Transition Metal-base Component Patents (Class 428/655)
  • Patent number: 7682649
    Abstract: An endoprosthesis, such as a stent, having a layer that can enhance the biocompatibility of the endoprosthesis, and methods of making the endoprosthesis are disclosed.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 23, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Verivada Chandrasekaran, Karl Morris Schmidt, Christopher Torres Molina
  • Patent number: 7670673
    Abstract: A heat-resistant, light-shielding film having high light shielding capacity, high heat resistance, high sliding characteristics, low surface gloss and high electroconductivity, and useful for optical device parts, e.g., shutter or aperture blades for digital cameras and digital video cameras, and aperture blades for adjusting light intensity for projectors; method for producing the film; and aperture and light intensity adjusting device using the film. The heat-resistant, light-shielding film comprising a heat-resistant resin film base (A) resistant to 200° C. or higher, coated, on one or both sides, with an Ni-base metallic film (B) having a thickness of 50 nm or more by sputtering and then with a low-reflectivity film (C) of Ni-base oxide also by sputtering, and having a surface roughness (arithmetic average height Ra) of 0.1 to 0.7 ?m.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: March 2, 2010
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Katsushi Ono, Yoshiyuki Abe, Yukio Tsukakoshi
  • Publication number: 20100035081
    Abstract: Selective solar absorbers are prepared by coating a reflector with a thin cermet layer prepared by depositing and subsequently sintering at least one cermet layer precursor which is an aqueous or alcoholic dispersion of ceramic nanoparticles, the dispersion also containing dissolved metal ions corresponding to the desired metal in the cermet. Sintering in H2 or an inert atmosphere reduces the metal ions to elemental metal particles.
    Type: Application
    Filed: November 12, 2007
    Publication date: February 11, 2010
    Applicant: DRITTE PATENTPORTFOLIO BETEILIGUNGSGESELLSCHAFT MB
    Inventors: Rolf Clasen, Mohammadreza Nejati
  • Patent number: 7641985
    Abstract: A boron-free and silicon-free bonding alloy (16) for joining with a superalloy base material (12, 14). The bonding alloy includes aluminum in a concentration that is higher than the concentration of aluminum in the base material in order to depress the melting temperature for the bonding alloy to facilitate liquid phase diffusion bonding without melting the base material. The concentration of aluminum in the bonding alloy may be at least twice that of the concentration of aluminum in the base material. For joining cobalt-based superalloy materials that do no contain aluminum, the concentration of aluminum in the bonding alloy may be at least 5 wt. %.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 5, 2010
    Assignee: Siemens Energy, Inc.
    Inventor: Vasudevan Srinivasan
  • Publication number: 20090317659
    Abstract: There are provided a hard film-coated member excellent in wear resistance and adhesion, and a jig for molding. The hard film-coated member includes: a base material including an iron base alloy containing Cr; a first film layer formed with a film thickness of 1 to 10 ?m on the surface of the base material; and a second film layer formed with a film thickness of 2 to 10 ?m on the surface of the first film layer. The first film layer includes Cr1-a-bMaBb(CcN1-c), wherein M is one or more elements selected from W, V, Mo, Nb, Ti, and Al, and a, b, and c each denote the atomic ratio, and satisfy: 0?a?0.7; 0?b?0.15; 0?c?0.5; and 0.3?1-a-b. The second film layer includes Nb1-d-e-fCrdAleLf(CgN1-g), wherein L is one or more elements selected from Si, Y, and B, and d, e, f, and g each denote the atomic ratio, and satisfy: 0.05?1-d-e-f?0.5; 0.05?d?0.5; 0.4?e?0.7; 0?f?0.15; and 0?g?0.5.
    Type: Application
    Filed: April 20, 2009
    Publication date: December 24, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kenji YAMAMOTO
  • Publication number: 20090284443
    Abstract: A flexible film and a display device including the same are disclosed. The flexible film includes an insulating film including at least one hole. The insulating film further includes a first surface corresponding to an inner circumferential surface of the hole, a second surface corresponding to an upper surface of the insulating film, and a third surface corresponding to a lower surface of the insulating film. The flexible film includes a first metal layer and a second metal layer that is positioned on the first surface and at least one of the second and third surfaces. A thickness of the first metal layer is smaller than a thickness of the second metal layer.
    Type: Application
    Filed: January 22, 2009
    Publication date: November 19, 2009
    Inventors: Jungsup Yum, Dongki Ko
  • Publication number: 20090269612
    Abstract: A metal member is manufactured that has a plating layer of precious metal on the surface of a bare metal portion formed of a predetermined metal. First, a surface layer of the bare metal portion is removed. Then, a plating of precious metal is applied to the portion where the surface layer of the bare metal portion was removed. Then, the metal member is heat treated in an inert atmosphere. As a result, a metal member can be manufactured that has less carbide and hydrogen near a boundary surface of the plating layer and the bare metal portion than it would if the removing step and the heat treating step were not performed. With a metal member manufactured in this way, the plating layer does not easily peel away.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 29, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Naotaka Aoyama
  • Publication number: 20090263678
    Abstract: A metal material with electric contact layer includes a metal base made of metal containing chromium; an adhesive layer formed on a surface of the metal base, mainly containing chromium and having a thickness of 5 nm or more and 200 nm or less; and an electric contact layer formed on the surface of the adhesive layer, made of noble metal or an alloy of the noble metal, and having a thickness of 1 nm or more and 20 nm or less.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 22, 2009
    Applicant: HITACHI CABLE, LTD.
    Inventors: Takaaki SASAOKA, Mineo WASHIMA, Masahiro SEIDOU
  • Patent number: 7592073
    Abstract: A rhenium alloy is provided having from about 50 atomic % to 99 atomic % rhenium and a refractory compound particulates that are present in the alloy in an amount up to about 10 atomic %. The refractory compound comprises a nano-scale dispersion that is incorporated into the conventional rhenium structure. The nano-scale dispersion acts as grain boundary pins that result in a relatively fine grained, equiaxed structure that improves the mechanical properties of the alloy and helps to minimize the growth of large grains during operations at high temperatures. As a result, the amount of the rhenium used in high temperature applications may be reduced without sacrificing its high temperature and mechanical properties. Cryomilling in the presence of nitrogen may be used to prepare the rhenium alloy having a stable fine grain structure at high temperatures.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 22, 2009
    Assignee: The Boeing Company
    Inventors: Jerry W. Brockmeyer, Clifford C. Bampton
  • Patent number: 7588840
    Abstract: A magnetic thin film with a high resonant frequency and superior high-frequency characteristics, and a magnetic device and an inductor with superior high-frequency characteristics are provided. A planar coil and a magnetic thin film are disposed on a substrate, and an inductor is formed between connection terminals. An obliquely-grown magnetic layer in the magnetic thin film is crystal-grown in an oblique direction with respect to a surface of the substrate (an obliquely-grown magnetic body). In order to make the obliquely-grown magnetic body exhibit soft magnetism in the obliquely-grown magnetic layer, an insulator is mixed into the obliquely-grown magnetic body. The obliquely-grown magnetic layer shows in-plane magnetocrystalline anisotropy, and the in-plane magnetocrystalline anisotropy is increased, and an anisotropic magnetic field is increased.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: September 15, 2009
    Assignee: TDK Corporation
    Inventor: Kyung-Ku Choi
  • Patent number: 7556851
    Abstract: The invention relates to a coated turbine component adapted for exposure to a hot gas flow, comprising a component body comprising a base material, a thermal barrier coating applied to the base material, and a thermographic phosphor arranged within, on or beneath the thermal barrier coating surface adapted to emit light corresponding to a temperature of the thermographic phosphor.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: July 7, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventor: Stefan Lampenscherf
  • Patent number: 7547478
    Abstract: A coated article has a metallic substrate with a substrate composition, and a metallic coating overlying and contacting the metallic substrate. The metallic coating has a metallic-coating composition different from the substrate composition. A protective coating overlies and contacts the metallic coating. The protective coating includes an aluminide layer overlying and contacting the metallic coating, and optionally a thermal barrier coating overlying and contacting the aluminide layer. This structure may be used to restore a key dimension of an article that has previously been in service and to protect the article as well.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: June 16, 2009
    Assignee: General Electric Company
    Inventors: Wayne Ray Grady, Thomas Joseph Kelly, Michael James Weimer, Nripendra Nath Das, Mark Alan Rosenzweig
  • Publication number: 20090139373
    Abstract: Disclosed is a method for producing a bimetallic saw blade, saw band, or circular saw blade. According to said method, a support band (11) or a support disk made of a first metal is bonded to cutting material (16) made of a second metal in a first step, and said bond is machined in a material-removing manner so as to form a toothed profile (17a, b) in a second step, thus creating saw teeth that are at least partially made of the cutting material (16) by separating the teeth in a predetermined fashion.
    Type: Application
    Filed: June 21, 2005
    Publication date: June 4, 2009
    Inventor: Karl Merz
  • Publication number: 20090129969
    Abstract: The wire based on zinc and aluminum contains from 8 to 33% by weight of aluminum and up to 500 ppm of indium, in addition to zinc and the usual impurities. This wire is suitable for thermal spraying for corrosion protection, especially corrosion protection against high atmospheric humidity and high chloride ion concentrations according to DIN 50021-ss.
    Type: Application
    Filed: September 30, 2008
    Publication date: May 21, 2009
    Inventors: Jochen Spriestersbach, Peter Staubwasser
  • Publication number: 20090053555
    Abstract: The present invention provides a high corrosion resistance hot dip galvannealed steel material comprised of a Zn-based hot dip plated steel material achieving both a higher corrosion resistance of the plated layer itself by the added elements and sacrificial protection of iron metal by the plated layer or workability free of degradation caused of formation of intermetallic compounds by added elements, that is, a high corrosion resistance hot dip Zn plated steel material characterized in that an alloy plated layer containing Zn: 35 mass % or more, preferably 40 mass % or more, contains a non-equilibrium phase having a heat capacity by differential scanning calorimetry of 1 J/g or more. Furthermore, 5% or more, preferably 50% or more in terms of vol % is an amorphous phase. The alloy layer may contain, by mass %, Mg: 1 to 60% and Al: 0.07 to 59%, may further contain one or more elements selected from Cr, Mn, Fe, Co, Ni, and Cu in a total of 0.1 to 10%, and may in addition contain one or more elements of 0.
    Type: Application
    Filed: March 14, 2007
    Publication date: February 26, 2009
    Inventors: Koichi Nose, Kohei Tokuda, Yuichi Sato, Makoto Nakazawa
  • Patent number: 7494705
    Abstract: An energy dense energetic material comprising a layer of material comprising one or more metals substantially not in oxide form and a layer of material comprising one or more metals substantially in oxide form, wherein the layers in combination are energetic and have a thickness of less than or equal to approximately 100 nm.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: February 24, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Edward W. Sheridan, John Jones
  • Publication number: 20090011273
    Abstract: The invention relates to a band (7) for protecting electrodes (6) of a spot-welding gun for welding metal sheets (3, 4), comprising a carrier material (24), wherein at least one electrically conductive layer (16) is provided on the side (15) facing the metal sheets (3, 4). At least two layers (16, 20) are provided on the metal-sheet side (15) of the carrier material (24) in order to create such a band (7) when welding aluminum and/or aluminum alloys, by means of which the contrast of the imprint (24) of the welding spot (13) can be increased and the electrode (6) can be protected optimally, wherein the outermost layer (16) is made of tin and the layer (20) arranged therebelow is made of nickel-phosphorous. Furthermore, on the carrier material (24), at least one adhesive layer (18, 26, 27) may be provided for the layers (16, 20) superimposed.
    Type: Application
    Filed: January 18, 2007
    Publication date: January 8, 2009
    Inventor: Mario Loipetsberger
  • Patent number: 7462926
    Abstract: A method of producing a leadframe is provided, the method including the steps of providing a substrate, plating the substrate with a layer of tin, plating a layer of nickel over the layer of tin, and thereafter plating one or more protective layers over the layer of nickel. The leadframe may thereafter be heated to produce one or more intermetallic layers comprising tin, which impedes the out-diffusion of copper from a base material of the leadframe to the surface thereof.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: December 9, 2008
    Assignee: ASM Assembly Automation Ltd.
    Inventors: Ran Fu, Deming Liu, Yiu Fai Kwan
  • Patent number: 7452488
    Abstract: The present invention is directed to a composition consisting essentially of: a) from about 60 to about 99 mole % of SnO2, and b) from about 1 to about 40 mole % of one or more materials selected from the group consisting of i) Nb2O5, ii) NbO, iii) NbO2, iv) WO2, v) a material selected consisting of a) a mixture of MoO2 and Mo and b) Mo, vi) W, vii) Ta2O5, and viii) mixtures thereof, wherein the mole % s are based on the total product and wherein the sum of components a) and b) is 100. The invention is also directed to the sintered product of such composition, a sputtering target made from the sintered product and a transparent electroconductive film made from the composition.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 18, 2008
    Assignee: H.C. Starck Inc.
    Inventors: Prabhat Kumar, Rong-Chein Richard Wu, Shuwei Sun
  • Publication number: 20080280158
    Abstract: An object, in particular an item of sanitaryware, has a base body, a first layer that is optionally present on the base body and a ruthenium-containing layer above this first layer. This ruthenium-containing layer has been applied using a PVD process and preferably consists of a ruthenium-containing alloy. This alloy is in particular a nickel-Chromium-ruthenium alloy. The invention also comprises a corresponding production process and a PVD target made from a nickel-chromium-ruthenium alloy.
    Type: Application
    Filed: November 7, 2006
    Publication date: November 13, 2008
    Applicant: Hansgrophe AG
    Inventors: Armin Waidele, Martin Surm
  • Publication number: 20080274371
    Abstract: A composite substrate for superconductors and methods for making the same are described. The composite substrate of the present invention includes at least a core layer having and a sheath layer having a cube texture on at least a portion its surface. In certain embodiments, the core layer can include a nickel-tungsten-molybdenum alloy having about 2-10 atomic percent tungsten and 2-15 atomic percent molybdenum. In some embodiments, the sheath layer can include nickel or a nickel-tungsten alloy having about 0 to 6 atomic percent tungsten. Generally, the core layer is stronger than the sheath layer and an interdiffusion zone can exist between the core layer and the sheath layer.
    Type: Application
    Filed: April 2, 2008
    Publication date: November 6, 2008
    Applicant: AMERICAN SUPERCONDUCTOR CORPORATION
    Inventors: Cornelis Leo Hans THIEME, Elliott D. THOMPSON
  • Publication number: 20080220281
    Abstract: This invention relates to a plumbing device made of a copper alloy containing nickel salt, that includes a valve and a tube coupling having at least a liquid-contacting part washed with a cleaning fluid incorporating therein nitric acid and hydrochloric acid as an inhibitor under conditions of a temperature and a duration permitting effective removal of nickel salt, thereby performing nickel salt-removing treatment and causing the hydrochloric acid to form a coating film on the surface of the liquid-contacting part thereby effectively precluding elution of nickel salt from the surface of the liquid-contacting part in the presence of the coating film, wherein the nitric acid has a concentration c in a range of 0.5 wt %<c<7 wt % and the hydrochloric acid has a concentration d in a range of 0.05 wt %<d<0.7 wt % in the cleaning fluid, wherein the temperature is set to 10° C.?x 50° C., and wherein nickel salt is removed with the cleaning fluid.
    Type: Application
    Filed: March 25, 2008
    Publication date: September 11, 2008
    Inventor: Norikazu Sugaya
  • Patent number: 7400697
    Abstract: A rhenium lined niobium alloy tube for use as a clad tube for nuclear fuel in a nuclear reactor. The tube is produced by an electro deposit process. A graphite mandrel is placed in the electro deposit chamber as the cathode material. Refined rhenium stock is used as the anode material. The chamber is filled with the chloride electrolyte. The chamber is closed and the electrolyte bath is heated. Current and voltage applied across the anode and cathode cause the rhenium to be deposited on the mandrel. Refined niobium alloy is then used as the anode material and applied over the rhenium on the mandrel to a desired thickness. The part is removed from the chamber and ground to the desired outside diameter. The graphite mandrel is removed from the tube.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: July 15, 2008
    Assignee: BWX Technologies, Inc.
    Inventors: William J. Carmack, Lewis C. Hartless, Jeffrey A. Halfinger
  • Publication number: 20080165912
    Abstract: A rhenium lined niobium alloy tube for use as a clad tube for nuclear fuel in a nuclear reactor. The tube is produced by an electro deposit process. A graphite mandrel is placed in the electro deposit chamber as the cathode material. Refined rhenium stock is used as the anode material. The chamber is filled with the chloride electrolyte. The chamber is closed and the electrolyte bath is heated. Current and voltage applied across the anode and cathode cause the rhenium to be deposited on the mandrel. Refined niobium alloy is then used as the anode material and applied over the rhenium on the mandrel to a desired thickness. The part is removed from the chamber and ground to the desired outside diameter. The graphite mandrel is removed from the tube.
    Type: Application
    Filed: December 8, 2003
    Publication date: July 10, 2008
    Inventors: William J. Carmack, Lewis C. Hartless, Jeffrey A. Halfinger
  • Publication number: 20080152944
    Abstract: A process of converting an outer layer of an object made of a refractory metal, such as titanium, into a carbide of the refractory metal. A molten metal, such as molten lithium, is placed adjacent the outer surface of the object. The lithium does not react with the titanium, nor is it soluble within the titanium to any significant extent at the temperatures involved. The molten lithium contains elemental carbon, that is, free carbon atoms. At high temperature, the carbon diffuses into the titanium, and reacts with titanium atoms to form titanium carbide in an outer layer. Significantly, no other atoms are present, such as hydrogen or oxygen, which can cause problems, because they are blocked by the molten lithium.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 26, 2008
    Applicant: IAP RESEARCH, INC.
    Inventors: Julius John Bonini, Bhanumathi Chelluri, Edward Arlen Knoth
  • Patent number: 7338717
    Abstract: A method 10 and a laminated tool 31 which is created by the method 10 and which is formed by the selective coupling or attachment of sectional members, such as members 14, 16. The formed tool 31 includes a finished surface 36 which is formed by the selective deposition of material 30 onto surface 22.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: March 4, 2008
    Assignee: FloodCooling Technologies, LLC
    Inventors: Mark Manuel, Thomas N. Greaves
  • Publication number: 20080044685
    Abstract: This invention discloses novel nanocomposite material structures which are strong, highly conductive, and fatigue-resistant. It also discloses novel fabrication techniques to obtain such structures. The new nanocomposite materials comprise a high-conductivity base metal, such as copper, incorporating high-conductivity dispersoid particles that simultaneously minimize field enhancements, maintain good thermal conductivity, and enhance mechanical strength. The use of metal nanoparticles with electrical conductivity comparable to that of the base automatically removes the regions of higher RF field and enhanced current density. Additionally, conductive nanoparticles will reduce the surface's sensitivity to arc or sputtering damage. If the surface is sputtered away to uncover the nanoparticles, their properties will not be dramatically different from the base surface.
    Type: Application
    Filed: December 23, 2004
    Publication date: February 21, 2008
    Inventor: Sungho Jin
  • Publication number: 20070287027
    Abstract: A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
    Type: Application
    Filed: January 17, 2007
    Publication date: December 13, 2007
    Applicant: MedicineLodge, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker, Durga Janaki Ram Gabbita, David William Britt
  • Publication number: 20070172694
    Abstract: Disclosed herein is a hard coating film of laminate type which comprises more than one layer of a first kind, which has a composition represented by the formula (1a) below and a thickness of 1 to 80 nm, and more than one layer of a second kind, which has a composition represented by the formula (2a) below and a thickness of 1 to 80 nm, the layers being placed alternately one over another. (Cr(1?a)Ala)(C(1?x)Nx) ??(1a) (Zr(1?k)Hfk)(C(1?y)Ny) ??(2a) where each subscript denotes the atomic ratio specified below. 0.2?a?0.8 0.7?x?1 0?k?1 0.5?y?1 The hard coating film has outstanding high-temperature characteristics.
    Type: Application
    Filed: August 23, 2006
    Publication date: July 26, 2007
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kenji YAMAMOTO
  • Publication number: 20070154731
    Abstract: There are provided sandwich type composite materials comprising a first layer comprising aluminium, titanium, or steel; a foamable core layer comprising aluminium and a foaming agent; and a second layer comprising aluminium, titanium, or steel. The first and second layers can be the same or different. There are also provided processes for preparing such composite materials.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Inventor: Serguei Vatchiants
  • Patent number: 7226671
    Abstract: A method for making aerospace face seal rotors reinforced by rhenium metal, alloy, or composite in combination with silicon carbide or other ceramic. The resulting rotor also is disclosed. Ceramic grains, preferably silicon carbide (SiC), are mixed with powdered metallic (PM) binder that may be based on a refractory metal, preferably rhenium. The mixture is applied to a rotor substrate. The combined ceramic-metal powder mixture is heated to sintering temperature under pressure to enable fusion of the ceramic in the resulting metal-based substrate. A load may then be applied under an elevated temperature. The resulting coated rotor can exhibit high hot hardness, increased durability and/or high hot wear resistance, as well as high thermal conductivity.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 5, 2007
    Assignee: Honeywell International, Inc.
    Inventors: William L. Giesler, Robbie J. Adams
  • Patent number: 7205053
    Abstract: Disclosed is a Re alloy coating for diffusion barrier, such as a high-temperature equipment member, which comprises an atomic composition of 30% to less than 90% Re; and an atomic composition of 5% to less than 60% X (wherein X is at least one selected from the group consisting of Cr, Mo and W), with the remainder except for inevitable impurities being at least one selected from the group consisting of Ni, Fe and Co. Even if the alloy coating for diffusion barrier includes a diffusion layer containing at least one of the group consisting of Al, Si and Cr, a desired alloy composition of the alloy coating for diffusion barrier can be assured by a surface coating process and diffused components from the substrate while substantially preventing the diffusion of the elements of the diffusion layer during a homogenizing heat treatment. The alloy coating for diffusion barrier may include a Re-containing-alloy stress relief layer inserted between the film and the substrate.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: April 17, 2007
    Assignees: Japan Science and Technology Agency, Ebara Corporation
    Inventors: Toshio Narita, Shigenari Hayashi, Takayuki Yoshioka, Hiroshi Yakuwa
  • Patent number: 7192655
    Abstract: Disclosed is a ReCrNi alloy coating for diffusion barrier, such as a high-temperature equipment member, consisting essentially of a ternary alloy and having, except for inevitable impurities, an atomic composition of 20% to 80% Re, an atomic composition of 20% to 60% Cr, and an atomic composition of 5% to 40% Ni. Even if the alloy coating for diffusion barrier includes a diffusion layer containing at least one of the group consisting of Al, Si and Cr, a desired alloy composition of the alloy coating for diffusion barrier can be assured by a surface coating process and diffused components from the substrate while substantially preventing the diffusion of the elements of the diffusion layer during a homogenizing heat treatment. The alloy coating for diffusion barrier may include a Re-containing-alloy stress relief layer inserted between the film and the substrate.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 20, 2007
    Assignees: Japan Science and Technology Agency, Ebara Corporation
    Inventors: Toshio Narita, Shigenari Hayashi, Takayuki Yoshioka, Hiroshi Yakuwa
  • Patent number: 7175920
    Abstract: The present invention is to provide an ultra-thin copper foil with a carrier which comprises a release layer, a diffusion preventive layer and a copper electroplating layer laminated in this order, or a diffusion preventive layer, a release layer and a copper electroplating layer laminated in this order on the surface of a carrier foil, wherein a surface of the copper electroplating layer is roughened; a copper-clad laminated board comprising the ultra-thin copper foil with a carrier being laminated on a resin substrate; a printed wiring board comprising the copper-clad laminated board on the ultra-thin copper foil of which is formed a wiring pattern; and a multi-layered printed wiring board which comprising a plural number of the above printed wiring board being laminated.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 13, 2007
    Assignee: Circuit Foil Japan Co., Ltd.
    Inventors: Akitoshi Suzuki, Shin Fukuda, Kazuhiro Hoshino, Tadao Nakaoka
  • Patent number: 7150924
    Abstract: Discloses is a metal-based resistance heat-generation element. The element comprises a core made of a platinum group metal or refractory metal, and a coating film formed on the core. The coating film has at least two layers including a core-side inner layer of a Re—Cr based ? (sigma) phase and a surface-side outermost layer of an aluminide or silicide. Alternatively, the element may comprise a core made of an alloy containing a platinum group metal or refractory metal and Re and Cr diffused therein, and a coating film formed on the core. The coating film has at least one layer including an aluminide or silicide layer.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 19, 2006
    Assignee: Agency of Industrial Science and Technology
    Inventor: Toshio Narita
  • Patent number: 7129194
    Abstract: An improved catalyst system that includes a metal support structure and an anti-corrosive layer on the metal support structure, and has improved resistance to corrosion and other degradation under corrosive environments. Typically, a catalyst supporting layer is applied over the anti-corrosive layer.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: October 31, 2006
    Assignee: Corning Incorporated
    Inventors: Adra S. Baca, Lin He, Youchun Shi, Charles M. Sorensen, Jr.
  • Patent number: 7094474
    Abstract: A composite powder includes an FeMo based first powder including between about 20% and about 55% by weight Fe and between about 45% and about 80% by weight of Mo. The composite powder also includes an aluminum bronze based second powder blended with the FeMo based first powder.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 22, 2006
    Assignee: Caterpillar, Inc.
    Inventors: Sang-Ha Leigh, Hyung K. Yoon
  • Patent number: 7087113
    Abstract: A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 8, 2006
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 7060368
    Abstract: Disclosed is a ReCr alloy coating for diffusion barrier formed on a substrate, such as a high-temperature equipment member, which comprises an atomic composition of 50% to less than 90% Re, with the remainder consisting essentially of Cr except for inevitable impurities. Even if the alloy coating for diffusion barrier includes a diffusion layer containing at least one of the group consisting of Al, Si and Cr, a desired alloy composition of the alloy coating for diffusion barrier can be assured by a surface coating process and diffused components from the substrate while substantially preventing the diffusion of the elements of the diffusion layer during a homogenizing heat treatment. The alloy coating for diffusion barrier may include a Re-containing-alloy stress relief layer inserted between the film and the substrate. The ReCr—Ni alloy coating can suppress the deterioration of the substrate and the coating layer due to the reaction therebetween to provide an extended life span of the equipment member.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 13, 2006
    Assignees: Japan Science and Technology Agency, Ebara Corporation
    Inventors: Toshio Narita, Shigenari Hayashi, Takayuki Yoshioka, Hiroshi Yakuwa
  • Patent number: 7041384
    Abstract: A method for producing a coated carbon composite material is provided. The resulting coated composite is useful for applications such as rocket nozzles and valve bodies that encounter the high temperature and high flow rates in rocket propulsion and control. A carbon substrate such as graphite is first coated with rhenium. A layer of ruthenium is then deposited on the rhenium. The materials are heated at high temperature so as to melt the ruthenium. The ruthenium melts and penetrates through the rhenium layer and into pores of the carbon substrate. The rhenium and ruthenium are mutually soluble and further form a rhenium/ruthenium alloy. Upon solidification of the rhenium/ruthenium alloy interlayer, a further rhenium coating may be deposited thereon. The rhenium/ruthenium interlayer provides a high strength bond between the carbon substrate and the rhenium coating.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: May 9, 2006
    Assignee: Honeywell International, Inc.
    Inventor: Donald L. Mittendorf
  • Patent number: 6982030
    Abstract: Methods of providing improved metal coatings or metal deposits on a substrate, improvements in plating solutions that are used to provide such metal deposits and articles of the metal-coated substrates. The solderability of the metal coating is enhanced by incorporating trace amounts of phosphorus in the metal coating to reduce surface oxide formation during subsequent heating and thus enhance long term solderability of the metal coating. The phosphorus is advantageously provided in the metal coating by incorporating a source of phosphorus in a solution that is used to provide the metal coating on the substrate, and the metal coating is then provided on the substrate from the solution.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 3, 2006
    Assignee: Technic, Inc.
    Inventors: Yun Zhang, Robert A. Schetty, III, Kilnam Hwang
  • Patent number: 6979497
    Abstract: An electro-conductive metal plated polyimide substrate is composed of an aromatic polyimide substrate, a subbing metal layer of Mo—Ni alloy (in which a weight ratio of Mo to Ni is 75/25 to 99/1, and a plated electro-conductive film.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: December 27, 2005
    Assignee: UBE Industries, Ltd.
    Inventors: Shozo Katsuki, Hidenori Mii
  • Patent number: 6974531
    Abstract: A conductive material is electroplated onto a platable resistive metal barrier layer(s) employing a plating bath optionally comprising a super filling additive and a suppressor, and by changing the current or voltage as a function of the area of plated metal. A structure is also provided that comprises a substrate, a platable metal barrier layer(s) located on the substrate and a relatively continuous uniform electroplated layer of a conductive material located on the platable resistive metal barrier layer.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: December 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Andricacos, Hariklia Deligianni, Wilma Jean Horkans, Keith T. Kwietniak, Michael Lane, Sandra G. Malhotra, Fenton Read McFeely, Conal Murray, Kenneth P. Rodbell, Philippe M. Vereecken
  • Patent number: 6974641
    Abstract: A coating material (20) for coating a machine component (10), especially a gas turbine or a part thereof, comprises a mixture of at least a refractory material and an indicator material having an optical emission (e.g. fluorescence) spectrum which varies in response to a physical parameter of the coated component. In a preferred embodiment, the coating consists of yttrium aluminium garnet (YAG) or yttrium stabilised zirconium. The dopant is preferably a rare earth metal, e.g. Eu, Tb, Dy.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: December 13, 2005
    Assignee: Southside Thermal Sciences (STS) Limited
    Inventors: Kwang-Leong Choy, Andrew Lawrence Heyes, Joorg Feist
  • Patent number: 6969558
    Abstract: A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: November 29, 2005
    Assignee: General Electric Company
    Inventors: William S. Walston, Jon C. Schaeffer, Wendy H. Murphy
  • Patent number: 6936354
    Abstract: The invention teaches a system suitable for use in a water-sensitive electronic device which comprises two superimposed layers, the first material of which is formed of a material capable of sorbing hydrogen, the second material formed of a material capable of converting water into hydrogen; a screen of the type with light-emitting organic diodes comprising the system according to the invention.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: August 30, 2005
    Assignee: SAES Getters S.p.A.
    Inventors: Bruno Ferrario, Stefano Tominetti, Alessandro Gallitognotta
  • Patent number: 6924043
    Abstract: An ultra-thin copper foil with a carrier having a peeling layer able to withstand even high temperature working in the case of using a high heat resistant resin, enabling the carrier foil and the ultra-thin copper foil to be easily peeled apart, and reduced in the number of pinholes by uniform plating without impairing the peelability of the peeling layer, that is, an ultra-thin copper foil with a carrier comprised of a carrier foil, a peeling layer, and an ultra-thin copper foil, wherein the peeling layer and the ultra-thin copper foil are provided between them with a strike plating layer at the surface on the peeling layer side, an ultra-thin layer of copper is provided on this according to need, and an ultra-thin copper foil comprised of copper or a copper alloy or a phosphorus-containing copper or phosphorus-containing copper alloy is provided.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: August 2, 2005
    Assignee: Furkawa Circuit Foil Co., Ltd.
    Inventors: Yuuji Suzuki, Akira Matsuda
  • Patent number: 6924045
    Abstract: It is disclosed a bond or overlay MCrAlY-coating for the use within a high temperature environment for the protection of the base alloy of turbine blades and vanes. The MCrAlY-coating having a ? or ?/??-structure comprises a dispersion of ?-NiAl and/or ?/?-MCrAlY particles. This provides a reservoir of aluminum reservoir to coatings wherein the reservoir replenish the aluminum lost due to oxidation and interdiffusion during service. The ?-NiAl and/or ?/?-MCrAlY is the aluminum reservoir and is applied by mixing appropriate powders with ? or ?/?? powders.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: August 2, 2005
    Assignee: ALSTOM Technology LTD
    Inventors: Abdus S. Khan, Maxime Konter, Robert Schmees
  • Patent number: 6916529
    Abstract: An abradable coating composition for use on shrouds in gas turbine engines or other hot gas path metal components exposed to high temperatures containing an initial porous coating phase created by adding an amount of inorganic microspheres, preferably alumina-ceramic microballoons, to a base metal alloy containing high Al, Cr or Ti such as ?-NiAl or, alternatively, MCrAlY that serves to increase the brittle nature of the metal matrix, thereby increasing the abradability and oxidation resistance of the coating at elevated temperatures. Coatings having a total open and closed porosity of between 20% and 55% by volume due to the presence of ceramic microballoons ranging in size from about 10 microns to about 200 microns have been found to exhibit excellent abradability for applications involving turbine shroud coatings. An abradable coating thickness in the range of between 40 and 60 ml provides improved performance for turbine shrouds exposed to gas temperatures between 1380° F. and 1800° F.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: July 12, 2005
    Assignee: General Electric Company
    Inventors: Surinder Singh Pabla, Farshad Ghasripoor, Yuk-Chiu Lau, Liang Jiang, Canan Uslu Hardwicke, William Emerson Martinez Zegarra
  • Patent number: 6887586
    Abstract: Sharp-edged cutting tools and a method of manufacturing sharp-edged cutting tools wherein at least a portion of the sharp-edged cutting tool is formed from a bulk amorphous alloy material are provided.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: May 3, 2005
    Assignee: Liquidmetal Technologies
    Inventors: Atakan Peker, Scott Wiggins