Organic Material Present In Substrate, Plating, Or Implanted Layer Patents (Class 427/525)
  • Publication number: 20020182340
    Abstract: A surface processing method for processing the surface of an insulating article in which an ion-implanted surface-modified layer is effectively formed on the article 2. In surface processing the article 2 of an insulating material, an electrically conductive thin metal film 50 is first formed on the article surface. A pulsed voltage containing a positive pulsed voltage and a negative pulsed voltage is applied to the article in a plasma containing ions to be implanted to implant ions in the article surface. This implants ions at right angles to the article surface to generate a surface-modified layer 51. There is no possibility of the article 2 being charged up due to application of a pulsed voltage.
    Type: Application
    Filed: July 17, 2002
    Publication date: December 5, 2002
    Inventors: Seiichi Watanabe, Kenji Shinozaki, Minoru Kohno, Hiroyuki Mitsuhashi, Minehiro Tonosaki, Masato Kobayashi
  • Patent number: 6458430
    Abstract: A method for use with a plasma immersion ion implantations systems wherein a substrate W having a patterned photoresist P thereon is implanted. The method includes ionizing a first gas in a chamber 12 to produce electrically inactive ions and reacting the electrically active ions with the photoresist P to produce outgassing 64. The outgassed material 64 is continuously evacuated until outgassing is substantially completed. The method further includes ionizing a second gas to produce electrically active ions and implanting a positively charged species of the electrically active ions into the substrate. Also disclosed is a method for curing the photoresist prior to ion implantation. A gas is ionized in the chamber 12 to produce positively and electrons. The electrons are first attracted to a substrate in the chamber having patterned photoresist P thereon for hardening the photoresist. The positively charged ions are then implanted into substrate W wherein photoresist outgassing is substantially prevented.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: October 1, 2002
    Assignee: Axcelis Technologies, Inc.
    Inventors: James D. Bernstein, Peter L. Kellerman, Alec S. Denholm
  • Patent number: 6447849
    Abstract: A surface processing method for processing the surface of an insulating article in which an ion-implanted surface-modified layer is effectively formed on the article 2. In surface processing the article 2 of an insulating material, an electrically conductive thin metal film 50 is first formed on the article surface. A pulsed voltage containing a positive pulsed voltage and a negative pulsed voltage is applied to the article in a plasma containing ions to be implanted to implant ions in the article surface. This implants ions at right angles to the article surface to generate a surface-modified layer 51. There is no possibility of the article 2 being charged up due to application of a pulsed voltage.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: September 10, 2002
    Assignee: Sony Corporation
    Inventors: Seiichi Watanabe, Kenji Shinozaki, Minoru Kohno, Hiroyuki Mitsuhashi, Minehiro Tonosaki, Masato Kobayashi
  • Patent number: 6447887
    Abstract: An electrostatic self-assembly method of fabricating electrostrictive and piezoelectric thin film assemblies not only provides a thinner film than is attainable by conventional methods, but provides excellent molecular-level uniformity and precise structural control, and thus large, effective piezoelectric coefficients. The method produces a thin film assembly including (a) a substrate, and (b) a film having one or a plurality of layers disposed upon the substrate, wherein at least one of the layers includes a dipolar material, and this layer of dipolar material has a uniform thickness of at most 500 nm.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: September 10, 2002
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Richard O. Claus, Tingying Zeng, Yanjing Liu
  • Patent number: 6410101
    Abstract: A method for scrubbing and passivating an anode plate (100) of a field emission display (120) includes the steps of providing a scrubbing passivation material (127); imparting to scrubbing passivation material (127) an energy selected to cause removal of a contamination layer (123, 117) from anode plate (100); causing scrubbing passivation material (127) to be received by contamination layer (123, 117), thereby removing contamination layer (123, 117); and depositing at least a portion of scrubbing passivation material (127) on anode plate (100), thereby forming a passivation layer (129).
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: June 25, 2002
    Assignee: Motorola, Inc.
    Inventors: James E. Jaskie, Albert Alec Talin
  • Patent number: 6403167
    Abstract: A method for surface modification of 3-dimensional bulk polymers is provided to improve surface properties and surface conductivity of 3-dimensional bulk polymers by using plasma source ion implantation technique. The plasma source ion implantation technique is to modify the surface by implanting ions into the surface of the 3-dimensional samples uniformly. When negative high voltage pulse is applied to a metallic grid around the bulk polymer samples, ions are extracted from the plasma; most of ions passing the grid and collide with the surface of the bulk polymer samples in high energy. Therefore, through the method for applying high voltage pulse to the grid around samples, ions are implanted into the surface of the 3-dimensional bulk polymer samples uniformly, and thereby the ions implanted in high energy modify the bulk polymer surface to improve the electrical conductivity effectively.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 11, 2002
    Assignee: Korea Institute of Science & Technology
    Inventors: Yeon Hee Lee, Seung Hee Han
  • Patent number: 6383573
    Abstract: A process is provided for producing coated synthetic bodies during which, before the coating, the surface to be coated is subjected to a pretreatment in an excited gas atmosphere. The surface is then coated. The gas atmosphere is predominantly formed of a noble gas and nitrogen and/or hydrogen, and the ionic energy in the gas atmosphere and in the are of the surface to be coated is not more than 50 eV. The ionic energy is selected to be not more than 20 eV, preferable not more than 10 eV. The gas atmosphere is excited by means of a plasma discharge or by means of UV radiation.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: May 7, 2002
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Eugen Beck, Jürgen Ramm, Heinrich Zimmermann
  • Patent number: 6365235
    Abstract: A surface treatment method wherein one or more active particle streams are generated and aimed at a surface to be treated so that the particle stream interacts therewith. The active particle stream consists of activated particles forming chemically active sites on the surface, and modifying particles occupying said sites. The energy of the activated particles is greater than the energy at break of the inhibited surface bonds of the surface, and lower than the radiative flaw formation energy on the surface. The strength of the particle stream at the treated surface is greater than a quantity N/t where N is the surface density of the inhibited bonds to be broken and t is the duration of exposure of any point on the treated surface to the stream. A device for carrying out the method is also provided.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: April 2, 2002
    Assignee: TePla AG
    Inventors: Pavel Koulik, Evgenia Zorina
  • Publication number: 20010043938
    Abstract: An inorganic antimicrobial composition has the formula AB2 O4, wherein A and B are low temperature far infrared irradiating metals, A is Mg, Zn, Mn, Ni, Co, or Fe(II), B is Al, Cr(III), Mn(III) or Fe(III), and O is oxygen. An antimicrobial article is made by coating said composition on a porous honeycomb-shaped substrate. An organic antimicrobial article is made from a quaternary ammonium salt coated on a porous honeycomb-shaped substrate. Processes of making the antimicrobial articles are provided.
    Type: Application
    Filed: February 7, 2001
    Publication date: November 22, 2001
    Inventors: Yen-Kuen Shiau, Chung-Hsun Wu
  • Patent number: 6312766
    Abstract: Ion beam deposition, using a carbon- and fluorine-containing source or sources, is used to form a fluorinated diamond-like carbon layer in a device, the FDLC layer exhibiting a dielectric constant of 3.0 or less along with a thermal stability of at least 400° C. During the ion beam deposition, due to the unique nature of carbon chemistry, the carbon atoms combine at the substrate surface to form all possible combinations of sp1, sp2 and sp3 bonds. However, ion beam etching occurs along with deposition, such that atoms of the weaker carbon structures—carbyne and graphite—are removed preferentially. This leads to a buildup of a diamond-like, sp3-bonded structure with fluorine atoms, it is believed, substituted for some carbon atoms within the structure, this structure providing the desirable properties of the layer.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: November 6, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Chien-Shing Pai, Wei Zhu
  • Patent number: 6300641
    Abstract: A process for modifying the surfaces of a polymer, ceramic, ITO or glass by irradiating energized ion particles onto the surfaces of the polymer, ceramic, ITO or glass, while blowing a reactive gas directly over the surface of the polymer, ceramic, ITO or glass under a vacuum condition, to decrease the wetting angle of the surface. The process can be widely used in the fields of polymers because it provides effects of increasing the spreading of aqueous dyestuffs, increasing adhesive strength with other materials and inhibition of light scattering by decreasing the wetting angle of the material surface.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: October 9, 2001
    Assignee: Korea Institute of Science and Technology
    Inventors: Seok Keun Koh, Hyung Jin Jung, Won Kook Choi, Kyong Sop Han, Sik Sang Gam
  • Patent number: 6270857
    Abstract: When an insulator is irradiated with an electron beam, a pulse-shape voltage is applied to the insulator from a pulse power source. As a result, a charge-up state of the insulator can be prevented. If an object which must be subjected to surface modification is an insulator, the object can effectively be irradiated with the electron beam to perform the surface modification.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: August 7, 2001
    Assignee: Sony Corporation
    Inventors: Minehiro Tonosaki, Mitsunori Ueda, Masato Kobayashi, Hiroyuki Okita
  • Patent number: 6251417
    Abstract: An inorganic antimicrobial composition has the formula AB2O4, wherein A and B are low temperature far infrared irradiating metals, A is Mg, Zn, Mn, Ni, Co, or Fe(II), B is Al, Cr(III), Mn(III) or Fe(III), and O is oxygen. An antimicrobial article is made by coating said composition on a porous honeycomb-shaped substrate. An organic antimicrobial article is made from a quarternary ammonium salt coated on a porous honeycomb-shaped substrate. Processes of making the antimicrobial articles are provided.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: June 26, 2001
    Inventors: Yen-Kuen Shiau, Chung-Hsun Wu
  • Patent number: 6248409
    Abstract: A method for providing anti-static characteristics for polymeric, integrated circuit (IC) trays, which allows gaseous ions, such as nitrogen and argon, or metal ions, such as Ti, Li and Al, to be implanted to a surface depth of 1.5 &mgr;m in IC trays. In addition to experiencing no dimensional changes during the antistaticity working, the IC trays have a uniform distribution of ions over their surfaces and range, in surface resistance, from 106 to 1012 &OHgr;/cm2.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: June 19, 2001
    Inventor: Jin-Cheol Kim
  • Publication number: 20010002285
    Abstract: A surface treatment method wherein one or more active particle streams are generated and aimed at a surface to be treated so that the particle stream interacts therewith. The active particle stream consists of activated particles forming chemically active sites on the surface, and modifying particles occupying said sites. The energy of the activated particles is greater than the energy at break of the inhibited surface bonds of the surface, and lower than the radiative flaw formation energy on the surface. The strength of the particle stream at the treated surface is greater than a quantity N/t where N is the surface density of the inhibited bonds to be broken and t is the duration of exposure of any point on the treated surface to the stream. A device for carrying out the method is also provided.
    Type: Application
    Filed: May 13, 1998
    Publication date: May 31, 2001
    Inventors: PAVEL KOULIK, EVGENIA ZORINA
  • Patent number: 6146765
    Abstract: A transparent conductive film of a zinc oxide type containing gallium and silicon, which contains silicon in an amount of from 0.01 to 1.5 mol % in terms of SiO.sub.2.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: November 14, 2000
    Assignee: Asahi Glass Company Ltd.
    Inventors: Akira Mitsui, Kazuo Sato, Masami Miyazaki, Junichi Ebisawa, Yasuo Hayashi, Masao Higeta, Katsuaki Aikawa, Atsushi Hayashi
  • Patent number: 6096439
    Abstract: An improved polymer film material for the packaging of perishable foodstuffs, wherein the surface structure of the polymer is altered by means of an ion bombardment process so as to reduce the rates of transport of oxygen and water vapor through the polymer material wherein the polymer film material is produced by subjecting at least one surface of the film to ion bombardment with ions selected from the group consisting of hydrogen, carbon, nitrogen, helium, and argon at energies of 30-80 KeV and ion doses in the range of 10.sup.12 to 10.sup.18 ions/cm.sup.2.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: August 1, 2000
    Assignee: AEA Technology PLC
    Inventors: Stephen John Bull, Adrian Michael Jones, Andrew Robert McCabe
  • Patent number: 6087009
    Abstract: There is disclosed a method of treating running faces subjected to wear of a workpiece in which ions or molecule chain components of fluorocarbon molecules are arranged on the surface of the workpiece. It is especially preferred to attach ions of polyfluoroether molecules. The attachment can be effected by adhesion or by chemical bonding. Principally the method according to the invention can be applied to metallic and ceramic materials, wherein especially good experiences have been made with the surface treatment of aluminum workpieces, ceramic inserts etc.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: July 11, 2000
    Assignee: Natalia Bultykhanova
    Inventor: Natalia Bultykhanova
  • Patent number: 6024845
    Abstract: The invention provides a method of forming a thin film recording head including an upper magnetic substance, a lower magnetic substance cooperating with the upper magnetic substance to form a magnetic circuit, at least one coil layer interposed between the upper and lower magnetic substances, the coil layer being configured in a coil pattern, and an insulative layer interposed between the upper and lower magnetic substances and surrounding the coil pattern. The insulative layer is composed of hard-cured photoresist. A peak intensity ratio of a surface portion of the insulative layer is equal to or less than 0.5 relative to a peak intensity of aromatic C.dbd.C bonding, which aromatic is a main constituent of the photoresist. The peak intensity ratio represents an amount of hydrophilic radical. The invention suppresses the hydrophilic property of a hard-cured photoresist layer to thereby provide an advantage of enhancement of electrical insulation and reduction of noises of a thin film head.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: February 15, 2000
    Assignee: NEC Corporation
    Inventor: Mikiko Saito
  • Patent number: 5945153
    Abstract: The present invention provides a process of forming an antimicrobial coating on a surface of a medical implant, the coating comprising an antimicrobially effective amount of antimicrobial metal atoms incorporated into a coating of amorphous carbonaceous material.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: August 31, 1999
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 5939150
    Abstract: The present invention relates to a method for treating a substrate surface. The substrate surface is coated with a thin film of a treating agent, which is capable of enhancing or reducing its affinity towards a metal precursor by exposure to an arbitrary kind of radiation beam. In a subsequent metal deposition step utilizing the metal precursor, the metal is selectively deposited on the exposed or unexposed areas, depending on the kind of treating agent. (FIG.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 17, 1999
    Assignees: Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V., CNRS-Service De La Valorisation
    Inventors: Martin Stelzle, Pascal Doppelt
  • Patent number: 5922415
    Abstract: The present invention provides a diamond like carbon coating comprising a surface comprising an interface and a lubricant film, said interface comprising atomic bonds between atoms in said diamond-like carbon coating and atoms in said lubricant precursor film. The invention also provides a method for producing said coating, interface, and film.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: July 13, 1999
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Arps
  • Patent number: 5885666
    Abstract: This invention includes the discovery that poorly crystallized hexagonal-like films of boron nitride with sp.sup.2 bonding can be converted by ion implantation to amorphous, cubic-like, boron nitride with sp.sup.3 bonding. Preferably the sp.sup.2 bonded film has a considerable amount of residual stress. The discovery that sp.sup.2 bonded BN can be converted to sp.sup.3 bonded BN may prove to be a significant advancement in coating technology for the electronics, machine tool, biomedical, and automotive industries. This discovery is important in that growth processes compatible with high volume production can be used to grow sp.sup.2 bonded BN (e.g., sputtering, e-beam evaporation, and CVD), then implantation procedures can be used to subsequently change the film to sp.sup.3 bonding. The amorphous, cubic-like, BN films can be grown on silicon wafers. This technique is also well-suited for metallic and plastic substrates because both the deposition and implantation processes occur at low temperatures.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: March 23, 1999
    Assignee: General Motors Corporation
    Inventors: Gary Lynn Doll, Joseph Vito Mantese
  • Patent number: 5863621
    Abstract: The present invention provides a method for easily and effectively removing adsorbed water molecules from an anodized surface using low intensity ultraviolet (UV) radiation. The present invention also provides a method for sealing an anodized aluminum surface which does not result in hazardous byproducts. The method involves, in vacuum: (1) vaporizing a selected precursor fluid; (2) condensing a flux of said precursor vapor onto the anodized aluminum surface; (3) and, bombarding said condensed precursor vapor with an energetic beam of ions to convert the porous anodized surface into an inert, solid, impermeable, and mechanically strong surface.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: January 26, 1999
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, Stephen J. Lukezich
  • Patent number: 5858623
    Abstract: A method for forming a patterned photoresist layer. There is first provided a substrate. There is then formed over the substrate a blanket photoresist layer. The blanket photoresist layer is then implanted with a first ion beam to form an ion implanted blanket photoresist layer. The first ion beam employs a first ion having a first energy and a first dose sufficient such that an ion implanted patterned photoresist layer formed from the ion implanted blanket photoresist layer will not substantially outgas when the ion implanted patterned photoresist layer is exposed to a second beam. The ion implanted blanket photoresist layer is then patterned to form the ion implanted patterned photoresist layer. The method may be employed in selective high energy beam processing of the substrate. The method is particularly suited to selective high energy ion implant processing of semiconductor substrates employed within integrated circuit microelectronics fabrications.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: January 12, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chen-Hua Yu, Syun-Ming Jang, Tsung-Hou Li
  • Patent number: 5837354
    Abstract: A flexible metallized product having a base material made of a soft resin material comprising polypropylene mixed with diene or polypropylene mixed with rubber, a base coat layer formed on the surface of the base material, a metal thin film layer formed on the surface of the base coat layer and a top coat layer covering the metal thin film layer. The metal thin film layer is made of a corrosion resistant metal such as chromium. The metal thin film layer has a thickness of at least 150 .ANG. and no greater than 800 .ANG. by means of a vacuum vapor deposition or sputtering. The metal thin film layer is constituted by a plurality of metal particles. The metal particles are disposed such that adjacent metal particles are in contact with one another to form a grain boundary therebetween.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: November 17, 1998
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yasuhiko Ogisu, Yukitaka Hasegawa
  • Patent number: 5820994
    Abstract: A laminate using a polymeric molded article as a substrate and having a light transparency, gas barrier properties and an excellent alkali resistance. The laminate is obtainable by carrying out a surface treatment to deposit an oxide of at least one metal selected from the metal elements of groups 2, 8, 9, 10 and 11 of the periodic table, and then forming a gas barrier layer such as oxides of silicon, nitrides of silicon and carbides of silicon on the treated surface. The gas barrier layer is not peeled off from the polymeric molded article even after being immersed in an alkali solution of pH 12 or more. The amount of the metal on the treated surface is preferably in the range of 5.times.10.sup.14 atoms/cm.sup.2 to 3.times.10.sup.16 atoms/cm.sup.2 in terms of the metal atoms per unit area. The practical performance of the laminate is not deteriorated during the patterning, by alkali etching, of a transparent conductive layer formed on the laminate.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: October 13, 1998
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yumi Gotoh, Takehiro Miyashita, Tomoyuki Okamura, Fumiharu Yamazaki, Shin Fukuda, Nobuhiro Fukuda, Yoko Tajiri, Noboru Kawasaki
  • Patent number: 5783251
    Abstract: An antistatic agent comprising a water-soluble electroconductive polymer comprising at least a repeating unit having a sulfo group-containing isothianaphthenylene structure; a method for suppressing electrification of an article during the production or use of the article by forming an electroconductive film comprising the water-soluble electroconductive polymer on the article; an article of which electrification is suppressed by having an electroconductive film comprising the water-soluble conductive polymer on the article; and a method for observing or inspecting an article with suppressing electrification thereof during irradiation with charged particle beams by forming an electroconductive film comprising the water-soluble electroconductive polymer on the article. The electroconductive film retains the electrification-suppressing effect and removability stably even when subjected to a heat treatment or left to stand for a long period of time.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: July 21, 1998
    Assignee: Showa Denko K.K.
    Inventors: Hideki Tomozawa, Yoshihiro Saida, Junya Kato, Yukie Akakabe, Yoshiaki Ikenoue, Reiko Ichikawa
  • Patent number: 5780119
    Abstract: The present invention provides a method for strongly adhering a diamond-like carbon coating to a metal alloy substrate using ion beam assisted deposition of silicon and/or germanium followed by ion beam assisted deposition of diamond-like carbon.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: July 14, 1998
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Lankford, Jr.
  • Patent number: 5773154
    Abstract: An article such as fishing tackle or the like, is provided with an exterior surface which has high strength so that any cracking or separation hardly occurs, has high durability, is light in weight and is decorated to have an aesthetically pleasing appearance. The exterior surface is formed with a synthetic resin coating layer, a thin decorative layer formed through physical vapor deposition with metal, and a transparent or semi-transparent protective layer.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: June 30, 1998
    Assignee: Daiwa Seiko, Inc.
    Inventor: Nobuhiro Takada
  • Patent number: 5759637
    Abstract: Disclosed is a novel composition of matter comprising a polyacid and a polymer containing repeating units which contain one or more basic atoms. The complex is water-soluble and electrically conductive. The complex is useful in providing organic discharge layers for use in electronic applications and fabrications.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 2, 1998
    Assignee: International Business Machines Corporation
    Inventors: Marie Angelopoulos, Jeffrey Donald Gelorme, Thomas Harold Newman, Niranjan Mohanlal Patel, David Earle Seeger
  • Patent number: 5731045
    Abstract: The present invention uses ion beam assisted deposition to adhere a diamond-like carbon coating to a cobalt-cemented tungsten carbide substrate, resulting in the following gradient at the surface of the substrate: substrate/(metal-silicide or metal-germanide)/(silicon or germanium)/(silicon carbide or germanium carbide)/DLC.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: March 24, 1998
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Lankford, Jr.
  • Patent number: 5725573
    Abstract: The present invention provides a method for coating a metal alloy component of a medical implant, particularly a component of a heart valve made of a titanium base alloy, with a strongly adhered coating of diamond-like carbon. The method uses ion beam assisted deposition to form a gradient at the surface of the titanium alloy comprising metal alloy/metal-silicide/(silicon or germanium)/silicon- or germanium-carbide/DLC.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: March 10, 1998
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Lankford, Jr.
  • Patent number: 5725912
    Abstract: A method of manufacturing an electric heating film of semiconductor including steps of fusing together halides of indium or tin or their organic compound and adding 1-10% of impurities of halides of antimony or iron, hydrogen fluoric acid, or ammonium fluoride in weight, mixing and stirring well the materials with a medium material at a proportion of 20-60% in weight, and cleaning a base material with clean soft water and drying the surface thereof, and disposing the base material into a heating furnace for activating its surface, mixing the liquid material with air and spraying it into the heating furnace thereby atomizing and dissolving the liquid material into ions, and letting the ions be accumulated and evenly coated on the surface of the base material or directly spraying the liquid material on the activated surface of the base material thereby forming an electric heating film of semiconductor on the base material.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: March 10, 1998
    Inventor: Pan-Tien Lin
  • Patent number: 5702773
    Abstract: A method for blending fluorine into a polyimide free of fluorine comprises the steps of generating fluorine radicals in a fluorine based gas, removal of any charge particles from the gas to leave the fluorine radicals in the gas, and exposing a polyimide free of fluorine to an irradiation of the fluorine radicals so that the irradiated fluorine radicals penetrate into an inside of the polyimide without showing any reaction to the removed charge particles on a surface of the polyimide.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: December 30, 1997
    Assignee: NEC Corporation
    Inventor: Kazuhiko Endo
  • Patent number: 5683757
    Abstract: This invention provides an improved process for surface modification of polymers, graphites and carbon-based composite materials, and improved surface-modified materials produced by the process. The preferred surface modification process of the present invention comprises the steps of: high dose single or multiple implantation of the substrate with energetic ions, including ions of at least one metal or semi-metal element able to form a stable, non-volatile oxide; and oxidative full or partial conversion of an upper portion of the implanted layer to a continuous, resistant oxide-enriched surface layer. The process may also comprise the additional implantation of a hardening non-metal element to participate in the formation of a glass-like surface layer or to form a carbonized, hardened sub-layer.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: November 4, 1997
    Inventors: Zelina A. Iskanderova, Jasha I. Kleiman, Yuri Gudimenko, Grant Rheal Cool, Roderick C. Tennyson
  • Patent number: 5679410
    Abstract: A thin film magnetic recording medium is manufactured with vacuum deposition or sputtering technique. One or more reflectors are provided between the substrate and an evaporation source around a path through which evaporated atoms travel onto a substrate. When a thin film is deposited on a substrate, the one or more reflectors are heated above a melting point of an evaporation material to reflect evaporated atoms arriving them. Thus, atoms reflected by the one or more reflectors also contribute to deposition of a thin film as well as evaporated atoms arriving directly from the evaporation source, and deposition efficiency is improved. Such a reflector is also used to limit a boundary or the path through which evaporated atoms travel onto a substrate. Then, a range of incident angles of evaporated atoms onto the substrate is kept the same for a long time on deposition, and characteristics of the thin film are stable.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 21, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ryuji Sugita, Kiyokazu Tohma, Tatsuaki Ishida, Kazunari Yoshimoto
  • Patent number: 5665435
    Abstract: An improved method for the fluorination of a diamond surfaces comprises condensing a layer of perfluorinated alkyl iodides consisting of C.sub.n F.sub.2n+1 I (where n is a positive integer from 1 to 13) on the diamond surface, producing perfluorinated alkyl free radicals by photodecomposing C--I bonds of said perfluorinated alkyl iodides on the diamond surface, reacting the diamond surface with photochemically produced perfluorinated alkyl radicals thereby anchoring photochemically induced photofragments of the perfluorinated alkyl iodides to the diamond surface forming a perfluorinated alkyl layer, and decomposing the perfluorinated alkyl layer on the diamond surface to cause the fluorination of the diamond surface by atomic F. The method achieves greater than one fluorine atom per surface carbon atom chemisorbed on the diamond using C.sub.4 F.sub.9 I.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: September 9, 1997
    Assignee: University of Pittsburgh of the Commonwealth System of Higher Education
    Inventors: Vincent S. Smentkowski, John T. Yates, Jr.
  • Patent number: 5624718
    Abstract: The present invention provides a low-temperature method for producing electrocatalytic coatings for fuel cell electrodes. The electrocatalytic coating comprises a thin-film of diamond-like carbon doped with finely-dispersed catalytic agent, preferably platinum, platinum-ruthenium, or other catalytically active materials. The method may be scaled-up as a highly economical reel-to-reel process comparable to the manufacture of coated polymers for food packaging applications.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: April 29, 1997
    Assignee: Southwest Research Institue
    Inventor: Geoffrey Dearnaley
  • Patent number: 5605714
    Abstract: The present invention provides a method for coating a titanium based component with diamond-like carbon to reduce the thrombogeneticity of the component. In a preferred embodiment, the titanium based component is a heart valve.According to the present invention, the component is placed in a vacuum chamber and heated to about 600.degree. -650.degree. C. (1112.degree.-1202.degree. F.). Thereafter, silicon is then deposited onto the component, and the component is simultaneously bombarded with a beam of energetic ions to form a metal-silicide bonding layer. The component then is cooled to at least about 100.degree. C. (212.degree. F.), preferably about 80.degree. C. (176.degree. F.), and a diamond-like carbon precursor is condensed onto the metal-silicide bonding layer. The precursor is simultaneously bombarded with a beam of energetic ions to form a coating of diamond-like carbon.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 25, 1997
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Lankford, Jr.
  • Patent number: 5593719
    Abstract: The present invention provides methods for modifying surfaces made from metal alloy and/or UHMWPE, preferably surfaces which are frictionally engaged, e.g., in an orthopaedic implant. The methods of the present invention reduce the coefficient of friction of the metal alloy component, reduce the shearing of fibrils from the UHMWPE component, and reduce sub-surface fatigue in the UHMWPE component. The method involves solvent immersion of the UHMWPE component to remove short chains of polyethylene at or near the surface of the component, and to swell and toughen the subsurface of the component. The method also involves firmly coating the surface of the metal alloy component with an adherent layer of diamond-like carbon ("DLC") by creating a metal-silicide interface at the surface of the metal alloy to permit firmer adhesion of DLC.
    Type: Grant
    Filed: March 29, 1994
    Date of Patent: January 14, 1997
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, James Lankford, Jr.
  • Patent number: 5589270
    Abstract: Electrification is suppressed with a water-soluble electrification-suppressing film having an electron conductivity and comprising a polymer resin. A high electrification-suppressing effect which is also high in vacuum can be easily obtained by using the electrification-suppressing film with less contamination.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: December 31, 1996
    Assignees: Hitachi, Ltd., Showa Denko K.K.
    Inventors: Fumio Murai, Yasunori Suzuki, Hideki Tomozawa, Ryuma Takashi, Yoshihiro Saida, Yoshiaki Ikenoue
  • Patent number: 5525568
    Abstract: A method for producing a supported metallic catalyst capable of increasing the number of active points in the metallic catalyst supported at surface of a supporter and of using with high activity and stability, wherein metallic particles in a form of ions or atomic particles composed of several atoms are generated by an ion injecting apparatus, the metallic particles are collided, adsorbed, and supported by the supporter, and the supported metallic catalyst is made by manufacturing the adsorbing sites, and by adsorbing and supporting the metallic catalyst, concurrently.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: June 11, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Motoo Yamaguchi, Kenzo Kobayashi, Takahide Matsuo, Norihira Uozumi
  • Patent number: 5512330
    Abstract: The present invention provides a new class of precursors for forming an improved diamond-like carbon coating on a workpiece. The precursors of the present invention are paraxylylenes, preferably dimers of paraxylylene, which are solid at room temperature and which will vaporize, pyrolize to substantially monomeric form, condense onto a workpiece, and spontaneously polymerize to form a "parylene" film which is free of precursor droplets and absorbed water. Upon bombardment with an ion beam, the parylene film is converted into a uniform, pinhole-free DLC coating.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: April 30, 1996
    Inventor: Geoffrey Dearnaley
  • Patent number: 5480683
    Abstract: A process for reducing the coefficient of friction and the wear between a metal part and an organic polymer- or copolymer-based part, in an aqueous medium containing chlorides, characterized in that the organic polymer- or copolymer-based part is submitted to a surface treatment by ionic implantation of elements selected from nitrogen, argon, oxygen and carbon.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: January 2, 1996
    Assignee: Nitruvid
    Inventors: Claude Chabrol, Marc Robelet, Robert Leveque, Anne L. M. Pichat nec Nedelec, Jean F. E. Rieu, Louis M. Rabbe, Andre Rambert
  • Patent number: 5474797
    Abstract: Polymeric implants provided with coatings of bactericidal compounds in the form of ionized atoms by a vapor process. The polymeric implants include products designed to penetrate or enter the body, such as catheters, shunts connectors and the like. Coatings of bactericidal compounds on the polymeric implants are intended to make their use safe. The coatings are formed thereon in the form of ionized atoms of the compounds by ion-beam-assisted deposition in a vacuum chamber. The vacuum chamber is provided, inter alia, with an evaporator and an ion source mounted in operative association therein, including means for rotatably mounting a plurality of polymeric implants for exposure to the evaporator and the ion source.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: December 12, 1995
    Assignee: Spire Corporation
    Inventors: Piran Sioshansi, Eric J. Tobin, John E. Barry, Robert S. Farivar
  • Patent number: 5455061
    Abstract: Plasma processing treatment characteristics of an object are determined nondestructively, prior to plasma processing the object, by placing an indicator layer over at least a portion of the plasma processing surface of the object, so as to generally conform to the shape of the surface. An electrically conductive grid is placed over the indicator layer, and made electrically common with the object. The indicator layer is implanted through the conductive grid, and changes properties responsive to the plasma processing treatment. The implanted indicator layer is thereafter analyzed to determine the treatment characteristics of the indicator layer. Plasma processing spatial distribution and total dosage are determined nondestructively from this information and used to establish the plasma processing program for the object and adjust the plasma processing apparatus as needed.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: October 3, 1995
    Assignee: Hughes Aircraft Company
    Inventors: Jesse N. Matossian, John J. Vajo
  • Patent number: 5447756
    Abstract: An applicator with a surface having a first wetting angle and a first surface area, which surface area has grafted thereto a layer of ion-producing gas plasma having a second wetting angle and a second surface are, wherein the second wetting angle is less than the first wetting angle and the second surface area is greater than the first surface area.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: September 5, 1995
    Assignee: Revlon Consumer Products Corporation
    Inventor: Melvin E. Kamen
  • Patent number: 5436035
    Abstract: A substrate surface is coated with a permeation barrier of inorganic material, which is vaporized from a crucible in a vacuum chamber evacuated to at least 10.sup.-3 mbar and precipitated on the substrate surface.An ionizing electron beam of low energy is thus passed through the gas phase of inorganic material with formation of a plasma, preferably in the direction running approximately parallel to the substrate surface.At least one low voltage electron beam gun with assigned electrode is incorporated in the vacuum chamber between the crucible and the substrate support.The main application is for coating plastic films for the packaging industry.
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: July 25, 1995
    Assignee: Alusuisse-Lonza Services Ltd.
    Inventor: Wolfgang Lohwasser
  • Patent number: 5415819
    Abstract: A method of producing a plasma treated article in a tool having electrically isolated conductive members, wherein at least one of the members has a surface closely conforming to the surface of the article which is to be treated. The method includes the steps of placing the article between the members so as to create a relatively small bounded space between the article surface and the closely conforming member surface, drawing a vacuum in the bounded space, introducing an ionizable gas into the bounded space and applying an electric field between the members to create a plasma in the bounded space to react with the article surface.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: May 16, 1995
    Assignee: Ford Motor Company
    Inventor: Michael D. Tisack