Nickel Coating Patents (Class 427/438)
  • Patent number: 6790481
    Abstract: A corrosion-resistant, copper-finned heat exchanger for a water heater is provided. The heat exchanger includes a conduit through which water runs, heat-transfer fins extending from the conduit and an anti-corrosive coating containing electroless nickel. The heat-transfer fins contain copper, and the coating is deposited directly onto at least one of the copper heat-transfer fins.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 14, 2004
    Assignee: AOS Holding Company
    Inventors: Charles J. Bishop, Ming C. Kuo
  • Patent number: 6783807
    Abstract: The surfaces of apparatuses and apparatus parts for chemical plant construction, including, for example, apparatus, container and reactor walls, discharge apparatuses, fittings, pumps, filters, compressors, centrifuges, columns, heat exchangers, dryers, comminuting machines, internals, packings and mixing elements, are coated by a process wherein protuberances having a mean height of from 100 nm to 50 &mgr;m with a mean spacing of from 100 nm to 100 &mgr;m are produced on the surface to be coated and the coating is applied thereon by currentless deposition of a metal layer or of a metal-polymer dispersion layer with the aid of a plating bath which contains a metal electrolyte, a reducing agent and optionally a polymer or polymer blend to be deposited, in dispersed form.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: August 31, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Hüffer, Thilo Krebs, Klaus-Dieter Hungenberg, Ingolf Kühn, Ekkehard Jahns, Christian Lach, Harald Keller, Andreas Pfau, Thomas Frechen, Bernd Diebold, Peter Dillmann
  • Patent number: 6780456
    Abstract: A work piece is mixed with Ni pieces having an average diameter of 1 mm and exhibiting catalytic activity to oxidation reaction of sodium phosphinate (NaH2PO2) added as a reducing agent in a plating bath containing the reducing agent and a Ni salt to form a Ni—P film on an electrode made of Cu, Ag or Ag—Pd by auto-catalytic electroless plating. Then, the work piece is dipped in a plating bath containing an Au salt to form an Au film on the surface of the Ni—P film by substitutional electroless plating. This method is capable of forming a desired plating film only on a desired portion at a low cost.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: August 24, 2004
    Assignee: Murata Manufactruing Co., Ltd.
    Inventors: Tatsuo Kunishi, Toshi Numata, Junichi Saitoh, Yukio Sakabe
  • Patent number: 6780467
    Abstract: The present invention provides a method for metal plating which makes it possible to perform electroless plating in a favorable manner even on materials difficult to apply electroless plating, and a pretreatment agent for this method. An article to be plated is treated with a pretreatment agent which has been prepared by mixing a solution of a silane coupling agent having a metal-capturing functional group in its molecule and a solution containing a metal that shows catalytic activity in the deposition of a plating metal such as copper, nickel or the like from an electroless plating solution onto the surface of an article to be plated so that the above-mentioned metal is captured by the above-mentioned silane coupling agent, and then adding a reducing agent. Afterward, electroless plating is performed so that a metal thin film is formed on the surface of the article pretreated above. Then, desired metal plating can be performed.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: August 24, 2004
    Assignee: Nikko Materials Co., Ltd.
    Inventor: Toru Imori
  • Patent number: 6773760
    Abstract: A method for metallizing a surface of substrates is disclosed. Particularly, nonhomogeneous heating deposition occurs by setting the surface and the heater in an electroless plating reactor at different temperatures. Moreover, an adjustable gap is defined between the substrate being metalized and heating source board. The deposit can securely adhere to the surface of the substrate for gap creates and activates metallic nanoparticles, which possess higher activity and bonding strength to the surface. Accordingly, metallization of the surface of the substrate can be easily achieved without using precious metals and carcinogenic materials.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: August 10, 2004
    Inventors: Yuh Sung, Ming-Der Ger, Yu-Hsien Chou, Bing-Joe Hwang
  • Patent number: 6767817
    Abstract: A method and apparatus are disclosed for forming a tapered contact structure over a contact pad. The tapered contact structure may be used to securely anchor an overlying solder bump or solder ball. Additionally, the tapered contact structure allows the use of either larger contact pads or, alternately, allows a greater density of contact pads to be achieved on an integrated circuit substrate.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: July 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Joseph T. Lindgren
  • Patent number: 6767392
    Abstract: The present invention provides a non-cyanide displacement gold plating solution with which even an electroless nickel-boron plated or electrolytic nickel plated substrate can be subjected to displacement gold plating with good adhesion properties and high solderability. The displacement gold plating solution in accordance with the present invention contains 0.01 to 1.0 g/L (expressed in terms of gold concentration) of sodium gold sulfite or ethylene diamine complex of sodium gold sulfite, 10 to 100 g/L of sulfite, 5 to 50 g/L of organic carboxylic acid or salt thereof, and 5 to 50 g/L of ethylene diamine tetraacetic acid or salt thereof, and has a pH value in the weak acid range of 4.5 to 6.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: July 27, 2004
    Assignee: Electroplating Engineers of Japan Limited
    Inventors: Katsunori Hayashi, Yoshimasa Hirose
  • Patent number: 6761929
    Abstract: A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 13, 2004
    Assignee: Research Triangle Institute
    Inventor: Ashok S. Damle
  • Patent number: 6733823
    Abstract: A method of electrolessly gold plating copper on a printed circuit board (PCB). Starting with a copper patterned PCB, steps include: clean with ultrasonic agitation with the PCB initially oriented vertically and gradually moved to a 45° angle; rinse; sulfuric acid bath with ultrasonic and mechanical agitation; rinse; another sulfuric acid bath with ultrasonic and mechanical agitation; plate the copper with palladium with ultrasonic agitation with the PCB initially oriented at a 45° angle and flipped half way through to opposing 45° angle; rinse; post dip in sulfuric acid; rinse; electrolessly nickel plate with mechanical agitation; rinse; nitrogen blow dry; visual inspection for nickel coverage of the copper; hydrochloric acid bath with manual agitation; rinse; if full nickel coverage was not achieved, repeat preceding steps starting with second sulfuric acid bath; gold flash plate to establish a first layer of gold; rinse; autocatalytic gold plate; rinse; and nitrogen blow dry.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 11, 2004
    Assignee: The Johns Hopkins University
    Inventors: David M. Lee, Arthur S. Francomacaro, Seppo J. Lehtonen, Harry K. Charles, Jr.
  • Patent number: 6706329
    Abstract: A method for locally nickel-plating an aluminum alloy fin structure including placing the aluminum alloy fin structure on a sponge that is located at the bottom of a “zinc” tank containing a volume of zinc chemical solution for zinc plating; and thereafter rotating the aluminum alloy fin structure and immersing the rotated aluminum alloy fin structure in a volume of nickel chemical solution of a “nickel” tank to plate nickel onto the aluminum alloy fin structure.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 16, 2004
    Inventor: Ming-Ho Chien
  • Patent number: 6706422
    Abstract: There is provided an electroless Ni—B plating liquid for forming, a Ni—B alloy film on at least part of the interconnects of an electronic device having an embedded interconnect structure, the electroless Ni—B plating liquid comprising nickel ions, a complexing agent for nickel ions, a reducing agent for nickel ions, and ammonums (NH4+). The electroless Ni—B plating liquid can lower the boron content of the resulting plated film without increasing the plating rate and form a Ni—B alloy film having an FCC crystalline structure.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: March 16, 2004
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Hiroaki Inoue, Kenji Nakamura, Moriji Matsumoto, Hirokazu Ezawa, Masahiro Miyata, Manabu Tsujimura
  • Patent number: 6685990
    Abstract: Abnormal nodule formation during electroless plating, e.g., of amorphous NiP “seed” layers utilized in the manufacture of magnetic recording media, is eliminated or substantially reduced by performing the electroless plating process in an apparatus employing polymeric or polymer-based materials which are substantially resistant to degradation upon prolonged contact with the electroless plating bath at an elevated temperature, i.e., release of soluble, low molecular weight, carbon-containing species which are incorporated in the electroless plating deposit and act as nucleation centers for abnormal growth leading to nodule formation. Suitable degradation-resistant polymeric materials for use as fittings, piping, racks, tanks, etc. of the electroless plating apparatus include fluorine-containing hydrocarbons and fluorocarbons.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: February 3, 2004
    Assignee: Seagate Technology LLC
    Inventors: Linda Lijun Zhong, Connie Chunling Liu, Shawn A. Mawla, Jeff Duane St. John, Jeffrey Lee Petrehn
  • Publication number: 20040005468
    Abstract: An improved process for producing a more uniform deposition of the nickel on the surface of a silicon solar cell comprising the steps of immersing the silicon solar cell into an activator solution comprising gold and a fluoride salt, and subsequently immersing the solar cell into an electroless nickel plating solution. The process provides an improved deposition of nickel on the silicon solar cell, and produces a more uniform deposition of nickel as compared to the prior art. Subsequent to the nickel deposition step, the solar cell may be sintered to produce a nickel silicide layer.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventor: Carl P. Steinecker
  • Patent number: 6669997
    Abstract: A process for coating an object formed of magnesium or a magnesium alloy comprising the steps of: immersion coating the object in a sonicated bath to form an undercoat and topcoating the object to form a topcoat. When desirable to protect against topcoat failure, the undercoat may be equally noble or more noble than the topcoat. If topcoat failure is not a concern, the nobility of the topcoat relative to the undercoat need not be considered. The process promotes uniform coating of a magnesium and its alloys.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: December 30, 2003
    Assignee: National Research Council of Canada
    Inventors: Ben Li Luan, Joy Elizabeth Gray
  • Publication number: 20030232148
    Abstract: This invention relates to aqueous electroless nickel plating solutions, and more particularly, to nickel plating solutions based on nickel salts of alkyl sulfonic acids as the source of nickel ions. The plating solutions utilize, as a reducing agent, hypophosphorous acid or bath soluble salts thereof selected from sodium hypophosphite, potassium hypophosphite and ammonium hypophosphite. The electroless nickel plating solutions of the invention are free of added nickel hypophosphite, and free of alkali or alkaline earth metal ions capable of forming an insoluble orthophosphite.
    Type: Application
    Filed: June 18, 2002
    Publication date: December 18, 2003
    Inventor: George E. Shahin
  • Patent number: 6658967
    Abstract: A cutting tool comprising a metal plate having a central aperture, a forwardly extending blade and a rearwardly extending tang having a second aperture offset from the central aperture, wherein the plate is coated with an electroless nickel layer. Also included is a first elongated member comprising a first handle terminating at a distal end by a jaw and a second elongated member comprising a second handle. The first and second members are pivotally connected to the plate at the central and second apertures by couplers respectively, so that the blade and jaw pivotably move in response to pivotable movement of the first and second members about the coupler in the central aperture.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 9, 2003
    Assignee: Aquapore Moisture Systems, Inc.
    Inventors: Alan Rutkowski, Ken Danio, Ron Smith
  • Patent number: 6638564
    Abstract: A method of electroless plating for processing a plating surface to form a barrier layer being capable of uniformly forming a barrier layer and reducing the consumption of a processing solution, comprising a step of feeding a processing solution used in at least one of the pre-processing steps of the electroless plating and the electroless plating step to the plating surface for puddling treatment, or, using a processing solution at least containing, with respect to one mole of a first metallic material supplying a main ingredient of the barrier layer, three or more moles of a completing agent and three or more moles of reducing agent and having a pH value adjusted to 9 or more and stored in an atmosphere of an inert gas or ammonia gas, and a corresponding electroless plating apparatus.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: October 28, 2003
    Assignee: Sony Corporation
    Inventors: Yuji Segawa, Akira Yoshio, Masatoshi Suzuki, Katsumi Watanabe, Shuzo Sato
  • Publication number: 20030194494
    Abstract: ABSTRACT OF THE DISCLOSURE A method for forming the soldering layer of fiber array substrate surface has been disclosed herein. A plurality of fiber array bases having V-shape grooves are formed on a substrate, and a solder layer is formed on the whole substrate via chemical plating method of following steps: forming a layer of nickel/chromium (Ni/Cr) alloy or aluminum (Al) metal on said substrate through evaporation or sputtering; treating said surface of said substrate having V-shape grooves with a sensitizing solution for plating said surface with Sn2+, wherein said sensitizing solution comprises deionized water and SnCl2; treating said sensitized surface of said substrate with an activating solution for precipitating catalytic element Pd0 on said surface, wherein said sensitizing solution comprises 2 to 10 g/l of PdCl2 and 0.01 to 0.1 M HCl; and (E) immersing said treated surface into an electroless nickel plating solution to form a nickel metal layer on said treated surface.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 16, 2003
    Applicant: RiTek Corporation
    Inventors: Chung-I Chiang, Ming-Jen Wang, Kun-Hsien Cheng, Hong-Jueng King, Huei-Pin Huang, Chwei-Jing Yeh
  • Patent number: 6630203
    Abstract: The present invention provides a unique method for the electroless co-deposition of metal and hard particles on an electrical contact surface to provide electrical, thermal, and mechanical connections between the particle enhanced contact surface and an opposing contact surface, and to enhance the thermal and electrical conductivity between the contact surfaces and their corresponding substrates. The innovative method is able to uniformly deposit metal and particles of any shape, and with a wide range of density and sizes, on contact surfaces, and can be adjusted to provide any desired surface area coverage in desirable deposition patterns. The co-deposited contact surface can, for example, be easily joined to another surface of any type by nonconductive adhesive, resulting in a connection that is mechanically robust, chemically inert, and inherently electrically conductive.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: October 7, 2003
    Assignee: NanoPierce Technologies, Inc.
    Inventors: Robert J. Bahn, Fred A. Blum, Herbert J. Neuhaus, Bin Zou
  • Patent number: 6616967
    Abstract: An improved wire bonding process for copper-metallized integrated circuits is provided by a nickel layer that acts as a barrier against up-diffusing copper. In accordance with the present invention the nickel bath is placed and remains in hydrogen saturation by providing a piece of metal that remains in the nickel plating tank before and during the plating process.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: September 9, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Howard R. Test
  • Patent number: 6617047
    Abstract: The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction—which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements—wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: September 9, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Hüffer, Thilo Krebs, Wolfgang Loth, Bernd Rumpf, Jürgen Sturm, Bernd Diebold, Juergen Korkhaus, Joachim Nilges, Axel Franke
  • Patent number: 6602548
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: August 5, 2003
    Assignee: Honeywell International Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Patent number: 6599563
    Abstract: A method and apparatus for improving interfacial chemical reactions in electroless depositions of metals, in which the substrate to be plated is pre-heated prior to its immersion in the various processing solutions that require elevated temperatures, and especially before immersion in the electroless plating solution. The pre-heating is carried out to a temperature that is needed to bring about the desired chemical reaction at the substrate-solution interface, allowing the bath of that process step to operate significantly below the temperature that would have been needed if the panel had not been pre-heated, and below the solution temperature of current practice. According to another aspect of the present invention, the electroless plating apparatus for plating a workpiece operates in a vertical mode and it comprises a heating station, with the panel to be plated returning to the heating station as dictated by the temperature required for a given process step.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: July 29, 2003
    Assignee: J.G. Systems Inc.
    Inventor: John Grunwald
  • Publication number: 20030129310
    Abstract: The invention includes a method of electroless deposition of nickel over an aluminum-containing material. A mass is formed over the aluminum-containing material, with the mass predominantly comprising a metal other than aluminum. The mass is exposed to palladium, and subsequently nickel is electroless deposited over the mass. The invention also includes a method of electroless deposition of nickel over aluminum-containing materials and copper-containing materials. The aluminum-containing materials and copper-containing materials are both exposed to palladium-containing solutions prior to electroless deposition of nickel over the aluminum-containing materials and copper-containing materials. Additionally, the invention includes a method of forming a solder bump over an aluminum-containing material.
    Type: Application
    Filed: January 9, 2002
    Publication date: July 10, 2003
    Inventor: Nishant Sinha
  • Patent number: 6586043
    Abstract: The invention includes a method of electroless deposition of nickel over an aluminum-containing material. A mass is formed over the aluminum-containing material, with the mass predominantly comprising a metal other than aluminum. The mass is exposed to palladium, and subsequently nickel is electroless deposited over the mass. The invention also includes a method of electroless deposition of nickel over aluminum-containing materials and copper-containing materials. The aluminum-containing materials and copper-containing materials are both exposed to palladium-containing solutions prior to electroless deposition of nickel over the aluminum-containing materials and copper-containing materials. Additionally, the invention includes a method of forming a solder bump over an aluminum-containing material.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: July 1, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Nishant Sinha
  • Patent number: 6555158
    Abstract: There is a method and apparatus for plating in which electroless copper plating is performed in a contact hole and an interconnect trench on a minute scale of a semiconductor integrated circuit device, and a plating structure. Organic material originated from an organic gas carried over from the preceding step is removed from the inner surface of a blind hole, thereafter the surface of the barrier layer is subjected to predetermined pretreatments comprising a hydroxylation treatment, a coupling treatment, a Pd colloidal solution treatment and the like, and following the pretreatments, electroless plating with copper is effected desirably under influence of ultrasonic waves. Hence, a uniform, good quality plating layer is formed inside and outside the hole and a CMP processing following the plating is performed with ease.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 29, 2003
    Assignee: Sony Corporation
    Inventors: Akira Yoshio, Yuji Segawa
  • Publication number: 20030054114
    Abstract: The surfaces of apparatuses and apparatus parts for chemical plant construction, including, for example, apparatus, container and reactor walls, discharge apparatuses, fittings, pumps, filters, compressors, centrifuges, columns, heat exchangers, dryers, comminuting machines, internals, packings and mixing elements, are coated by a process wherein protuberances having a mean height of from 100 nm to 50 &mgr;m with a mean spacing of from 100 nm to 100 &mgr;m are produced on the surface to be coated and the coating is applied thereon by currentless deposition of a metal layer or of a metal-polymer dispersion layer with the aid of a plating bath which contains a metal electrolyte, a reducing agent and optionally a polymer or polymer blend to be deposited, in dispersed form.
    Type: Application
    Filed: September 26, 2002
    Publication date: March 20, 2003
    Inventors: Stephan Huffer, Thilo Krebs, Klaus-Dieter Hungenberg, Ingolf Kuhn, Ekkehard Jahns, Christian Lach, Harald Keller, Andreas Pfau, Thomas Frechen
  • Publication number: 20030047108
    Abstract: The present invention provides a non-cyanide displacement gold plating solution with which even an electroless nickel-boron plated or electrolytic nickel plated substrate can be subjected to displacement gold plating with good adhesion properties and high solderability. The displacement gold plating solution in accordance with the present invention contains 0.01 to 1.0 g/L (expressed in terms of gold concentration) of sodium gold sulfite or ethylene diamine complex of sodium gold sulfite, 10 to 100 g/L of sulfite, 5 to 50 g/L of organic carboxylic acid or salt thereof, and 5 to 50 g/L of ethylene diamine tetraacetic acid or salt thereof, and has a pH value in the weak acid range of 4.5 to 6.
    Type: Application
    Filed: May 24, 2002
    Publication date: March 13, 2003
    Inventors: Katsunori Hayashi, Yoshimasa Hirose
  • Publication number: 20030039743
    Abstract: A method for depositing an adhesion-promoting layer on a spatially bounded metallic layer of a silicon chip is provided. The adhesion-promoting layer is deposited, using at least one wet-chemical process. During the wet-chemical process, the concentration of an inhibitor of a multi-component process bath is checked in at least approximately continuous manner and adjusted to a constant value. The adjustment of the inhibitor concentration is independent of the adjustment of the concentrations of other process-bath components.
    Type: Application
    Filed: August 12, 2002
    Publication date: February 27, 2003
    Inventors: Lothar Henneken, Silvan Hippchen
  • Patent number: 6509103
    Abstract: A process for coating a reactor, which comprises depositing a metal layer or a metal/polymer dispersion layer on the internal surface of the reactor in an electroless manner by bringing the surfaces into contact with a metal electrolyte solution which, besides the metal electrolyte, comprises a reducing agent and optionally a halogenated polymer to be deposited in dispersed form.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: January 21, 2003
    Inventors: Stephan Hüffer, Andreas Deckers, Wilhelm Weber, Roger Klimesch, Dieter Littmann, Jürgen Sturm, Götz Lerch
  • Patent number: 6506509
    Abstract: The present invention relates to composite electroless coatings with varying densities of codeposited particles in the plated layer along the surface of the substrate where said variation of densities is directed by the angle of rotation of the substrate during the coating process.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: January 14, 2003
    Assignee: Surface Technology, Inc.
    Inventors: Michael David Feldstein, Thomas Stephen Lancsek
  • Patent number: 6500482
    Abstract: A process for electrolessly plating nickel-phosphorous is disclosed which allows for adjusting and maintaining pH by adding, with mixing, a strong alkali, such as alkali metal hydroxides, to the electroless nickel plating solution which has been previously cooled to below about 140° F. (i.e. below normal operating temperature) on a regular or continuous basis. Preferably, the strong alkali is a solution of alkali metal hydroxides which contain less than about 700 g/l of alkali metal hydroxide.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: December 31, 2002
    Inventor: Boules H. Morcos
  • Patent number: 6495211
    Abstract: A process for producing a substrate 1 having a base-metal plating layer, which includes an immersion step for immersing the substrate 1 in a plating solution contained in a plating tank 33, to thereby form a base-metal plating layer; a washing step for removing the substrate 1 from the plating tank 33, transferring the substrate 1 to a washing tank, and washing the substrate 1; and a cooling step for applying a cooling liquid to the substrate 1 during at least a portion of the period during which the substrate is transferred to a position where the washing step is carried out after completing the immersion step, to thereby cool the substrate 1. An apparatus for carrying out the above process is also disclosed.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 17, 2002
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masahiro Iba, Hisashi Wakako, Kazuhisa Sato, Hiroyuki Hashimoto, Yasuo Doi
  • Publication number: 20020182437
    Abstract: A coating blade having a covering comprising a nickel-based matrix and particles of ceramic, diamond or carbide dispersed in said matrix, on the functional part of said blade.
    Type: Application
    Filed: April 26, 2002
    Publication date: December 5, 2002
    Inventors: Ibrahim Brah Adamou, Silvano Freti
  • Patent number: 6410104
    Abstract: Electrolessly plated Ni—P amorphous coatings having an increased magnetic transformation temperature and ultra smooth surface are achieved employing a plating bath containing Al and/or Cu ions. Embodiments include electrolessly depositing an amorphous Ni—P coating exhibiting a magnetic transformation temperature of at least 330° C. proximate a laser textured protrusion.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: June 25, 2002
    Assignee: Seagate Technology LLC
    Inventors: Linda L. Zhong, Connie C. Liu, Jeff D. St. John
  • Patent number: 6406750
    Abstract: A substrate includes a non-conductive portion to be electroless-plated of a substrate, on the surface of which fine metal catalyst particles composed of silver nuclei and palladium nuclei each having an average particle size of 1 nm or less adhere at a high nuclei density of 2000 nuclei/&mgr;m2 or more. The metal catalyst particles are produced by sensitizing the non-conductive portion of the substrate by dipping the substrate in a sensitizing solution containing bivalent tin ions, activating the non-conductive portion of the substrate by dipping the substrate in a first activator containing silver ions, and activating the non-conductive portion of the substrate by dipping the substrate in a second activator containing palladium ions.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: June 18, 2002
    Assignees: Osaka Municipal Government, Matsushita Electric Industrial Co., Ltd., C. Uyemura & Co., Ltd.
    Inventors: Masanobu Izaki, Hiroshi Hatase, Yoshikazu Saijo
  • Patent number: 6406743
    Abstract: The present invention provides a method of manufacturing a nickel-silicide technology for polysilicon interconnects. Nickel 40 is deposited on polysilicon 30 using a electroless process. Using a rapid thermal anneal process, Ni 40 is transformed to NiSi at about 600° C. without any agglomeration. The method comprises forming a polysilicon layer 30 over a substrate 10. The surface 34 of the polysilicon layer is activated. Nickel 40 is selectively electroless deposited onto the surface of the polysilicon layer forming a Nickel layer over the polysilicon layer. The Ni layer 40 is rapidly thermally annealed forming a Nickel silicide layer 36 over the polysilicon layer 30. The rapid thermal anneal is performed at a temperature of about 600° C. for a time of about 40 sec. The Nickel silicide layer 36 preferably comprises NiSi 36B with a low resistivity.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: June 18, 2002
    Assignee: Industrial Technology Research Institute
    Inventors: Chwan-Ying Lee, Tzuen-Hsi Huang
  • Patent number: 6372296
    Abstract: The present invention relates to galvanized steel having a high aluminum content in the coating, as well as a batch hot-dip galvanization process for making such steel. The galvanized steel herein has a coating comprising an inner layer of intermetallic iron aluminum compounds, such as Fe2Al5 (which may have some zinc present), and an outer layer of intermetallic zinc aluminum compounds containing from about 17% to about 40% (preferably about 22%, the Zn—Al eutectoid) aluminum (which may have some iron present). The batch hot-dip galvanization process for making such steel comprises: (a) fluxing the steel by electroless plating on the surface of the steel of a metal such as tin, copper or nickel; and (b) dipping the fluxed steel into a molten galvanization bath comprising zinc and from about 17% to about 40% aluminum.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: April 16, 2002
    Assignee: University of Cincinnati
    Inventors: Wim J. van Ooij, Prasanna Vijayan
  • Patent number: 6365227
    Abstract: A corrosion resistant gas cylinder and gas delivery system includes an electroless nickel-phosphorous layer overlying the inner surface of a steel alloy cylinder. The nickel-phosphorous layer has a thickness of at least about 20 micrometers and a porosity of no greater than about 0.1%. The electroless nickel-phosphorous layer has a phosphorous content of at least about 10% by weight and a surface roughness of no greater than about 5 micrometers. Prior to introducing liquefied gas into the gas cylinder, a cleaning process is carried out using a two-step baking process to clean the surface of the nickel-phosphorus layer. The nickel-phosphorous layer substantially reduces the contamination of liquefied corrosive gasses stored in the gas cylinder by metal from the steel wall surface underlying the nickel-phosphorous layer.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: April 2, 2002
    Assignees: L'Air Liquide, Societe Anonyme pour l'Etude et, l 'Exploitation des Procedes Claude of France, American Air Liquide Inc.
    Inventors: Alan D. Zdunek, Eugene A. Kernerman, William Korzeniowski
  • Patent number: 6358566
    Abstract: A process of producing an aluminum beverage can body having a decorative surface exhibiting a dichroic effect when observed in white light. In the process, a can body is formed from a sheet of metal selected from aluminum and aluminum alloy by drawing and ironing, surfaces of the can body are cleaned to produce a cleaned can body, a decorative structure exhibiting a dichroic effect is applied to a surface of the cleaned can body, and the can body is subjected to finishing operations. The decorative structure is applied by the steps of: applying a layer of dielectric material directly onto the metal of the cleaned can body without pre-treatment of the metal with a metal brightener, and forming a semi-transparent metal layer on or within the dielectric layer.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: March 19, 2002
    Assignee: Alcan International Limited
    Inventor: Aron Marcus Rosenfeld
  • Patent number: 6355301
    Abstract: A process for applying a metal to selected areas of non conducting substrates, including individual fibers, particularly optical fibers, comprises the steps of providing a non-conducting substrate having an uncoated portion to be treated with a sensitizer solution to provide a sensitized portion of the non-conducting substrate. Covering the sensitized portion with an activator solution provides an activated portion of the non-conducting substrate. Coating at least a section of the activated portion with a stannous salt solution forms at least one activated area and at least one deactivated area within the activated portion of the non-conducting substrate to produce a masked portion therefrom. Upon immersing the masked portion of the non-conducting substrate in an electroless plating bath, metal deposits on the activated area to provide a selectively metallized non-conducting substrate. This process provides selectively metallized articles including selectively metallized optical fibers.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: March 12, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Michael Nevin Miller
  • Publication number: 20020001670
    Abstract: The present invention is related to a method for electroless plating Nickel/Gold on aluminium bonding pads of single chips or wafer parts. This method result in uniformly plated singulated chips, single dice or wafer parts in a much more simple and cost-effective way. The proposed method comprises the steps of attaching to die or wafer part to a non-conductive adhesive or substrate.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 3, 2002
    Inventors: Herbert De Pauw, Jan Vanfleteren, Suixin Zhang
  • Patent number: 6335104
    Abstract: A method for preparing a copper pad surface for electrical connection that has superior diffusion barrier and adhesion properties is provided. In the method, a copper pad surface is first provided that has been cleaned by an acid solution, a protection layer of a phosphorus or boron-containing metal alloy is then deposited on the copper pad surface, and then an adhesion layer of a noble metal is deposited on top of the protection layer. The protection layer may be a single layer, or two or more layers intimately joined together formed of a phosphorus or boron-containing metal alloy such as Ni-P, Co-P, Co-W-P, Co-Sn-P, Ni-W-P, Co-B, Ni-B, Co-Sn-B, Co-W-B and Ni-W-B to a thickness between about 1,000 Å and about 10,000 Å. The adhesion layer can be formed of a noble metal such as Au, Pt, Pd and Ag to a thickness between about 500 Å and about 4,000 Å.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 1, 2002
    Assignee: International Business Machines Corporation
    Inventors: Carlos J. Sambucetti, Daniel C. Edelstein, John G. Gaudiello, Judith M. Rubino, George Walker
  • Publication number: 20010051225
    Abstract: The present invention relates to galvanized steel having a high aluminum content in the coating, as well as a batch hot-dip galvanization process for making such steel. The galvanized steel herein has a coating comprising an inner layer of intermetallic iron aluminum compounds, such as Fe2Al5 (which may have some zinc present), and an outer layer of intermetallic zinc aluminum compounds containing from about 17% to about 40% (preferably about 22%, the Zn—Al eutectoid) aluminum (which may have some iron present). The batch hot-dip galvanization process for making such steel comprises: (a) fluxing the steel by electroless plating on the surface of the steel of a metal such as tin, copper or nickel; and (b) dipping the fluxed steel into a molten galvanization bath comprising zinc and from about 17% to about 40% aluminum.
    Type: Application
    Filed: May 21, 1999
    Publication date: December 13, 2001
    Inventors: WIM J. VAN OOIJ, PRASANNA VIJAYAN
  • Patent number: 6316059
    Abstract: Metal patterns (15) can be provided on a glass substrate (1) in an electroless process by modifying the substrate with a silane layer (3), locally removing said layer with a laser or UV-ozone treatment and selectively nucleating the remaining silane layer in a polymer-stabilized Pd sol. Neither a photoresist nor organic solvents are used. The method is very suitable for the manufacture of the black matrix on a passive plate for an LCD, or on panels of other flat colour displays, such as flat cathode ray tubes.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: November 13, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Andreas M. T. P. Van Der Putten, Nicolaas P. Willard, Lambertus G. J. Fokkink, Ivo G. J. Camps
  • Patent number: 6291025
    Abstract: A process of coating substrates with metal by immersing them into solutions of inorganic compounds in non-aqueous organic liquids. The solution preferably contains two components—a polar organic liquid such as an alcohol, polyol or ketone containing a metal salt in solution. The substrate may be a metal such as steel or aluminum, or a dielectric such as plastic or ceramic, which has been activated by the deposition of colloidal metallic particulates to form a seed metallic layer. The preferred embodiment involves immersion of a metal substrate at room temperature into a simple alcohol such as methanol, containing a salt such as copper chloride. Metal deposits onto the substrate at rates many times greater than aqueous electroless processes. The substrate may be immersed into active solution in a bath, or a paste of the organic and the salt may be formed and painted onto the substrate. In either case, spontaneous deposition occurs on the metal or pre-activated dielectric substrate.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: September 18, 2001
    Assignee: Argonide Corporation
    Inventors: Frederick Tepper, Leonid A. Kaledin, Anatoliy Ugryumov
  • Patent number: 6284122
    Abstract: A process for non-continuous galvanization of a metal object with a Zn—Al alloy including the steps of pre-coating the object with a metallic layer of sufficient thickness to protect the object from oxidation and yet sufficiently thin to permit the pre-coating to substantially completely react with or dissolve in the molten Zn—Al bath, subjecting the precoated object to a surface activation treatment by immersing it in hydrochloric acid and thereafter allowing the surface to dry with a protective coating of a chloride salt, and thereafter immersing the object in the Zn—Al bath.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: September 4, 2001
    Assignee: International Lead Zinc Research Organization, Inc.
    Inventors: Massimo Memmi, Bruno Brevaglieri, Stefano Natali, Michele Cecchini
  • Patent number: 6281157
    Abstract: Disclosed are a self-catalytic bath and a method for the deposition of Ni—P alloy on a substrate. The bath comprises nickel sulfate, sodium hypophosphite as a reducing agent, acetic acid as a buffer and traces of lead as a stabilizer. It also includes a citrate used as a complexing agent associated with a gluconate used both as a catalyst and a stabilizer. The disclosed bath makes it possible to tolerate large quantities of hypophosphite and is relatively long-lived. Furthermore, it can be used to prepare large quantities of Ni—P alloy per liter of solution.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: August 28, 2001
    Assignee: STMicroelectronics S.A.
    Inventors: Abdallah Tangi, Mohamed Elhark, Ali Ben Bachir, Abdellah Srhiri, Mohamed Cherkaoui, Mohamed Ebntouhami, El Mustapha Saaoudi
  • Patent number: 6258415
    Abstract: A process for plating aluminum alloy substrates (10), such as 390 aluminum alloy pistons (12), with iron comprises (a) plating on the aluminum substrate a layer of zincate from a zincate bath; (b) plating on the zincate layer a layer (14) of nickel from an electroless nickel bath; (c) plating on the nickel layer a layer (16) of iron from an iron ammonium sulfate bath; and (d) plating on the iron layer a layer (18) of tin from an alkaline tin bath. During the electroless plating, the zincate layer, which protects the underlying aluminum against oxidation, is sacrificed. All of these baths are environmentally much safer than cyanide and chloride. They are also cost effective and can be utilized in a totally closed loop plating system.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: July 10, 2001
    Assignee: Hughes Electronics Corporation
    Inventor: Sue Troup-Packman
  • Patent number: 6245389
    Abstract: A method of circulating an electroless nickel plating solution is characterized in that the system comprises the following process steps effected in the following order: (A) a step of electrolessly plating nickel using a plating solution having nickel hypophosphite contained as a chief chemical material for supplying a plating metal ion Ni2+ and a hypophosphorous acid ion H2PO2− acting as a reducing agent; (B) a step of removing HPO32− from a plating solution that has aged in the step (A); (C) a step of desalting the mother liquor separated from the step (B); and (D) a step of adjusting the components of the treated plating solution and then circulating same back into the step (A) of electroless nickel plating. According to the present invention, the plating solution is free from the formation and accumulation of a sulfuric acid salt and hence a long service life is ensured and a great advantage in environmental protection is provided.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: June 12, 2001
    Assignees: Nippon Chemical Industrial Co., Ltd., Meltex, Inc.
    Inventors: Ken Horikawa, Muneo Mita, Hidehiro Nakao, Katsuhiro Tashiro