Alkali Metal Containing (li, Na, K, Rb, Or Cs) Patents (Class 423/594.15)
  • Patent number: 7147834
    Abstract: A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus Wong, Yuanbing Mao
  • Patent number: 7138102
    Abstract: A method for manufacturing a highly-crystallized double oxide powder composed of a single crystal phase which can be used as a phosphor material, a dielectric material, a magnetic material, etc. The method involves forming fine droplets of a raw material solution containing a raw material compound that includes at least one metal element and/or at least one semi-metal element that constitutes a double oxide, and heating these droplets at a high temperature, wherein the raw material solution is a solution which exhibits only one main peak attributable to the decomposition reaction of the raw material compound or a reaction intermediate thereof in a DTA profile when the solution is dried and solidified and subjected to TG-DTA measurement.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Yoshikazu Nageno, Hidenori Ieda, Naoko Tanaka
  • Patent number: 7090822
    Abstract: A cathode electroactive material for use in lithium ion secondary cells, process for producing the material, and lithium ion secondary cells using the cathode electroactive material, wherein the electroactive material predominantly comprises an Li—Mn composite oxide particles with the spinel structure and particles of the electroactive material have an average porosity of 15% or less, the porosity being calculated by employing the following equation: Porosity (%)=(A/B)×100 (wherein A represents a total cross-section area of pores included in a cross-section of one secondary particle, and B represents the cross-section area of one secondary particle), a tapping density of 1.9 g/ml or more, a size of crystallites of 400 ?–960 ?, a lattice constant of 8.240 ? or less.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: August 15, 2006
    Assignee: Showa Denko K.K.
    Inventors: Takao Noda, Akihiko Shirakawa, Joseph Gaze, Yoshiaki Yamauchi, Fumiyoshi Ono
  • Patent number: 7078009
    Abstract: Lepidocrocite lithium potassium titanate characterized as having a composition represented by the formula K0.5-0.7Li0.27Ti1.73O3.85-3.95, and preferably having an arithmetic mean of major and minor diameters of 0.1–100 ?m, a proportion of a major to minor diameter of from 1 to below 10, a mean thickness of 50–5,000 nm and a flaky shape. A friction material characterized as containing 1–80% by weight of the lepidocrocite lithium potassium titanate as a friction control agent.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 18, 2006
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Hiroshi Ogawa, Nobuki Itoi, Kousuke Inada
  • Patent number: 7060206
    Abstract: Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4–11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 13, 2006
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer, Ming Dong
  • Patent number: 7049031
    Abstract: A positive electrode for a non-aqueous lithium cell comprising a LiMn2?xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0?x?0.15, having one or more lithium spine oxide LiM?2O4 or lithiated spinel oxide Li1+yM?2O4 compounds on the surface thereof in which M? are cobalt cations and in which 0?y?1.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: May 23, 2006
    Assignee: The University of Chicago
    Inventors: Christopher S. Johnson, Michael M. Thackeray, Arthur J. Kahaian
  • Patent number: 7033555
    Abstract: A low temperature contaminant limiting process for lithiating hydroxides and forming lithiated metal oxides of suitable crystalinity in-situ. M(OH)2 is added to an aqueous solution of LiOH. An oxidant is introduced into the solution which is heated below about 150° C. and, if necessary, agitated. M may be selected from cobalt, nickel and manganese. The resultant LiMO2 becomes crystallized in-situ and is subsequently removed.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: April 25, 2006
    Assignee: Inco Limited
    Inventors: Feng Zou, Mohammad Jahangir Hossain, Juraj Babjak, Quan Min Yang, Samuel Walton Marcuson
  • Patent number: 7014881
    Abstract: An inert anode 50, for use in an electrolytic cell 12 for producing metals such as aluminum, is made by providing chemical source materials 100 such as at least two of metal salts, metal particles, or metal oxides and dissolving them to form a solution or a slurry 110, followed by adding a base 120 and adjusting the pH so that a gel 130 is formed which is dried and calcined 150, 160, 190 to provide a blend of metal oxide powder 200 which can be pressed and sintered 220 to form an inert anode 50.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 21, 2006
    Assignee: Alcoa Inc.
    Inventors: Xinghua Liu, Siba P. Ray, Alfred F. LaCamera, Douglas A. Weirauch, Mark L. Weaver, Robert A. DiMilia, Kirk J. Malmquist, Frankie E. Phelps, Joseph M. Dynys
  • Patent number: 7008608
    Abstract: Provided is a lithium-cobalt-manganese oxide having the formula Li[CoxLi(1/3?x/3)Mn(2/3?2x/3)]O2(0.05<X<0.9) which provide a stable structure and a superior discharge capacity, and the method of synthesizing of the same. The method of synthesizing the oxides according to the present invention comprises: preparing an aqueous solution of lithium salt, cobalt salt, and manganese salt; forming a gel by burning the aqueous solution; making oxide powder by burning the gel; forming a fine oxide powder having a layered structure by the twice of treatments. The lithium-cobalt-manganese oxide synthesized according to the present invention has a stable and superior electrochemical characteristic. The oxide is synthesized by simple and low cost heat treatment process.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 7, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Joon Park, Young Sik Hong, Xianglan Wu, Kwang Man Kim, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 6994807
    Abstract: An electrolytic perovskite and method for synthesizing the electrolytic perovskite are described herein. Basically, the electrolytic perovskite is a solid that has an ion conductivity greater than 10?5 S/cm in a temperature range of 0–400° C., wherein the ion is Li+, H+, Cu+, Ag+, Na+ or Mg2+. For example, Li1/8Na3/8La1/4Zr1/4Nb3/4O3 (5.26×10?4 S/cm) and Li1/8K1/2La1/8NbO3 (2.86×10?3 S/cm) are two electrolytic perovskites that have been synthesized in accordance with the present invention that have a high Li+ conductivity at 20° C. Both compositions have been confirmed in experiments to conduct Ag+ and H+ ions, as well. The present invention also includes a solid proton conductor that can be formed from the electrolytic perovskite by replacing the ions located therein with protons.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 7, 2006
    Assignee: Corning Incorporated
    Inventor: Cameron W. Tanner
  • Patent number: 6974566
    Abstract: A process to produce mixed metal oxides and metal oxide compounds. The process includes evaporating a feed solution that contains at least two metal salts to form an intermediate. The evaporation is conducted at a temperature above the boiling point of the feed solution but below the temperature where there is significant crystal growth or below the calcination temperature of the intermediate. The intermediate is calcined, optionally in the presence of an oxidizing agent, to form the desired oxides. The calcined material can be milled and dispersed to yield individual particles of controllable size and narrow size distribution.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 13, 2005
    Assignee: Altair Nanomaterials Inc.
    Inventors: Bruce J. Sabacky, Timothy M. Spitler, Jan Prochazka
  • Patent number: 6960335
    Abstract: Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5<x<1.33, 0?y?0.5 and have an average primary particle diameter from 5 nm to 300 nm, preferably between 5 and 100 nm, and M is at least one cation dopant. The powders can be formed into active cathode materials in Li-ion and Li rechargeable batteries.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: November 1, 2005
    Assignee: Nanopowder Enterprises Inc
    Inventors: Amit Singhal, Ganesh Skandan
  • Patent number: 6924064
    Abstract: A positive active material for non-aqueous electrolyte secondary battery is provided comprising lithium manganese oxide having such a spinel structure that the half-width (2?) of the reflection peak corresponding to 440 plane as determined by X-ray diffractometry using CuK? ray is not greater than 0.145°. The use of this positive active material makes it possible to obtain a secondary battery which exhibits a good cycle life performance at room temperature and high temperatures and a reduced capacity drop when stored at high temperatures.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: August 2, 2005
    Assignee: Japan Storage Battery Co., Ltd.
    Inventors: Atsuro Kondo, Junichi Toriyama, Masanao Terasaki
  • Patent number: 6913855
    Abstract: A method for making an active material comprises the steps of forming a slurry, spray drying the slurry to form a powdered precursor composition, and heating the powdered precursor composition at a temperature and for a time sufficient to form a reaction product. The slurry has a liquid phase and a solid phase, and contains at least an alkali metal compound and a transition metal compound. Preferably the liquid phase contains dissolved alkali metal compound, and the solid phase contains an insoluble transition metal compound, an insoluble carbonaceous material compound, or both. Electrodes and batteries are provided that contain the active materials.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 5, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Johnnie Stoker, James Hodge
  • Patent number: 6875416
    Abstract: The invention relates to a method for producing lithium-transition metal mixtures of general formula Lix(M1yM21-y)nOnz, wherein M1 represents nickel, cobalt or manganese, M2 represents chromium, cobalt, iron, manganese, molybdenum or aluminium, and is different from M1, n is 2 if M1 represents manganese and is 1 otherwise, x is comprised between 0.9 and 1.2, y is comprised between 0.5 and 1.0 and z is comprised between 1.9 and 2.1. According to the inventive method, an intimate mixture composed of transition metal compounds containing oxygen and of a lithium compound containing oxygen is calcinated, said mixture being obtained by processing a solid powder transition metal compound with a solution of said lithium compound, and then drying. At least the M1 compound is used in powder form having a specific surface of at least 20 m2/g (BET) and calcination is carried out in a fluidised bed.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: April 5, 2005
    Assignee: H. C. Starck GmbH & Co
    Inventors: Mathias Benz, Wolfgang Kummer, Evelyn Pross, Josef Schmoll, Wolfgang Schweda, Daniel Duff, Ricarda Leiberich, Christoph Schild, Ulrich Krynitz, Juliane Meese-Marktscheffel, Viktor Stoller
  • Patent number: 6838072
    Abstract: The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O2 gas wherein the O2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 4, 2005
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Peter C. Kong, Robert J. Pink, Lee O. Nelson
  • Patent number: 6835368
    Abstract: This invention relates to the field of materials of the photorefractive crystal. The composition of these crystals is Li1−xNb1+yO3: Fem, Mn, where M can be magnesium, indium, or zinc; when using q to denote the ion valence of M (q=2 when M is Mg or Zn, and q=3 when M is In), the values of x, y, m, and n are in the range of 0.05≦x≦0.13, 0.00≦y≦0.01, 5.0×10−5≦m≦7.5×10−4, and 0.02≦qn≦0.13. This invention greatly improves the photorefractive properties of LiNbO3 crystals: makes it have a high diffraction efficiency (more than 68%), a fast response speed for photorefraction (an order of magnitude faster than iron doped LiNbO3), and a high resistance to optical scattering (the light intensity threshold to photorefractive fan scattering near two orders of magnitude larger than LiNbO3: Fe). This invention is an excellent three-dimensional optical storage material and has a vast potential market.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 28, 2004
    Assignee: Nankai University
    Inventors: Yongfa Kong, Jingjun Xu, Guangao Li, Qian Sun, Baiquan Tang, Hui Huang, Ziheng Huang, Shaolin Chen, Xiaojun Chen, Guangyin Zhang
  • Publication number: 20040241546
    Abstract: Disclosed is a process for producing a secondary battery cathode material by calcining raw materials. The process is characterized by calcining the raw materials together with one or more substances, which are selected from the group consisting of hydrogen, water and water vapor, and conductive carbon and/or a substance, which can form conductive carbon by pyrolysis, added thereto. As crystals of the secondary battery cathode material obtained by this process have been controlled fine sizes, the secondary battery cathode material promotes movements of ions of an alkali metal led by lithium between the interiors of grains of the cathode material and an electrolyte to suppress polarization in an electrode reaction, and further, increases an area of contact between the positive material and a conductivity-imparting material to provide improved conductivity so that improvements are assured in voltage efficiency and specific battery capacity.
    Type: Application
    Filed: January 30, 2004
    Publication date: December 2, 2004
    Inventors: Naoki Hatta, Shigeto Okada, Jun-ichi Yamaki
  • Patent number: 6818356
    Abstract: A solid amorphous electrolyte composition for a thin-film battery. The electrolyte composition includes a lithium phosphorus oxynitride material containing a sulfide ion dopant wherein the atomic ratio of sulfide ion to phosphorus ion (S/P) in the electrolyte ranges greater than 0 up to about 0.2. The composition is represented by the formula: LiwPOxNySz, where 2x+3y+2z=5+w, x ranges from about 3.2 to about 3.8, y ranges from about 0.13 to about 0.46, z ranges from greater than zero up to about 0.2, and w ranges from about 2.9 to about 3.3. Thin-film batteries containing the sulfide doped lithium oxynitride electrolyte are capable of delivering more power and energy than thin-film batteries containing electrolytes without sulfide doping.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: November 16, 2004
    Assignee: Oak Ridge Micro-Energy, Inc.
    Inventor: John B Bates
  • Publication number: 20040214084
    Abstract: Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
    Type: Application
    Filed: May 17, 2002
    Publication date: October 28, 2004
    Applicant: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6780394
    Abstract: A perovskite feedstock (powder or preform) is placed in a high-pressure cell of a high pressure/high temperature (HP/HT) apparatus and subjected to pressures in excess of about 2 kbar and temperatures above about 800° C. for a time adequate to increase the density of the preform.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 24, 2004
    Assignee: Diamond Innovations, Inc.
    Inventors: Suresh S. Vagarali, John W. Lucek
  • Patent number: 6770256
    Abstract: Metal oxides having a perovskite or perovskite-like crystal structure are prepared by a process comprising subjecting a mixture of starring powders to a high energy milling sufficient to induce chemical reaction of the components and thereby directly mechanosynthesize said metal oxide in the form of a perovskite or a perovskite-like material having a nanocrystalline structure as determined by X-ray diffractometry. The process according to the present invention is simple, efficient, not expensive and does not require any heating step for producing a perovskite that may easily show a very high specific surface area. Another advantage is that the perovskite obtained according to the present invention also has a high density of lattice defects thereby showing a higher catalytic activity, a characteristic which is highly desirable in their eventual application as catalysts and electronic conductors.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: August 3, 2004
    Assignee: Universite Laval
    Inventors: Serge Kaliaguine, André Van Neste
  • Patent number: 6756154
    Abstract: A cathode active material for a non-aqueous electrolyte secondary cell having a c-axis length of lattice constant of 14.080 to 14.160 Å, an average particle size of 0.1 to 5.0 &mgr;m, and a composition represented by the formula: LiCo(1−x−y)MnxMgyO2 wherein x is a number of 0.008 to 0.18; and y is a number of 0 to 0.18. This cathode active material is capable of maintaining an initial discharge capacity required for secondary cells and showing improved charge/discharge cycle characteristics under high temperature conditions.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: June 29, 2004
    Assignee: Toda Kogyo Corporation
    Inventors: Hideaki Maeda, Shoichi Fujino, Mitsuaki Hatatani, Hiroyasu Watanabe, Norimiki Sugiyama, Hideaki Sadamura
  • Patent number: 6753110
    Abstract: The invention disclosed relates to a compound of molecular formula LixCryMn2−yO4+z, wherein 2.2<x<4, 0<y<2 and z≧0, and to the use of this compound as a cathode material in secondary lithium and lithium ion cells.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: June 22, 2004
    Assignee: National Research Council of Canada
    Inventors: Yeong-Chang Yoo, Do-Young Seung, Isobel Davidson
  • Publication number: 20040091781
    Abstract: A lithium secondary battery of the present invention includes: a positive electrode containing a positive active substance capable of reversibly occluding and releasing lithium; a negative electrode containing a negative active substance capable of reversibly occluding and releasing lithium; and an electrolyte having lithium conductivity, wherein the positive active substance contains an oxide including lithium and transition metal, and a composition ratio among the lithium, the transition metal and oxygen in the oxide is in at least one selected from the following states:
    Type: Application
    Filed: November 7, 2003
    Publication date: May 13, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Miyuki Nakai, Masashi Shoji, Emiko Igaki, Masakazu Tanahashi
  • Patent number: 6730281
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 4, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6713037
    Abstract: A process method for producing a lithium based mixed oxide of the formula LiM′x . . . Oy through the steps of combining a lithium oxide with a second oxide having the base metal element (M′) at room temperature; and applying to the combination, a high energy milling process, wherein the high energy milling process obtains, without the addition of substantial external heat being added to the synthesis, a chemical synthesis of a composite oxide of the above formula, having crystallites of nanometer dimension.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 30, 2004
    Assignee: Nanox, Inc.
    Inventor: Andre Van Neste
  • Patent number: 6713039
    Abstract: A lithium-manganese oxide for use in a lithium secondary cell cathode, having a spinel structure expressed by a chemical compositional formula of LixMn2O4-zFz (1.12≦X≦1.20, 0<Z<0.16) and having a lattice constant ranging from 8.220 to 8.230 Å, the lithium-manganese oxide including electrolytic or chemically synthesized manganese dioxide, lithium salt, and fluoride.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: March 30, 2004
    Assignee: Kyushu Ceramics Industry Co., Ltd.
    Inventors: Hiroyuki Tabata, Kazue Matsui, Noriko Anan
  • Patent number: 6699456
    Abstract: The invention relates to a method for producing lithium metal oxides, comprising at least one annealing stage. The inventive method is characterized in that at least one annealing stage consists of a treatment with microwave energy.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 2, 2004
    Assignee: Honeywell International Inc
    Inventors: Horst Krampitz, Michael Fooken
  • Patent number: 6699449
    Abstract: This invention relates to a process for the production of an oxide of a metal A by heating precursors of the oxide of a metal A, in the presence of an oxygen partial pressure control agent comprising an oxide of a metal B that is capable of assuming multiple valence numbers. The process is carried out under a condition that an ionization tendency relationship of Ai+<Bj+<A0 is satisfied, where i is a valence number of the metal A in the oxide to be produced and j is a valence number of the metal B in the oxygen partial pressure control agent.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: March 2, 2004
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Naoki Shirakawa, Shin-Ichi Ikeda, Hiroshi Bando
  • Patent number: 6620400
    Abstract: The present invention includes substantially single-phase lithium metal oxide compounds having hexagonal layered crystal structures that are substantially free of localized cubic spinel-like structural phases. The lithium metal oxides of the invention have the formula Li&agr;M&bgr;A&ggr;O2, wherein M is one or more transition metals, A is one or more dopants having an average oxidation state N such that +2.5≦N≦+3.5, 0.90≦&agr;≦1.10, and &bgr;+&ggr;=1. The present invention also includes dilithiated forms of these compounds, lithium and lithium-ion secondary batteries using these compounds as positive electrode materials, and methods of preparing these compounds.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: September 16, 2003
    Assignee: FMC Corporation
    Inventors: Yuan Gao, Marina Yakovleva, Hugh H. Wang, John F. Engel
  • Publication number: 20030124424
    Abstract: Disclosed is a positive electrode active material for a lithium ion secondary battery, including lithium-transition metal composite oxide of a layer crystal structure, in which the lithium-transition metal composite oxide contains an element that improves conductivity of electrons in the lithium-transition metal composite oxide. Use of this positive electrode active material can improve cycle characteristics, high rate characteristics and thermal stability of lithium ion secondary batteries. Furthermore, by use of this positive electrode active material, gas generation in batteries can be decreased.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 3, 2003
    Applicant: Nichia Corporation
    Inventors: Takeshi Takahashi, Masuhiro Morizaki, Atsushi Takeoka, Junichi Tokuno