Silicon Containing Coating Patents (Class 427/583)
  • Patent number: 5298294
    Abstract: An input screen scintillator for an X-ray image intensifier tube. The tube includes light conductive cesium iodide needles formed on an electrically conductive substrate. Each needle is entirely coated with a material such as a metal or a semiconductor which reflects the light travelling within the needle toward the inside of the needle. This coating can enhance the efficiency and resolution of the image intensifier tube.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: March 29, 1994
    Assignee: Thomson-CSF
    Inventors: Gerard Vieux, Henri Rougeot, Paul de Groot, Francois Chareyre
  • Patent number: 5279867
    Abstract: A process for producing a deposit of an inorganic and amorphous protective coating on an organic polymer substrate, the coating comprising compounds in the form of an oxide, nitride, carbide, or alloys thereof, by photosensitized decomposition in the gas phase, which comprises decomposing a gas medium by photosensitized decomposition, including precursors of the elements constituting the deposit of the inorganic and amorphous protective coating to be produced by photonic excitation of an impurity which has been previously introduced into the medium, said decomposition being adapted for producing an indirect transfer of energy to the molecules of the medium, thereby causing the decomposition and subsequent deposition of the these elements onto the substrate.
    Type: Grant
    Filed: July 9, 1992
    Date of Patent: January 18, 1994
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventors: Jean-Marie Friedt, Pierre Claverie, Jeome Perrin
  • Patent number: 5242505
    Abstract: Alloys of amorphous silicon with Group VIa elements are disclosed that form high-quality materials for photovoltaic cells that are resistant to Staebler-Wronski photodegradation. Also disclosed are methods for manufacturing the alloys. The alloys can be formed as films on solid-state substrates by reacting silane gas and at least one alloying gas (H.sub.2 M, wherein M is an element from Group VIa of the periodic table), preferably with hydrogen dilution, by a glow-discharge method such as plasma-enhanced chemical vapor deposition. The alloys can have an optical bandgap energy from about 1.0 eV to about 2.3 eV, as determined by selecting one or more different Group VIa elements for alloying or by changing the concentration(s) of the alloying element(s) in the alloy. The alloys exhibit excellent light-to-dark conductivity ratios, excellent structural quality, and resistance to Staebler-Wronski degradation. They can be used as "i" type or doped for use as "p" or "n" type materials.
    Type: Grant
    Filed: December 3, 1991
    Date of Patent: September 7, 1993
    Assignee: Electric Power Research Institute
    Inventors: Guang H. Lin, Mu Z. He, Mridula Kapur, John O'M. Bockris
  • Patent number: 5221561
    Abstract: The process for the photochemical treatment of a solid material consists of exposing the latter to light pulses produced by at least one glow discharge elongated tube (4) having a rare gas under low pressure and whereof the gas, the pressure and the characteristics of the discharge are adapted to said material and its precursors, each pulse containing an extensive emission spectrum between 160 and 5000 nm. An electrical circuit with modulatable electrical characteristics (LC) makes it possible to modulate the discharge characteristics of the tube and the storage of the energy necessary for said discharge.
    Type: Grant
    Filed: March 31, 1992
    Date of Patent: June 22, 1993
    Assignee: France Telecom, Etablissement Autonome de droit public
    Inventors: Jean Flicstein, Yves Nissim, Christian Licoppe, Yves Vitel
  • Patent number: 5215588
    Abstract: A photo-assisted chemical vapor deposition system includes a reaction chamber, a susceptor in the reaction chamber supporting a wafer, a source for introducing reactant gas into the reaction chamber through an inlet port, and a cover positioned in sealed relationship to the housing and partially bounding the reaction chamber, the cover including a plurality of elongated light pipe openings each having a length comparable to the thickness of a boundary layer of the reactant gas and a diameter-to-length ratio small enough to maintain one-dimensional purge gas flow through the light pipe openings. A plurality of transparent windows are disposed in sealed relationship with the cover and bound an outer end of each of the light pipe openings. Ultraviolet light is introduced through the light pipe openings, which also provide a thick gas layer through which reactant species of the reactant gas must diffuse to reach the window surface.
    Type: Grant
    Filed: January 17, 1992
    Date of Patent: June 1, 1993
    Assignee: Amtech Systems, Inc.
    Inventor: Ji H. Rhieu