry the slurry during the heating step.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 10, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin W. Eberman, Jerome E. Scanlan, Chris J. Goodbrake
  • Patent number: 7488464
    Abstract: Methods and systems for processing metal oxides from metal containing solutions. Metal containing solutions are mixed with heated aqueous oxidizing solutions and processed in a continuous process reactor or batch processing system. Combinations of temperature, pressure, molarity, Eh value, and pH value of the mixed solution are monitored and adjusted so as to maintain solution conditions within a desired stability area during processing. This results in metal oxides having high or increased pollutant loading capacities and/or oxidation states. These metal oxides may be processed according to the invention to produce co-precipitated oxides of two or more metals, metal oxides incorporating foreign cations, metal oxides precipitated on active and inactive substrates, or combinations of any or all of these forms.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: February 10, 2009
    Assignee: EnviroScrub Technologies Corporation
    Inventors: Charles F. Hammel, Richard M. Boren
  • Publication number: 20090017382
    Abstract: The invention includes, as a positive electrode material, active material particles comprising a lithium-containing manganese oxide represented by the general formula: Li1+aMn2?x?aMxO4+y where M is a transition metal element other than Mn, 0<x?0.5, ?0.2?y?0.5, and 0?a?0.33. The molar ratio A of M to the total of Mn and M in the surface of the active material particles and the molar ratio B of M to the total of Mn and M in the whole active material particles satisfy the relations: A/B>1.0 and A?0.3. In an X-ray diffraction analysis using CuKa radiation as an X-ray source, the intensity ratio of the largest peak of peaks attributed to an oxide of the transition metal element M to a peak around 2?=36.4° is 0.25 or less.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 15, 2009
    Inventors: Teruaki Yamamoto, Shinichi Waki, Yasuhiko Bito
  • Patent number: 7476376
    Abstract: Disclosed is metal composite oxides having the new crystal structure. Also disclosed are ionic conductors including the metal composite oxides and electrochemical devices comprising the ionic conductors. The metal composite oxides have an ion channel formed for easy movement of ions due to crystallographic specificity resulting from the ordering of metal ion sites and metal ion defects within the unit cell. Therefore, the metal composite oxides according to the present invention are useful in an electrochemical device requiring an ionic conductor or ionic conductivity.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 13, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Seung Tae Hong, Yun Ho Roh, Eung Je Lee, Mi Hyae Park
  • Publication number: 20080247931
    Abstract: The preparation of finely divided, alkali metal-containing metal oxide powders which contain at least one alkali metal and at least one further metal from the group consisting of the transition metals, the remaining main group metals, the lanthanides and actinides is described. Precursor compounds of these components are introduced in solid form or in the form of a solution or a suspension into a pulsation reactor having a gas flow resulting from a flameless combustion and partly or completely converted into the desired multicomponent metal oxide powder.
    Type: Application
    Filed: September 10, 2005
    Publication date: October 9, 2008
    Applicant: UMICORE AG & CO. KG
    Inventors: Rainer Domesle, Stefan Ambrousius, Thomas Kreuzer
  • Publication number: 20080233033
    Abstract: This invention relates to a Polyoxometalate (POM) represented by the formula: (An)m+[HqM16X8W48O184(OH)32]m? or solvates thereof, wherein: A represents a cation, n is the number of the cations A, m is the charge of the polyoxoanion, q is the number of protons and varies from 0 to 12, M represents a transition metal, and X represents a heteroatom selected from P, As and mixtures thereof. This invention also relates to a process to produce such POMs and to a process for the homogeneous or heterogeneous oxidation of organic substrates comprising contacting the organic substrate with such POMs.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Ulrich Kortz, Sib Sankar Mal
  • Publication number: 20080226526
    Abstract: A process for the preparation of a nanoparticulate carbon dioxide acceptor. The acceptor is a mixed metal oxide having at least two metal ions X and Y. The process includes contacting in solution a precursor of an oxide of metal ion X and a precursor of an oxide of metal ion Y; drying said solution to form an amorphous solid; and calcining the amorphous solid to form the acceptor.
    Type: Application
    Filed: April 18, 2006
    Publication date: September 18, 2008
    Applicant: NTNU TECHNOLOGY TRANSFER AS
    Inventors: Magnus Ronning, Esther Ochoa-Fernandez, Tor Grande, De Chen
  • Publication number: 20080226528
    Abstract: The product of a molten alkali metal metalate phase separation can be processed into a purified metal from a metal source. Metal sources include native ores, recycled metal, metal alloys, impure metal stock, recycle materials, etc. The method uses a molten alkali metal metalate as a process medium or solvent in purifying or extracting high value metal or metal oxides from metal sources. Vitrification methods using the silicate glass separation phase can be prepared as is or can be prepared with a particulate phase distributed throughout the silica glass phase and encapsulated and fixed within the continuous glass phase. Tungsten metal can be obtained from an alkali metal tungstate. A typically finely divided tungsten metal powder can be obtained from a variety of tungsten sources including recycled tungsten scrap, tungsten carbide scrap, low grade tungsten ore typically comprising tungsten oxide or other form of tungsten in a variety of oxidation states.
    Type: Application
    Filed: December 7, 2007
    Publication date: September 18, 2008
    Inventor: RODNEY KIETH WILLIAMS
  • Publication number: 20080131357
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Application
    Filed: January 16, 2008
    Publication date: June 5, 2008
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Home, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7381397
    Abstract: Methods and apparatus for preconditioning a lithium niobate or lithium tantalate crystal. At least a portion of a surface of the crystal is covered with a condensed material including one or more active chemicals. The crystal is heated in a non-oxidizing environment above an activating temperature at which the active chemicals contribute to reducing the crystal beneath the covered surface portion. The crystal is cooled from above the activating temperature to below a quenching temperature at which the active chemicals become essentially inactive for reducing the crystal.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: June 3, 2008
    Assignee: Crystal Technology, Inc.
    Inventors: Dieter Hans Jundt, Maria Claudia Custodio Kajiyama
  • Publication number: 20080124265
    Abstract: An anode in a Direct Carbon Fuel Cell (DCFC) operating in a temperature range between 500 and 1200 degrees Celsius is provided. The anode material has high catalytic activity and selectivity for carbon oxidation, sufficient oxygen non-stoichiometry, rapid oxygen chemical diffusion, wide thermodynamic stability window to withstand reducing environment, sufficient electronic conductivity and tolerance to sulfur and CO2 environments. The anode has doped ruthenate compositions A1?xA?xRuO3, AB1?yRuyO3, or A1?xA?xB1?yRuyO3. A and A? may be divalent, trivalent, or tetravalent cation, and B is a multivalent cation. A is among lanthanide series elements La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er or Yb, and dopant A? is from Group IIA, IIIB, or IVB elements. The doped ruthenates can also be a (AB1?yRuyO3) structure or an ordered Ruddlesden-Popper series ((A1?xAx?)n+1(B1?yRuy)nO3n+1) structure where n=1 or 2. The dopant B is among Group IVB, VB, VIB, VIII, IB, and IIB elements.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 29, 2008
    Inventor: Turgut M. Gur
  • Patent number: 7357910
    Abstract: Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 15, 2008
    Assignee: Los Alamos National Security, LLC
    Inventors: Jonathan Phillips, Daniel Mendoza, Chun-Ku Chen
  • Patent number: 7326398
    Abstract: A method for preparation for mesoporous oxide comprising a non silica oxide having a hexagonal pore structure periodicity and an average maximum pore length of from 2 nm to 5 nm, characterized by comprising blending 0.003 mol to 0.01 mol of TaCl5, NbCl5 or a mixture thereof and Al isopropoxide comprising 10 g of an aliphatic linear alcohol and 1 g of a template compound to prepare a mixture for forming a sol solution, adding 5 mol to 35 mol (based on the metal compounds) of water or an aqueous inorganic acid solution to the mixture followed by hydrolysis and polycondensation to give a sol solution, transferring the sol into an oxygen containing atmosphere followed by again at 40° C. to 100° C. to form a gel, and then calcinating the gel in an oxygen containing atmosphere at 350° C. to 550° C.; and the mesoporous oxide obtained by the method.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: February 5, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Tokumitsu Kato
  • Patent number: 7323158
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 29, 2008
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7314682
    Abstract: An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li(2+2x)/(2+x)M?2x/(2+x)M(2?2x)/(2+x)O2??, in which 0?x<1 and ? is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M? is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: January 1, 2008
    Assignee: UChicago Argonne, LLC
    Inventors: Michael M. Thackeray, Jeom-Soo Kim, Christopher S. Johnson
  • Publication number: 20070292763
    Abstract: A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 20, 2007
    Inventors: Sang-Ho Park, Khalil Amine
  • Patent number: 7297322
    Abstract: A process for producing powders of metal compound containing oxygen including the steps of: feeding at least one material selected from a liquid material and a solution material obtained by dissolving solid ingredient in organic solvent via a liquid flow controller into a vaporizer; vaporizing the materials in the vaporizer; adding oxygen; heating; cooling; and crystallizing. Also disclosed is the product formed by this process, and apparatus used in performing the process. The process and the apparatus enable easily mass-producing fine powders of metal compound containing oxygen used as materials for optical crystals, nonlinear crystals or magneto-optical crystals with reasonable production cost.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: November 20, 2007
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Yukichi Takamatsu, Koji Kiriyama, Akira Asano, Takafumi Ishii
  • Patent number: 7291321
    Abstract: A perovskite catalyst is prepared using a ceramic sol-sol methodology comprising preparing slurry in water of an alkaline earth metal salt, a powdered metal salt and a powdered transition metal oxide, adding a polymeric binder to form a paste, drying and comminuting the paste into a powder and heating the powder with a temperature profile to calcination temperatures. In one embodiment the slurry is formed of titanium oxide with barium carbonate and tin chloride in deionized water, and more specifically by a mixture according to Ba (1-0.05x)+TiO2+SnCl2(0.05x) where x is in moles. The perovskite catalyst is preferably used in a process for oxidative coupling of methane. Catalyst performance is enhanced through the addition of halides to the feed gas in the reaction.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: November 6, 2007
    Assignee: HRD Corp.
    Inventors: Ebrahim Bagherzadeh, Abbas Hassan, Aziz Hassan
  • Patent number: 7288242
    Abstract: A lithium-containing complex oxide exhibits a high performance as a cathode active material of a lithium secondary cell or the like and having a high tap density. A granular lithium-containing complex oxide, such as lithium manganese complex oxide, is made up of “complex oxide grains produced by integrating lithium-rich material grains abnormally grown during a firing reaction with the surfaces of the base grains by sintering.” The number of complex oxide grains is not more than 50 per gram of the complex grains. A metal oxide such as manganese oxide and lithium carbonate not more than 5 ?m in average grain size are mixed by means of a mixer which grinds and mixes particles by using a shearing force and heated and fired at a warming rate of not more than 50° C./h., thus producing the lithium-containing complex oxide.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: October 30, 2007
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Hiroshi Tasaki, Yoshio Kajiya
  • Patent number: 7270797
    Abstract: To provide a process for producing a lithium-cobalt composite oxide for a positive electrode of a lithium secondary battery excellent in volume capacity density, safety, charge and discharge cyclic durability, press density and productivity, by using in expensive cobalt hydroxide and lithium carbonate. A mixture having a cobalt hydroxide powder and a lithium carbonate powder mixed so that the atomic ratio of lithium/cobalt would be from 0.98 to 1.01, is fired in an oxygen-containing atmosphere at from 250 to 700° C., and the fired product is further fired in an oxygen-containing atmosphere at from 850 to 1,050° C., or such a mixture is heated at a temperature-raising rate of at most 4° C./min in a range from 250 to 600° C. and fired in an oxygen-containing atmosphere at from 850 to 1,050° C.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: September 18, 2007
    Assignee: Seimi Chemical Co., Ltd.
    Inventors: Manabu Suhara, Naoshi Saito, Kazushige Horichi, Koji Tatsumi
  • Patent number: 7271114
    Abstract: A ceramic powder having a perovskite structure is manufactured by synthesizing a ceramic powder by a dry synthesis process and then heat-treating the synthesized ceramic powder in a solution. The dry synthesis method includes a solid phase synthesis method, an oxalate method, a citric acid method and a gas phase synthesis method.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Chie Kawamura, Atsushi Tanada, Hirokazu Chazono
  • Patent number: 7217406
    Abstract: Granular secondary particles of a lithium-manganese composite oxide suitable for use in non-aqueous electrolyte secondary batteries showing high-output characteristics which are granular secondary particles made up of aggregated crystalline primary particles of a lithium-manganese composite oxide and have many micrometer-size open voids therein with a defined average diameter and total volume of open voids. A process for producing the granular secondary particles which includes spray-drying a slurry of at least a manganese oxide, a lithium source, and an agent for open-void formation to thereby granulate the slurry and then calcining the granules.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 15, 2007
    Assignee: Tosoh Corporation
    Inventors: Koji Tsukuma, Minoru Kuniyoshi
  • Patent number: 7211236
    Abstract: Described is a method for the production of metal oxides by flame spray pyrolysis, in particular mixed metal oxides such as ceria/zirconia, and metal oxides obtainable by said method. Due to high enthalpy solvents with a high carboxylic acid content said metal oxides have improved properties. For example ceria/zirconia has excellent oxygen storage capacity at high zirconium levels up to more than 80% of whole metal content.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 1, 2007
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin J. Stark, Lutz Mädler, Sotiris E. Pratsinis
  • Patent number: 7211237
    Abstract: Single-phase lithium-transition metal oxide compounds containing cobalt, manganese and nickel can be prepared by wet milling cobalt-, manganese-, nickel- and lithium-containing oxides or oxide precursors to form a finely-divided slurry containing well-distributed cobalt, manganese, nickel and lithium, and heating the slurry to provide a lithium-transition metal oxide compound containing cobalt, manganese and nickel and having a substantially single-phase O3 crystal structure. Wet milling provides significantly shorter milling times than dry milling and appears to promote formation of single-phase lithium-transition metal oxide compounds. The time savings in the wet milling step more than offsets the time that may be required to dry the slurry during the heating step.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: May 1, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin W. Eberman, Jerome E. Scanlan, Chris J. Goodbrake
  • Patent number: 7208135
    Abstract: Process for preparing mixed oxides by reacting alkoxides of the elements titanium, zirconium, niobium, tantalum or mixtures thereof with metal hydroxides, metal carboxylates, metal hydroxycarbonates, metal carbonates or mixtures thereof of the elements lithium, sodium, potassium, magnesium, calcium, strontium, barium, zinc, cadmium, aluminum, gallium, yttrium, lanthanum, praseodymium, neodymium, samarium, dysprosium, europium, lead, bismuth or mixtures thereof in a C1–C8-alkanol, in a glycol ether or in a mixture thereof at from 50 to 200° C.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: April 24, 2007
    Assignee: BASF Aktiengesellschaft
    Inventor: Hans-Josef Sterzel
  • Patent number: 7157072
    Abstract: Provided is a cathode composition for lithium secondary battery that includes a lithium-chromium-titanium-manganese oxide that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3, and layered a-LiFeO2 structure. A method of synthesizing the lithium-chromium-titanium manganese oxide includes preparing a first mixed solution by dispersing titanium dioxide (TiO2) in a mixed solution of chrome acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), adding a lithium hydroxide (LiOH) solution to the first mixed solution to obtain homogeneous precipitates, forming precursor powder that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3 by heating the homogeneous precipitates, and heating the precursor powder to form oxide powder having a layered structure.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: January 2, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 7153487
    Abstract: Methods and apparatus for preconditioning a lithium niobate or lithium tantalate crystal. At least a portion of a surface of the crystal is covered with a condensed material including one or more active chemicals. The crystal is heated in a non-oxidizing environment above an activating temperature at which the active chemicals contribute to reducing the crystal beneath the covered surface portion. The crystal is cooled from above the activating temperature to below a quenching temperature at which the active chemicals become essentially inactive for reducing the crystal.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: December 26, 2006
    Assignee: Crystal Technology, Inc.
    Inventors: Dieter Hans Jundt, Maria Claudia Custodio Kajiyama, Jason Louis Spitzer