Arrangement Or Process Including Thermal Control Patents (Class 429/433)
  • Patent number: 11742496
    Abstract: A bipolar plate for a fuel cell includes an anode plate and a cathode plate. The anode plate has hydrogen flow channels on a first side of the anode plate and coolant channels on a second side of the anode plate. The cathode plate has a first side disposed against the second side of the anode plate to cover the coolant channels and has a second side defining a recessed pocket configured to receive a stream of air. A flow guide is disposed in the pocket such that an inlet manifold is formed along a first edge of the flow guide and an outlet manifold is formed along a second edge of the flow guide. The flow guide defines channels extending from the inlet manifold to the outlet manifold. A plurality of openings is defined by through the flow guide.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 29, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Chunchuan Xu, Zijie Lu, Jun Yang, Daniel E. Wilkosz, Shinichi Hirano
  • Patent number: 11735751
    Abstract: Presented are intelligent fuel cell systems (FCS) with logic for evacuating water from anode headers of a fuel cell stack, methods for making/using such systems, and vehicles equipped with such systems. A method of operating an FCS includes a system controller confirming the FCS is running and, once confirmed, receiving a bleed request to remove exhaust gas from exhaust output by the anode. Responsive to the bleed request, the controller determines a total bleed valve use (TBVU) indicating prior bleed requests completed by an anode bleed valve, and thereafter determines if the TBVU is less than a maximum bleed valve use (MBVU). If so, the controller responsively commands the bleed valve to bleed the exhaust gas from the anode exhaust. If TBVU is not less than MBVU, the controller commands a header drain valve to bleed the exhaust gas from the anode exhaust and drain water from the anode header.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: August 22, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Xiaofeng Wang, Sergio E. Garcia, Chad Dubois, Manish Sinha
  • Patent number: 11515549
    Abstract: The present disclosure relates to a method of recovering performance of a fuel cell stack in a fuel cell system of a vehicle. The method includes determining whether the fuel cell stack is in a state in which a stack performance recovery operation is possible based on information collected from the vehicle using a predetermined stack state determination criterion, determining whether the vehicle is in a state in which the stack performance recovery operation is possible based on operation information of a fuel cell system, and performing the stack performance recovery operation upon determining that the fuel cell stack is in the state in which the stack performance recovery operation is possible and that the vehicle is in the state in which the stack performance recovery operation is possible.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: November 29, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Seong Cheol Jeong, Jong Gyun Kim, Dae Jong Kim, Jae Won Jung
  • Patent number: 11462752
    Abstract: A system for managing heat in a mobile charger configured to provide power to an electric vehicle includes the mobile charger. The mobile charger includes a fuel cell stack, a heat reservoir, and a liquid coolant system including one or more liquid coolant loops configured to transfer heat between the fuel cell stack and the heat reservoir. The mobile charger further includes a computerized processor which is programmed to selectively control the liquid coolant system in one of a plurality of a thermal management modes configured to selectively remove heat from the fuel cell stack and provide heat to the fuel cell stack.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 4, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: William H. Pettit, Charles E. Freese, V, Margarita M. Mann, Alan B. Martin, Matthew C. Kirklin
  • Patent number: 11374231
    Abstract: The present specification relates to an interconnect for a solid oxide fuel cell, a method for preparing the same, and a solid oxide fuel cell.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 28, 2022
    Inventors: Tai Min Noh, Changseok Ryoo, Daehwan Kim, Kang Taek Lee, Kwangwook Choi, Kwangyeon Park, Dong Woo Joh, Imdadullah Thaheem
  • Patent number: 11362344
    Abstract: A cell stack device includes a manifold and a fuel cell. The manifold includes a gas supply chamber and a gas collection chamber. The fuel cell includes a support substrate and a power generation element portion. The support substrate includes first and second gas channels. The first gas channel is connected to the gas supply chamber, and the second gas channel is connected to the gas collection chamber. The first gas channel is open in the gas supply chamber at a proximal end portion. The second gas channel is open in the gas collection chamber at a proximal end portion. The first and second gas channels are connected to each other on the distal end portion side. The first and second gas channels are configured such that a pressure loss of gas in the first gas channel is smaller than a pressure loss of gas in the second gas channel.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 14, 2022
    Assignee: NGK INSULATORS, LTD.
    Inventors: Risako Ito, Makoto Ohmori, Hirofumi Kan, Yuki Tanaka, Masayuki Shinkai
  • Patent number: 11233261
    Abstract: A fuel cell stack includes a reaction layer having a MEA, an anode separator having a gas channel formed at a first side facing the reaction layer and through which a first reactant gas flows, and a cooling channel formed at a second side and through which a coolant flows. The anode separator abuts the reaction layer. A cathode separator abuts anode separator so that a first side of the cathode separator covers the cooling channel. A porous structural unit has a partition wall protruding from the second side of the cathode separator and has a flow path for a second reactant gas to minimize a cooling temperature deviation and improve operational efficiency.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: January 25, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Joon Guen Park
  • Patent number: 10971745
    Abstract: A fuel cell reversal event is diagnosed by integrating current density via a controller in response to determine an accumulated charge density. The controller executes a control action when the accumulated charge density exceeds a threshold, including recording a diagnostic code indicative of event severity. The control action may include continuing stack operation at reduced power capability when the accumulated charge density exceeds a first threshold and shutting off the stack when the accumulated charge density exceeds a higher second threshold. The event may be detected by calculating a voltage difference between an average and a minimum cell voltage, and then determining if the difference exceeds a voltage difference threshold. The charge density thresholds may be adjusted based on age, state of health, and/or temperature of the fuel cell or stack. A fuel cell system includes the stack and controller.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 6, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Manish Sinha, Jingxin Zhang, Andrew J. Maslyn
  • Patent number: 10547069
    Abstract: A fuel cell includes power generation cells and an end cell. Each power generation cell has in it a gas passage, through which power generation gas passes. The fuel cell includes an introducing conduit, which distributes and introduces the power generation gas into the gas passages, and a discharging conduit, which merges flows of the power generation gas after passing through the gas passages and discharges the merged flow. The end cell has in it a bypass passage, which connects the introducing conduit and the discharging conduit to each other. The bypass passage is composed of parallel channels, each of which is independently connected to the introducing conduit. The parallel channels include lower parallel channels and upper parallel channels. The pressure loss in each of the lower parallel channels is smaller than the pressure loss in each of the upper parallel channels.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: January 28, 2020
    Assignee: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Takashi Kondo, Keiji Hashimoto
  • Patent number: 10431784
    Abstract: The disclosure relates to a method for clamping a lithium ion accumulator, which has a lithium ion accumulator cell stack having a top surface, a base surface opposite the top surface and a peripheral surface having four side surfaces, and at least two prismatic lithium ion accumulator cells. The lithium ion accumulator cell stack is clamped by at least one tension strap apparatus which is arranged and tensioned in the region of the peripheral surface, the ends of the tension strap meanwhile being kept free of tension. While free of tension, the ends of the tension strap are connected to each other directly or indirectly by using one or two plates, which are arranged on a side surface or two mutually opposite side surfaces of the peripheral surface. The disclosure further relates to a lithium ion accumulator and a motor vehicle having a lithium ion accumulator.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 1, 2019
    Assignees: Robert Bosch GmbH, Samsung SDI Co., Ltd.
    Inventors: Stefan Pfeiffer, Michael Gless, Axel Bormann, Conrad Bubeck
  • Patent number: 10283786
    Abstract: A bipolar plate, which forms a first polar plate of a first base element of a fuel cell and a second polar plate of a second base element adjacent to the first base element of the fuel cell, includes two parallel plates. Each plate of the parallel plates includes at least one distribution channel formed in a thickness thereof, for distributing fuel or oxidant. Each distribution channel is arranged so that, when the first and second base elements of the fuel cell are stacked together, a flow channel is formed between the two parallel plates, and the flow channel communicates with a cooling fluid supply opening.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 7, 2019
    Assignee: Compagnie Generale des Etablissements Michelin
    Inventor: David Olsommer
  • Patent number: 10099188
    Abstract: A method and apparatus for obtaining a solution from a solid product in contact with a liquid is provided. A solid product is housed within a dispenser. A liquid is introduced into contact with the solid product. The solution formed between the solid product and the liquid is collected, and a makeup liquid can be added thereto to further dilute or control the concentration of the formed solution. The amount of makeup liquid added to the solution can be controlled based on the temperature of the liquid to provide an automatic, continuously variable amount of liquid added to the solution. In addition, a method of providing a pressure independent control of the makeup liquid is also provided.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: October 16, 2018
    Assignee: Ecolab USA Inc.
    Inventors: Ryan Joseph Drake, Andrew Max Schultz, Jessica Roseanne Tumini, Kevin Andrew Wuebben, Jeffrey Alan Blansit, Ariel Chatman Kleczewski
  • Patent number: 9923228
    Abstract: A fuel cell is formed by laminating a plurality of power generating units. The power generating unit includes: a membrane electrode gas diffusion layer assembly; a sealing portion disposed along its outer circumference; a porous body flow path in which oxidant gas supplied to a cathode-side catalytic layer flows; a shielding plate provided between the sealing portion and the porous body flow path; and first, second separator plates configured to sandwich the membrane electrode gas diffusion layer assembly and the porous body flow path therebetween. The shielding plate, the porous body flow path, and the first separator plate making contact with the porous body flow path project into the oxidant exhaust gas discharge manifold determined by the sealing portion.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: March 20, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Kubo, Hiroki Okabe, Takashi Kondo, Atsushi Ida
  • Patent number: 9742023
    Abstract: A fuel cell contains two or more fluid-supplying internal manifolds and fluid-discharging internal manifolds for each fluid. External manifolds include fluid-supplying external manifolds, which connect to the fluid-supplying internal manifolds, and fluid-discharging external manifolds, which connect to the fluid-discharging internal manifolds, for each fluid. The respective fluid-supplying and fluid-discharging external manifolds are positioned approximately in parallel with each other, extending in the width direction of a cell laminate body.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: August 22, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takuya Hasegawa, Ryuji Fujieda
  • Patent number: 9601786
    Abstract: Leakproofing device for a fuel cell intended to be interposed between an Electrodes Membrane Assembly and a polar or bipolar plate of a fuel cell unit, the device consisting of a rigid frame and of a leakproofing seal integral with the frame, the frame furnished with the leakproofing seal defining a plurality of apertures through the device, the apertures being delimited by the leakproofing seal.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: March 21, 2017
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Arnaud Cerceau, Alain Guinebert, Nicolas Jannin, Elisabeth Rossinot, Helene Trouve, Denis Sirac
  • Patent number: 9543608
    Abstract: The present invention provides a novel manufacturing method for a solid oxide fuel cell apparatus in which members of the apparatus are joined together with an adhesive, such as a ceramic adhesive. The method implements first and second types of drying and hardening steps. The first type of step may be called a workable hardening step and gives an assembly of members in the solid oxide fuel cell apparatus structural rigidity to go through assembling of the solid oxide fuel cell apparatus. The second type of step may be called a solvent elimination and hardening step and gives the assembled members property to withstand the operation temperature of the solid fuel oxide cell apparatus. The first type of step is performed at a first temperature lower than a second temperature at which the second type of step is performed. The second type of step is performed only after the first type of step is performed at multiple times.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 10, 2017
    Assignee: TOTO LTD.
    Inventors: Nobuo Isaka, Naoki Watanabe, Shuhei Tanaka, Takuya Hoshiko, Masaki Sato, Osamu Okamoto, Shigeru Ando, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama
  • Patent number: 9487871
    Abstract: A high-pressure water electrolysis apparatus includes a solid polymer electrolyte membrane, an anode side separator, a cathode side separator, an anode side element member, a cathode side element member, a high-pressure hydrogen communication hole, a first seal member, and a second seal member. The first seal member is provided between the solid polymer electrolyte membrane and an outer circumference edge portion of the anode side separator. The second seal member has a thickness same as a thickness of the anode side element member at a time of operation of the high-pressure water electrolysis apparatus. The second seal member is disposed in an anode chamber to shield between the anode chamber and the high-pressure hydrogen communication hole.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 8, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Koji Nakazawa
  • Patent number: 9281534
    Abstract: A fuel cell (1) includes a stacked body of a membrane electrode assembly (3) and of separators (2). Then, the membrane electrode assembly (3) and the separators (2) are formed into a substantially rectangular shape, the separators (2) include flow passages. Moreover, an aspect ratio R as a ratio (flow passage length/flow passage width) of a flow passage length with respect to a flow passage width is 0.01 or more to less than 2. Furthermore, a horizontal direction equivalent diameter D (mm) of the flow passages satisfies Expression (1): D=B×(R×Acat)1/3??Expression (1) where Acat is a catalyst area (cm2) of the membrane electrode assembly (3), and B is a constant of 0.005 or more to 0.2 or less.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 8, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Takuya Hasegawa, Ryuji Fujieda
  • Patent number: 9214682
    Abstract: A fuel cell is formed by sandwiching a membrane electrode assembly between a first separator and a second separator. A fuel gas flow field is formed in the second separator. An inlet buffer is connected to the inlet of the fuel gas flow field, and an outlet buffer is connected to an outlet of the fuel gas flow field. The inlet buffer is deeper than the outlet buffer. Therefore, the pressure loss in the inlet buffer is smaller than the pressure loss in the outlet buffer.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 15, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Yasuhiro Watanabe
  • Patent number: 9161802
    Abstract: Methods, apparatus, and systems for treating tissue located beneath a tissue surface with electromagnetic energy delivered from a treatment electrode. The treatment electrode may include a conductive layer and a plurality of openings extending through the conductive layer. The openings may vary in size or area across the conductive layer, and may vary progressively in size or area with location relative to the electrode perimeter.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: October 20, 2015
    Assignee: SOLTA MEDICAL, INC.
    Inventor: Piotr J. Przybyszewski
  • Patent number: 9029041
    Abstract: To an internal vessel that houses cells of a solid oxide fuel cell, an external vessel is further disposed. In the internal vessel, a plurality of planar cells is disposed vertically with a gap between the cells, a mixed gas of a fuel and air is descended from top down through the gap having a predetermined width between the cells, and, at a bottom portion of the housing space, the mixed gas is burned to generate electricity.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 12, 2015
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Michio Horiuchi, Yasue Tokutake, Shigeaki Suganuma, Jun Yoshiike, Fumimasa Katagiri
  • Patent number: 9029033
    Abstract: A barrier layer for a fuel cell assembly is disclosed, the barrier layer having a thermally insulating layer having a first surface and a second surface, and an electrically conducting layer formed on the first surface of the thermally insulating layer. The thermally insulating layer may include a plurality of apertures formed therethrough, and the electrically conducting layer may be formed on a second surface of the thermally insulating layer and on the walls of the thermally insulating layer forming the apertures.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 12, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric J. Connor, Gerald W. Fly
  • Patent number: 9005833
    Abstract: The invention relates to a system having high-temperature fuel cells, for example SOFCs. A reformer connected upstream of the high-temperature fuel cells at the anode side, a start burner for the preheating of the cathodes of the high-temperature fuel cells, an afterburner and an operating heat exchanger are present at the system in accordance with the invention. Oxidizing agent can be supplied to the high-temperature fuel cell cathodes through the operating heat exchanger. In addition, it can be heated with the exhaust gas of the high-temperature fuel cells. Exhaust gas conducted through the operating heat exchanger can flow in an exhaust gas line together with environmental air and can then be conducted away into the environment as cooled exhaust gas.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: April 14, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Sebastian Reuber, Markus Barthel, Mareike Wolter, Stefanie Koszyk, Rico Belitz
  • Patent number: 9005785
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin
  • Patent number: 9005834
    Abstract: A polymer electrolyte fuel cell comprises a plurality of stacked cells each having an ionic conductive electrolyte membrane, an anode placed on one side of the electrolyte membrane, a cathode placed on the other side of the electrolyte membrane, and a conductive separator on which a first refrigerant channel for flow of a refrigerant is formed in center part thereof. The separator comprises penetration holes constituting a manifold which extend in a direction of stacking of the plurality of cells and through which the refrigerant flows and second refrigerant channels for communication between the penetration holes and the first refrigerant channel. A plurality of protrusions that protrude into the penetration holes from parts of wall surfaces of the penetration holes that are located peripherally in connection parts between the penetration holes and the second refrigerant channels.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Mitsuo Yoshimura, Hirokazu Honkawa, Kenji Arai
  • Patent number: 8993137
    Abstract: An energy storage system, in particular a battery having a plurality of battery cells. These battery cells are accommodated in a first container. The first container is separated from a second container by a separating element, which allows for establishing a pressure difference ?p for expansion of a gas out of the first container into the second container.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: March 31, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Roland Norden, Jochen Fassnacht
  • Patent number: 8990034
    Abstract: A health monitoring system for a fuel cell stack using current fuel cell architecture to enable the electronic control unit (ECU) to continue to monitor the health of the fuel cell stack despite a component failure. The system uses an embedded measurement module (EMM) connected to a group of fuel cells in the fuel cell stack to monitor the health of that group of fuel cells. The EMM produces a pulse width modulation signal that is sent to the ECU. A total voltage value for the group of fuel cells is embedded into the calibration signal or end of frame sequence. The ECU uses an algorithm to determine a missing voltage of at least one fuel cell in the event of the component failure of that fuel cell by adding up the cumulative value for each fuel cell reporting their voltage and subtracting that value from the total voltage value found in the end of frame sequence.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, David J. Reed, Kenneth L. Kaye
  • Patent number: 8986898
    Abstract: The disclosure is directed at a method and apparatus for controlling fuel cell operating conditions. The apparatus includes a set of sensors for monitoring the fuel cell operating conditions and a processing unit, in communication with the set of sensors for determining when the fuel cell operating conditions are outside of an acceptable range. When it is determined that the fuel cell operating conditions are outside of the acceptable range, an electrolyzer is activated to electrolyze waste liquid water or water vapor to assist in controlling the fuel cell operating conditions.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 24, 2015
    Assignee: BlackBerry Limited
    Inventors: David Gerard Rich, Taha Shabbir Husain Sutarwala
  • Patent number: 8980487
    Abstract: The progress of activation of a fuel cell is appropriately transmitted in accordance with the rise of the temperature of the fuel cell, and an estimated time till the completion of the activation is displayed with higher accuracy. To realize this, the current percentage of a fuel cell temperature is displayed on a gauge (G) which displays, as a starting point, the temperature of the fuel cell at the start of the activation and which displays, as an end point, the temperature of the fuel cell at the completion of the activation. The percentage of the temperature is displayed as the estimated time till the completion of the activation, whereby an adverse effect due to a low accuracy in the case of the estimation of the time is eliminated. When the fuel cell is activated for a failure check, the percentage of an actually elapsed time with respect to a time required to complete the failure check may be displayed on the gauge (G).
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Umayahara, Atsushi Imai
  • Patent number: 8980489
    Abstract: A fuel cell type power generation device including: a fuel cell extracting electric power by an electrochemical reaction of a fuel; a first combustor burning an unreacted fuel exhausted from the fuel cell; and a second combustor burning an unburned fuel exhausted from the first combustor.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: March 17, 2015
    Assignee: Casio Computer Co., Ltd.
    Inventor: Toshihito Terada
  • Patent number: 8980486
    Abstract: A fuel cell system 10 removes water retaining in a cathode catalyst layer 217 in a fuel cell 20, after a start-up of the fuel cell 20 and before feed of coolant to the fuel cell 20.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Sho Usami, Yasushi Araki, Kazunori Shibata, Shuya Kawahara, Tomohiro Ogawa
  • Patent number: 8980493
    Abstract: A circulation pipe for a coolant is connected to a fuel cell. A pump and a heat exchanger are connected to the circulation pipe. A bypass pipe is connected in parallel with the pump. An ion exchanger is connected to the bypass pipe. An electronic cooling device is connected to the bypass pipe on an upstream side of the ion exchanger. The coolant, which is supplied to the ion exchanger, is cooled by the electronic cooling device to a predetermined temperature, so that the ion-exchange resins are prevented from being abnormally heated by the coolant.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: March 17, 2015
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventors: Atsushi Imamura, Akishi Morita
  • Publication number: 20150050576
    Abstract: A method of controlling a concentration of a fuel to be supplied to a stack of a fuel cell system, the method including determining a reference concentration of the fuel to be supplied to the stack when the stack is in a normal mode, monitoring temperature of the stack, and controlling the concentration of the fuel to be supplied to the stack, based on a result of the monitoring the temperature of the stack.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 19, 2015
    Inventors: Young-jae KIM, Joon-hee KIM, Dae-jong YOO
  • Patent number: 8956777
    Abstract: The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800° C. to minimize requirements for using expensive, high-temperature alloys.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: February 17, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Kazuo Saito, Yao Lin
  • Patent number: 8951689
    Abstract: A fuel cell system includes fuel cells, a circulation channel of a coolant to cool the fuel cells, and an ion exchange resin provided on the circulation channel to maintain electrical conductivity of the coolant. The coolant contains an additive. The ion exchange resin is prepared so that adsorption of the additive on the ion exchange resin is in a saturated state. A fuel-cell vehicle includes the fuel cell system.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 10, 2015
    Assignees: Suzuki Motor Corporation, Showa Water Industries Co., Ltd.
    Inventors: Katsuhiko Sato, Mikio Yasukawa, Akihiro Sagasaki, Tokio Wada, Yoshito Kato
  • Patent number: 8945786
    Abstract: A fuel cell stack and a fuel cell system, the fuel cell stack including a plurality of membrane electrode assemblies, the membrane electrode assemblies being configured to generate electrical energy by an electrochemical reaction of a fuel and an oxidizer; and a plurality of bipolar plates positioned adjacent to the membrane electrode assemblies and between the membrane electrode assemblies, the bipolar plates including a fuel channel at one side thereof and an oxidizer channel at a second, opposite side thereof, wherein the bipolar plates include a plurality of cooling channels penetrating therethrough, the cooling channels having a curvature along a length thereof.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-Jin An, Chi-Seung Lee, Jin-Hwa Lee
  • Patent number: 8940448
    Abstract: This invention relates to a fuel cell system comprising: a fuel cell stack; a hydrogen-gas supply device configured to supply hydrogen gas filled in a hydrogen tank into the fuel cell stack along with pressure reduction of the hydrogen gas; an air supply duct configured to supply air into the fuel cell stack; and an air exhaust duct configured to exhaust surplus air from the fuel cell stack. The hydrogen-gas supply device is disposed inside a heat exchange chamber capable of communicating with the air supply duct and the air exhaust duct.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 27, 2015
    Assignee: Suzuki Motor Corporation
    Inventor: Kengo Ikeya
  • Patent number: 8927169
    Abstract: An object of the present invention is to provide a fuel cell system and a mobile body capable of restraining freeze in an air cleaner. The fuel cell system includes an air cleaner for cleaning the air to be supplied to a fuel cell and a heater for heating the air cleaner. The air cleaner can be alternatively heated by supplying a refrigerant in a refrigerant piping system to the air cleaner instead of using the heater.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: January 6, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroyuki Yumiya
  • Patent number: 8920996
    Abstract: Systems and methods for regulating fuel cell air flow, such as during low loads and/or cold temperature operation. These systems and methods may include providing a thermal management fluid, such as air, to the fuel cell stack, transferring thermal energy between the thermal management fluid and the fuel cell stack, and varying the flow rate of the thermal management fluid that comes into contact with the fuel cell stack to maintain the temperature of the fuel cell stack within an acceptable temperature range. Varying the flow rate of the thermal management fluid may include varying the overall supply rate of the thermal management fluid within the fuel cell system and/or providing an alternative flow path for the thermal management fluid such that a portion of the thermal management fluid supplied by the fuel cell system does not come into contact with the fuel cell stack.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 30, 2014
    Assignee: DCNS
    Inventor: David W. Skinkle
  • Patent number: 8900766
    Abstract: A system and method for selectively determining whether a freeze purge should be performed at shut-down of a fuel cell stack. The method includes identifying that the vehicle has been keyed off and then determining whether a stack membrane humidification value is less than a predetermined humidification value that identifies the humidification of membranes in fuel cells in the fuel cell stack. If the stack membrane humidification value is not less than the predetermined humidification value, then the method determines if the ambient temperature is below a predetermined ambient temperature, and if so, performs the freeze purge. If the ambient temperature is not below the predetermined ambient temperature, then the method performs a short non-freeze purge of the flow channels in the fuel cell stack. The method determines a wake-up time for a controller for a next time to determine whether a freeze purge should be performed.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Aaron Rogahn, Bruce J. Clingerman, Michael Cartwright
  • Patent number: 8877396
    Abstract: A control device of a fuel cell system sets a required output of a fuel cell stack that is required according to a present power demand and predicts the required output and the current according to the temperature of the fuel cell stack from a predetermined output state map that is preset. The control device sets an operation state quantity according to the predicted current and the temperature of the fuel cell stack from a predetermined operation state quantity map that is preset. The control device includes at least one of a pressure at an air supply port of air that is supplied to the cathode electrode of the fuel cell stack, a utilization rate of the air at the cathode electrode, a flow rate of a cooling medium that cools the fuel cell stack, and humidity of the air at the air supply port as the operation state quantity.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazunori Fukuma, Yohei Hidaka
  • Patent number: 8877399
    Abstract: Various hot box fuel cell system components are provided, such as heat exchangers, steam generator and other components.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 4, 2014
    Assignee: Bloom Energy Corporation
    Inventors: David Weingaertner, Michael Petrucha, Martin Perry, David Edmonston, Virpaul Bains, Andy Ta, Navaneetha Krishnan
  • Patent number: 8871401
    Abstract: A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: October 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiaki Naganuma, Hiromi Tanaka, Osamu Yumita, Takayoshi Tezuka, Nobukazu Mizuno, Masashi Fuji
  • Patent number: 8869543
    Abstract: A cooling assembly for cooling a thermal body for an aircraft. The cooling assembly has a Peltier element with a hot side and a cold side. Furthermore, the cooling assembly has a thermal body. The thermal body is arranged in heat-conductive contact with the cold side of the Peltier element. The hot side of the Peltier element is adapted to dissipate thermal energy to an aircraft structure, such that the thermal body may be cooled.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 28, 2014
    Assignee: Airbus Operations GmbH
    Inventors: Claus Hoffjann, Hansgeorg Schuldzig
  • Patent number: 8871400
    Abstract: A fuel cell system of the present invention is a fuel cell system including a fuel cell and includes a medium circulation passage, a heat medium tank, a first circulator, a recovered water tank, a water circulation passage, a second circulator, a water purifier, a temperature detector, and a controller. The heat medium circulation passage and the water circulation passage are configured so as to realize heat exchange between a heat medium and water. The controller executes a circulation operation in which when the temperature detector detects a temperature lower than a first temperature capable of sterilizing microorganisms, the second circulator is caused to operate such that the temperature detected by the temperature detector becomes the first temperature or higher.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventors: Jun Oe, Hiroaki Kan
  • Patent number: 8865359
    Abstract: One exemplary embodiment includes a fuel cell comprising a polymer electrolyte membrane sandwiched between an anode and a cathode, a gas diffusion layer disposed over each of the cathode and the anode, a gas flow distributor layer disposed over the gas diffusion layer on both the anode and cathode sides, and optionally a coolant plate disposed over the gas flow distributor layer. The thermal resistance of the combined gas diffusion layer and gas flow distributor layer on the anode and/or cathode side is sufficient to allow the cathode catalyst layer to operate at an elevated temperature to effectively evaporate water produced at the cathode.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Paul D. Nicotera, Jason Adam Brodsky
  • Patent number: 8859157
    Abstract: A fuel cell system includes; a fuel cell which generates electricity by using a fuel gas and an oxidant gas as reaction gases; current control means which controls current of a fuel cell; voltage control means which controls voltage of the fuel cell; and heat value control means which calculates a heat value required by the fuel cell system and decides a target current value of the current control means and a target voltage value of the voltage control means so as to generate the calculated necessary heat amount, thereby controlling the heat value. Thus, it is possible to supply a heat required for the fuel cell system without increasing the size of the fuel cell system.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: October 14, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Hiroyuki Imanishi, Tomoya Ogawa
  • Patent number: 8859150
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazoles which can, owing to its excellent chemical and thermal properties, be used for a variety of purposes and is particularly suitable as a polymer-electrolyte membrane (PEM) for the production of membrane electrode units for so-called PEM fuel cells.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: October 14, 2014
    Assignee: BASF Fuel Cell GmbH
    Inventors: Oemer Uensal, Kilian Brehl, Edmund Thiemer
  • Patent number: 8852819
    Abstract: The disclosure is directed at a method and apparatus for controlling fuel cell operating characteristics. In certain situations, the operating efficiency of fuel cells is degraded to external conditions. Providing a method and apparatus to control operating conditions for the fuel cell assists in improving the operating efficiency. This can be achieved by controlling certain environmental conditions, such as temperature and relatively humidity, in the area surrounding the fuel cell.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 7, 2014
    Assignee: BlackBerry Limited
    Inventors: David Gerard Rich, Lyall Winger, Chee-Ming Jimmy Wu
  • Patent number: 8846257
    Abstract: A fuel cell system that is able to perform power generation more stably than in the past regardless of external environment is provided. Based on a temperature of a power generation section detected by a temperature detection section, a supply amount of a liquid fuel from a fuel pump is adjusted, and therefore control in which the temperature of the power generation section becomes constant is performed. In addition, a fuel cell system that is able to perform power generation in a vaporization supply type fuel cell more stably than in the past is provided. A level of a power generation voltage supplied from the power generation section is raised by a boost circuit. In a control section, operation of the boost circuit is controlled using a given control table, and therefore control is performed on an output voltage and an output current supplied from the boost circuit to a load.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: September 30, 2014
    Assignee: Sony Corporation
    Inventors: Jusuke Shimura, Yoshiaki Inoue