External Manifold Patents (Class 429/459)
  • Patent number: 11764387
    Abstract: A fuel cell stack is provided comprising a first end plate and a second end plate between which a plurality of fuel cells is arranged. At least one elastic tensioning element is tensioned in a stack direction between the end plates. According to the invention, a section of the at least one tensioning element is arranged between a surface section of the fuel cell stack and a retensioning element, wherein a distance between the retensioning element and the surface section can be variably adjusted and set. In this way, the tensioning element can be stretched in a targeted manner by means of the retensioning element and as such the compressive tensile force acting on the fuel cell stack can be increased. A vehicle is also provided comprising such a fuel cell stack.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: September 19, 2023
    Assignees: Audi AG, Volkswagen AG
    Inventors: Adel Jilani, Siva Sankar Voosani Krishna
  • Patent number: 11495822
    Abstract: Stacked bodies each formed by alternately stacking power generation cells and separators are fixed to an end plate, the separators each having a flow passage portion, a gas flow-in port, and a gas flow-out port. The end plate includes upper and lower end plates sandwiching the stacked bodies. The stacked bodies are arranged side by side and a first thermal deformation absorbing portion configured to absorb thermal deformation in a direction orthogonal to a stacking direction is formed between the stacked bodies. Fixing means for fixing the stacked bodies to the end plate fix at least outer peripheral portions of the stacked bodies arranged side by side to the end plate.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: November 8, 2022
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Takehiko Okui
  • Patent number: 10892511
    Abstract: A system for clamping a high-temperature SOEC/SOFC stack, including: an upper clamping plate and a lower clamping plate between which the stack can be clamped, each plate including at least one clamping orifice; at least one clamping rod configured to extend through clamping orifices in the upper and lower clamping plates to allow them to be assembled; a clamping mechanism level with each clamping orifice, configured to interact with the at least one clamping rod; and at least one electrically insulating plate configured to be located between the stack and at least one of the upper and lower clamping plates.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: January 12, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Magali Reytier, Charlotte Bernard, Pascal Giroud
  • Patent number: 10158141
    Abstract: A fuel cell system (100), which includes multiple fuel cell stacks (10, 20) having a pair of adjacent fuel cell stacks (10, 20), namely a first fuel cell stack (10) and a second fuel cell stack (20), each including multiple fuel cells (2), as well as multiple main channels (11, 12, 13) which penetrate the fuel cell stacks (10, 20) for distributing the operating agents to the individual fuel cells (2) is provided. It is provided that the fuel cell stacks (10, 20) of one pair are situated in such a way that a sequence of the main channels (11, 12, 13) is mirror-symmetrical to a plane running between the adjacent fuel cell stacks (10, 20) of the pair, with respect to the different operating agents.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: December 18, 2018
    Assignees: Volkswagen AG, Audi AG
    Inventors: Christian Martin Zillich, Friedhelm Walkling
  • Patent number: 9748585
    Abstract: A fuel cell stack assembly comprises a stack of fuel cells, each fuel cell having a cooling air conduit with an input/output ventilation aperture disposed on a ventilation face of the stack. The ventilation apertures form an array over said ventilation face of the stack. A first fan is configured to direct air flow through a first portion of the ventilation face and a second fan is configured to direct air flow through a second portion of the ventilation face. A reconfigurable plenum is in fluid communication with the first fan and the second fan and has a first configuration in which air is directed, by the first and second fans, through the first and second portions of the ventilation face in the same direction, and a second configuration in which air is directed, by at least one of the fans, respectively through the first and second portions of the ventilation face in opposing directions.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 29, 2017
    Assignee: Intelligent Energy Limited
    Inventors: Paul Leonard Adcock, Peter David Hood, Anthony Newbold, Tobias Reisch
  • Publication number: 20150079493
    Abstract: A fuel cell assembly has a plurality of fuel cell component elements extending between a pair of end plates to form a stack, and plural reactant gas manifolds mounted externally of and surrounding the stack, in mutual, close sealing relationship to prevent leakage of reactant gas in the manifolds to the environment external to the manifolds. The reactant gas manifolds are configured and positioned to maximize sealing contact with smooth surfaces of the stack and the manifolds. One embodiment is configured for an oxidant reactant manifold to overlie the region where the fuel reactant manifold engages the stack. Another embodiment further subdivides an oxidant reactant manifold to include a liquid flow channel, which liquid flow channel overlies the region where the fuel reactant manifold engages the stack.
    Type: Application
    Filed: May 21, 2014
    Publication date: March 19, 2015
    Applicant: Ballard Power Systems Inc.
    Inventor: Robin J. Guthrie
  • Patent number: 8974980
    Abstract: A fuel cell is provided with a membrane electrode assembly provided with a frame, both of which are sandwiched between two separators. The fuel cell is configured such that reactive gas is circulated between the frame and the separators. The frame and both separators each have manifold holes, the rims of the manifold holes of frame extend into the manifold holes in the separators, and protrusions cover the inner peripheral surfaces of the manifold holes in at least one of the separators. This structure makes possible the easy and accurate position and integration of the separators and the frame, and fuel cell miniaturization can be achieved because space to position the protrusions is not needed.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 10, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takanori Oku, Mitsutaka Abe, Shigetaka Uehara, Yasuhiro Numao
  • Patent number: 8968944
    Abstract: A humidifier device for humidifying a fluid in a fuel cell system of a motor vehicle is provided. The humidifier device has a housing, in which is arranged at least one membrane, and a bypass channel for bypassing the at least one membrane. The bypass channel has a non-circular cross-section.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: March 3, 2015
    Assignee: Daimler AG
    Inventors: Bernd Altmueller, Harald Ehrentraut, Udo Eping, Simon Hollnaicher, Peter Wisshak
  • Patent number: 8911914
    Abstract: A manifold assembly for use with a fuel cell stack for the purpose of ensuring a desired flow distribution to fuel cells within the stack, with the most commonly desired being uniform flow distribution. Said manifold assembly comprising: an external manifold for abutting and sealingly enclosing a face of the fuel cell stack, wherein the manifold comprises an enclosure for one of: providing inlet gas to the fuel cell stack and receiving exhaust gas from said fuel cell stack; and one or more baffles disposed in the enclosure of the external manifold, the one or more baffles one of: (a) controlling gas flow distribution and direction of the inlet gas from the enclosure to fuel cells of the fuel cell stack to achieve a predetermined distribution or a uniform distribution; and (b) controlling gas flow distribution of the exhaust gas flow within the enclosure to achieve the predetermined distribution or the uniform distribution of gas to fuel cells of the fuel cell stack.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 16, 2014
    Assignee: FuelCell Energy, Inc.
    Inventors: Joseph P. McInerney, Louis F. Ernst, Jr., Mohammad Farooque, Ramakrishnan Venkataraman, Eric Hansell, Daniela Nedu, Keith Davis, William Snyder, Michael Quatannens
  • Patent number: 8883365
    Abstract: A fuel cell system comprises a main body including a first partial header and a fastening point. The main body is adapted to be coupled to a plurality of plates forming a fuel cell stack, allowing a single plate design to be used for multiple fuel cell stack lengths having a large differential of energy requirements, affording a durable alignment mechanism for the fuel cell stack, and providing integration flexibility for components and configurations of the fuel cell system.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Bogumil, Glenn W. Skala, Matthew J. Beutel
  • Patent number: 8877405
    Abstract: A fuel cell includes: a membrane electrode assembly containing an anode and a cathode which are disposed opposite to one another via an electrolytic membrane; an anode channel plate adjacent to the anode and supplying a prescribed fuel to the anode; and a cathode channel plate adjacent to the cathode, supplying air to the cathode and containing a platy member which is elongated in a direction different from a supplying direction of the air to the cathode.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuusuke Sato, Kei Matsuoka
  • Patent number: 8871404
    Abstract: A manifold seal for a fuel cell system includes a sealing area defined by a peripheral portion of a fuel cell stack of the fuel cell system and a portion of an end plate positioned on the fuel cell stack. The manifold seal includes a manifold frame defining a mating surface which sealingly engages the sealing area. The mating surface has a slot formed therein which opens towards the sealing area. The manifold seal includes a bracket defining a base portion and having a lip projecting from an edge thereof. The base portion is moveably secured to a face of the end plate so that the edge is positioned on the sealing area. The base portion is positioned inwardly from the sealing area and the manifold frame. The lip is moveably engaged in and cooperates with the slot to seal a gap between the mating surface and the sealing area.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 28, 2014
    Assignee: FuelCell Energy, Inc.
    Inventors: Glenn DiCostanzo, Dana Kelley, Louis Ernst, Jr.
  • Patent number: 8841042
    Abstract: A large, scalable SOFC system based on modules, which may be connected in series on the cathode gas side. The fuel cell stacks are aligned side by side and assembled into a stack module with cathode inlets on one face of the module and the cathode outlets on the other face of the module. The stack modules are serially connected in a simple manner by placing the stack modules one after the other, so that the outlet face of the first module faces the inlet face of the second module and so on. In the chamber between two stack modules, the air is cooled for example by addition of cold quench air or by a heat exchanger. This offers compactness, simple stack/system interface and improved system performance. The modules are designed for manufacturability, well-balanced heat management and high fuel utilization.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 23, 2014
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Niels Erikstrup, Harald Usterud, Sune Danø
  • Publication number: 20140234744
    Abstract: A solid oxide fuel or solid oxide electrolysis cell Stack assembly (203) has an improved, simple, cost reducing and robust compression System, housing and Single sided System interface with a flexible-interface-fixture (204) which is rigid enough to fix the at least one cell Stack in the housing when not in Operation, but flexible enough to allow for transfer of the compression force from the flexible compression mat (211) in the top closed end of the housing (201), through the at least one cell Stack and further towards the interface counterpart of the System when in Operation.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 21, 2014
    Applicant: Topsoe Fuel Cell A/S
    Inventors: Martin Refslund Nielsen, Jacob Breiner, Niels Erikstrup
  • Patent number: 8808939
    Abstract: A fuel cell cogeneration system of the present invention includes: a cell (10); a fuel gas discharging manifold (122) which is formed to extend in a thickness direction of the cell (10) and through which an anode off gas unconsumed in an anode (2A) flows; an oxidizing gas discharging manifold (124) which is formed to extend in the thickness direction of the cell (10) and through which a cathode off gas unconsumed in a cathode (2B) flows; and a cooling medium discharging manifold (126) which is formed to extend in the thickness direction of the cell (10) and through which an off cooling medium having recovered heat from the cell (10) flows, and the fuel gas discharging manifold (122) and/or the oxidizing gas discharging manifold (124) are formed between the cooling medium discharging manifold (126) and a separator end closest to the cooling medium discharging manifold (126).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 19, 2014
    Assignee: Panasonic Corporation
    Inventors: Yasushi Sugawara, Takahiro Umeda, Soichi Shibata
  • Patent number: 8802311
    Abstract: A fuel cell stack structure includes, for example, a plurality of unit cells each having an aperture formed therethrough. A first fuel cell stack is formed by stacking the plurality of unit cells in a stacking direction and has an internal manifold opening defined by the apertures. A fluid passage within the cell for flowing a fluid that flows within the internal manifold is configured and arranged to flow the fluid in a direction generally perpendicular to the stacking direction of the unit cell. The structure also includes an external manifold having an external passage for supplying the fluid to the internal manifold, wherein an external manifold surface facing a flow direction of the fluid creates a vortex in fluid flowing within the external passage proximal to the internal manifold.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: August 12, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Keita Iritsuki, Yasushi Ichikawa, Yuichiro Tabuchi
  • Patent number: 8785074
    Abstract: A ceramic baffle is configured to place a load on a stack of electrochemical cells and direct a reactant feed flow stream to the stack.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 22, 2014
    Assignee: Bloom Energy Corporation
    Inventors: David Edmonston, Michael Petrucha, Martin Perry, Matthias Gottmann, Dien Nguyen, Emad El Batawi, William David Lyle
  • Patent number: 8771853
    Abstract: A fuel cell assembly (1) for mounting in a vehicle comprises a fuel cell stack (2) comprising two stack units (2a, 2b) arranged in parallel. Each of the stack units (2a, 2b) comprises a number of fuel cells stacked in a fixed direction. The fuel cell stack (2) is housed in a case (3). The case (3) is supported in the vehicle via a rubber mount (36). The case (3) permits expansion and contraction of the fuel cell stack (2) in the fixed direction so that the expansion and contraction of the fuel cell stack (2) does not exert a force on the rubber mount (36).
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: July 8, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Soichiro Ogawa
  • Patent number: 8709671
    Abstract: Disclosed is a fuel cell including, a stack having fuel channels through which fuel flows and air channels through which air flows, the fuel channels and air channels being located at both sides of a reaction film, an actuator disposed to be involved in the air channels, the actuator allowing external air of the stack to affect the air channels, and a skirt extending from the stack with communicating with the air channels.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: April 29, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Dae-Young Lee, Seo Young Kim, Young Soo Chang, Young-Sheen Hwang, Hun-Sik Han, Suk-Won Cha
  • Patent number: 8679696
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly is disclosed. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. A plurality of outlets is formed intermediate the first end and the second end. A plurality of flow channels is formed in the hollow insert providing fluid communication between the inlet and the outlets to deliver the fluid to a plurality of fuel cells of the fuel cell assembly, wherein a total flow volume and flow resistance of each of the flow channels is substantially the same to provide for a substantially simultaneous delivery of the reactant gas to the fuel cells.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Bogumil, Steven G. Goebel, Gary M. Robb, Clipson M. Class
  • Publication number: 20140072896
    Abstract: Fuel cell batteries are provided, and in particular hydrogen fuel cell batteries composed of at least one stack of cells. The battery is divided into at least two groups of cells able to be supplied with hydrogen separately. In a first phase, only the first group of cells and not the second is supplied; unconsumed hydrogen may however flow between the two groups via at least one evacuation manifold connected to the cells of the two groups. In a second phase, the supply to the two groups is reversed, unconsumed hydrogen still being able to flow between the two groups via the evacuation manifold. In a third phase, after a series of alternations of the two first phases, the two groups are first simultaneously supplied, then a purge valve of the evacuation manifold is opened then closed.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 13, 2014
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventor: Jean-Philippe Poirot-Crouvezier
  • Patent number: 8663869
    Abstract: A solid oxide fuel cell (SOFC) stack includes a plurality of SOFCs, and a plurality of interconnects, each interconnect containing a conductive perovskite layer on an air side of the interconnect. The stack in internally manifolded for fuel and the conductive perovskite layer on each interconnect is not exposed in the fuel inlet riser. The SOFC electrolyte has a smaller roughness in regions adjacent to the fuel inlet and fuel outlet openings in the electrolyte than under the cathode or anode electrodes.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 4, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Martin Janousek, Tad Armstrong, Dien Nguyen, Ananda H. Kumar
  • Patent number: 8652700
    Abstract: A fuel cell comprises an electrolyte electrode assembly which includes an anode electrode, a cathode electrode, and an electrolyte; a separator which includes a sandwiching portion; a fuel gas channel which is formed at a first surface of the sandwiching portion, and is covered by the anode electrode; fuel gas outlets which are formed around the fuel gas channel; an oxygen-containing gas channel which is formed at a second surface of the sandwiching portion, and is covered by the cathode electrode; and oxygen-containing gas outlets which are formed around the oxygen-containing gas channel, in which the oxygen-containing gas outlets are formed at phases different from phases of the fuel gas outlets in a thickness direction of the separator.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 18, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ogawa, Ayatoshi Yokokawa
  • Patent number: 8647789
    Abstract: Provided is a visualization apparatus for a PEMFC using a transparent window. More particularly, provided is a visualization apparatus for a large are PEMFC including: a plurality of visualization apparatuses for region cells including current collector plates each provided on both sides of a membrane electrode assembly of a PEMFC and formed with channels through which reaction gas and products flow and a transparent provided on the outer surface of the current collector plate. Further, provided is a visualization apparatus for a large area PEMFC electrically connecting the current collector plates of the visualization apparatus for region cells to each other in parallel.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 11, 2014
    Assignee: Korean Advanced Institute of Science and Technology
    Inventors: Joongmyeon Bae, Dongryul Lee
  • Patent number: 8637202
    Abstract: A device for minimizing a buoyancy driven convective flow inside a manifold of a fuel cell stack includes a plurality of spaced apart baffle walls. The spaced apart baffle walls are configured to be disposed inside the manifold of the fuel cell stack. The spaced apart baffle walls increase a viscous resistance to the buoyancy driven convective flow inside the manifold.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Bogumil, Steven D. Burch, Steven G. Goebel, Eric J. Connor, Glenn W. Skala
  • Patent number: 8637203
    Abstract: A modular fuel cell system is provided, especially for use in vehicles, with a fuel cell module, which has a stack of a plurality fuel cell elements between a first end plate and a second end plate, with a burner-heat exchanger module, which has a heat exchanger for preheating cathode gas and a burner for reacting fuel cell waste gases. Manufacturing advantages are provided with the first end plate has, on a connection side facing away from the stack, an anode gas inlet opening, a cathode gas inlet opening, an anode waste gas outlet opening and a cathode waste gas outlet opening and if the burner-heat exchanger module has an anode gas outlet opening communicatingly connected to the an anode gas inlet opening, an cathode gas outlet opening communicatingly connected to the an cathode gas inlet opening, an anode waste gas inlet opening communicatingly connected to the an anode waste gas outlet opening and an cathode waste gas inlet opening communicatingly connected to the an cathode waste gas outlet opening.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 28, 2014
    Assignee: Eberspaecher Climate Control Systems GmbH & Co. KG
    Inventors: Andreas Kaupert, Markus Münzner, Jörg vom Schloβ
  • Patent number: 8623565
    Abstract: A current producing cell has anode flow plates 22 and cathode flow plates 20. Each of the flow plates 20, 22 defines a membrane face 26, a collector face 24, and a center axis C perpendicular to the membrane face 26 and the collector face 24. Each of the collector faces 24 define a plurality of cooling channels 74, 76, 78 and a plurality of transport channels 62, 64. The cooling channels 74, 76, 78 of the cathode flow plates 20 extend radially relative to the center axis C thereof to overlap the transport channels 62, 64 of the anode flow plates 22.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 7, 2014
    Inventors: Susanta K. Das, Jayesh Kavathe, K. Joel Berry
  • Patent number: 8617756
    Abstract: A coolant supply manifold and a coolant discharge manifold are provided on a first end plate of a fuel cell stack. The coolant supply manifold includes a pair of supply manifold sections and a supply coupling section coupling upper portions of the pair of supply manifold sections together. The supply manifold sections are connected to a pair of coolant supply passages of a first end plate. The width of the coupling section is smaller than the width of the pair of supply manifold sections in a longitudinal direction along the long sides of the first end plate. A supply pipe extending to the outside of the first end plate is formed integrally with one of the supply manifold sections.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: December 31, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Norihisa Kobayashi, Masaharu Suzuki
  • Publication number: 20130330648
    Abstract: The present invention relates to a flat tubular solid-oxide fuel cell and to a water electrolysis apparatus. More particularly, the present invention relates to a flat tubular solid-oxide fuel cell and to a water electrolysis apparatus, wherein the flat tubular solid-oxide fuel cell comprises: a cell stack including a plurality of flat tubular unit cells; and first manifolds which are made of ceramic materials, and each of which has a first reaction gas inlet/outlet portion for the entry/exit of a first reaction gas to/from the cell stack and a first insertion portion for the insertion of either of the two ends of the cell stack, wherein the first manifolds are arranged at both ends of the cell stack, respectively, to thereby simplify the structure of the fuel cell and minimize the number of sealing portions in order to reduce the loss of reaction gas or the like.
    Type: Application
    Filed: February 24, 2012
    Publication date: December 12, 2013
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, In-Sub Han, Doo-Won Seo, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Patent number: 8580459
    Abstract: A fuel cell includes plural single cells and first sidewalls disposed on the outer side of a cell stack including the plural single cells. In the first sidewalls, holes for supplying the reactive gas to the cell stack are formed. The single cells are disposed in a row shape along a jetting direction (lateral direction) of the reactive gas jetted from the holes. The holes are formed such that a part of the reactive gas jetted from the holes brushes against at least the single cells disposed in positions closest to the first sidewalls and the remaining part of the reactive gas does not brush against the single cells disposed in the closest positions.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Toto Ltd.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8541144
    Abstract: A manifold seal for a fuel cell system includes a sealing area defined by a peripheral portion of a fuel cell stack of the fuel cell system and a portion of an end plate positioned on the fuel cell stack. The manifold seal includes a manifold frame defining a mating surface which sealingly engages the sealing area. The manifold seal also includes a bracket defining a base portion and having a lip projecting from an edge thereof. The base portion is moveably secured to a face of the end plate so that the edge is positioned on the sealing area. The lip is moveably engaged in and cooperates with a slot formed in the mating surface to seal a gap between the mating surface and the sealing area caused by movement of the fuel cell stack.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: September 24, 2013
    Assignee: FuelCell Energy, Inc.
    Inventors: Glenn DiCostanzo, Dana Kelley, Louis Ernst, Jr.
  • Patent number: 8524413
    Abstract: A manifold for distributing and supplying a fluid to solid oxide fuel cell (SOFC) cells. The manifold may include at least one opening disposed at one side surface of a housing to allow the fluid to flow into the housing therethrough. A plurality of second openings are disposed at another side surface of the housing to allow the fluid to be discharged out from the housing therethrough. A porous member is disposed to partition an internal space of the housing between the first opening and the plurality of second openings. In the manifold, the porous member is formed so that the first opening ratio per unit area at a first portion positioned adjacent to the first opening varies with increasing distance toward a second portion positioned distant from the first opening.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Jun Kong, Duk-Hyoung Yoon, Tae-Ho Kwon
  • Publication number: 20130216929
    Abstract: Provided is a fuel cell capable of reducing the size thereof by reducing the installation space. The fuel cell includs a plurality of cell tubes, a lower tube plate fixing one end portion of the plurality of cell tubes, a gas flow path portion communicatively connected to an electric power generating chamber through the lower tube plate, a fuel discharge header and an air supply passage provided in the gas flow path portion, in which the fuel discharge header is communicatively connected to an interior of the cell tubes on one surface side and is adjacent to the air supply passage on the other surface and a side surface with a metal member interposed therebetween.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 22, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koji MIYAMOTO, Masahiro MIHARA, Norihisa MATAKE, Takeshi MATSUO, Masaki YASUNAGA, Tomonori SOUDA
  • Patent number: 8481223
    Abstract: A fuel cell stack for generating electrical energy by an electrochemical reaction of a fuel and an oxidizing gas including a plurality of electricity generating units and a fastening member is disclosed. The plurality of electricity generating units are configured for an electrochemical reaction between the fuel and the oxidizing gas to generate electrical energy, and the fastening member combines the plurality of electricity generating units into a stack. Each electricity-generating unit includes a membrane electrode assembly (MEA) and separators that are provided on each side of the MEA. Each separator comprises a channel on a surface facing the MEA. The channel is divided into a multiple of 2 sub-channels that is greater than 2 on a surface of the separator, and the sub-channels have substantially the same fluid passage length.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 9, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jun-Won Suh
  • Patent number: 8470491
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. An outlet is formed intermediate the first end and the second end. The outlet is adapted to deliver the reactant gas to a plurality of fuel cells of the fuel cell assembly, wherein the hollow insert delivers the reactant gas to the fuel cells in a substantially simultaneous and uniform manner.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel P. Miller, Anthony G. Chinnici, Steven G. Goebel, Daniel J. Darga, Gary M. Robb, Clipson M. Class
  • Patent number: 8435693
    Abstract: A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Kah-Young Song, Sang-Il Han, Jin-Hwa Lee, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Patent number: 8415062
    Abstract: A fuel cell system includes a fuel cell, a cathode supply passage, a cathode discharging passage, an anode supply passage, an anode discharging passage, a pair of cathode shutoff units, an anode shutoff unit, an anode discharging unit, a discharged gas processing unit, and a control unit. The control unit releases the sealing of the cathode passage by the pair of cathode shutoff units, at the time of start-up of the fuel cell system, and releases the sealing of the anode passage by the anode discharging unit, thereby performing a purge process to allow discharge of the anode gas.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: April 9, 2013
    Assignee: Honda Motor Co., Ltd
    Inventors: Kenichiro Ueda, Junji Uehara, Yuji Matsumoto
  • Patent number: 8404398
    Abstract: According to an embodiment, a gas delivery device for a fuel cell system includes a hollow ceramic element comprising a dielectric material having at least one groove in one end face of the ceramic element and a first metal tube, wherein an end of the first metal tube is inserted into the groove of the hollow ceramic element. According to an embodiment, a fuel cell system includes a fuel cell stack or column, a gas delivery line fluidly connected to the stack or column, and a coefficient of thermal expansion compensator/isolator located in the gas delivery line, where the coefficient of thermal expansion compensator/isolator includes a hollow ceramic element made of a dielectric material having at least one groove in one end face of the ceramic element, a first metal tube, where an end of the first metal tube is inserted into the groove of the hollow ceramic element, and a hollow flexible element which compensates for differences in coefficients of thermal expansion between components of the fuel cell system.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: March 26, 2013
    Assignee: Bloom Energy Corporation
    Inventors: Martin Perry, Michael Petrucha, Andy Ta, Brandon Snow
  • Patent number: 8399143
    Abstract: A solid oxide fuel cell (“SOFC”) stack device is disclosed. The SOFC stack includes SOFC units that can easily be stacked and electrically connected to one another. Furthermore, each of the SOFC units can easily be removed from the others and replaced with a new one. The fuel cell stack includes a supporting mechanism and two conducting and pressing units. The supporting mechanism includes three parts. Each part of the supporting mechanism includes slots defined therein for receiving the SOFC units. Each of the conducting and pressing units is located between two adjacent ones of the parts of the supporting mechanism.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 19, 2013
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Hung-Hsiang Lin, Ruey-Yi Lee, Yung-Neng Cheng
  • Publication number: 20130065153
    Abstract: Provided is a flat tubular solid oxide fuel cell stack, and more particularly, a flat tubular solid oxide fuel cell stack in which a connection member is interposed between a plurality of fuel cells to smoothly supply air and increase a contact area, in order to enable a stable electrical contact.
    Type: Application
    Filed: April 6, 2011
    Publication date: March 14, 2013
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Joong Myeon Bae, Joon Guen Park
  • Patent number: 8361675
    Abstract: A vehicle 1000 has two pipings 60 and 62 arranged to discharge an exhaust gas from a fuel cell stack 10 to the outside of the vehicle 1000. An outlet provided at an end of the piping 60 is located at an underfloor position in a rear portion of the vehicle 1000, while an outlet provided at an end of the piping 62 is located at a roof rear end of the vehicle 1000. When the outlet provided at the end of the piping 60 is blocked or when there is a potential for such blockage, the outlet provided at the end of the piping 62 is used to discharge the exhaust gas from the fuel cell stack 10 to the outside of the vehicle 1000. This arrangement ensures continuous drive of the vehicle 1000 even in a specific environment where any of various obstructing objects as the cause of blockage of the outlet is present in the surroundings of the vehicle 1000.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: January 29, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasunobu Jufuku, Hiroshi Arisawa, Junji Nagasawa
  • Patent number: 8304126
    Abstract: A fuel cell (A1) includes a cell stack (B) and a casing (210) for housing the cell stack (B), and is supplied with two reactant gases flowing separately from each other. The cell stack (B) includes a plurality of solid electrolyte fuel cell units (200) stacked on one another with inter-unit spaces provided therebetween. One of the reactant gases is supplied to the inter-unit spaces and used for power generation. The casing (210) includes a peripheral wall (222) surrounding the cell stack (B). The peripheral wall (222) is provided with at least one gas inlet opening (223) for introducing the one of the reactant gases into the inter-unit spaces and at least one gas outlet opening (224) for discharging the introduced reactant gas, wherein total opening width dimension of the gas inlet opening (223) is greater than total opening width dimension of the gas outlet opening (224).
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 6, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tatsuya Yaguchi, Yasushi Nakajima, Keiko Kushibiki, Shigeo Ibuka, Hirokazu Komatsu
  • Patent number: 8277995
    Abstract: A fuel cell power generation system is disclosed. The fuel cell power generation system in accordance with an embodiment of the present invention includes: a stack, which produces electrical energy by reacting hydrogen with oxygen and in which the hydrogen is supplied as fuel and the oxygen is in the air; a hydrogen tank, which supplies fuel comprising hydrogen to the stack; and a heat transfer tape, which transfers heat generated from the stack to the hydrogen tank. The fuel cell power generation system can improve the efficiency of supplying hydrogen by supplying waste heat generated from the stack to the hydrogen tank through the use of the heat transfer tape without a heat supplying device and be applied to a mobile device due to the reduced volume of the fuel cell power generation system.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 2, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung-Han Kim, Jae-Hyuk Jang, Bo-Sung Ku, Craig Matthew Miesse, Hye-Yeon Cha, Eon-Soo Lee, Jae-Hyoung Gil
  • Patent number: 8247119
    Abstract: In a fuel cell system, a humidifier is attached to an end plate. A pipe connector of a fluid pipe provided at the end plate such as an oxygen-containing gas inlet manifold and a pipe connector of a fluid pipe of the humidifier such as a humidified air supply pipe are connected through a substantially ring-shaped intermediate pipe. O-rings are attached to annular grooves in the outer circumferential portions of the intermediate pipe. One of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the oxygen-containing gas inlet manifold, and the other of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the humidified air supply pipe.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadashi Nishiyama, Yoshihito Kimura
  • Patent number: 8221936
    Abstract: A fuel cell system is provided which includes a mounting system for a manifold having a mounting plate. The fuel cell system also includes a fuel cell stack with a first end and a second end. The first end of the fuel cell stack includes at least one port in communication with the manifold. A clamping system is disposed on the second end of the fuel cell stack and is operable to engage the mounting plate of the manifold to couple the manifold to the fuel cell stack.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 17, 2012
    Inventors: Michael Duffield, Donald H. Keskula
  • Patent number: 8216737
    Abstract: The present invention relates to an end plate for a fuel cell stack, containing at least one channel (7) for the supply and/or removal of at least one reactant and/or a reaction product and/or a coolant, wherein at least a part at least of one pump (8) for delivering the reactants and/or reaction products and/or coolant and which is arranged in the course of the respective channel (7) is integrated into the end plate. The invention further relates to a fuel cell stack which contains such an end-plate.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: July 10, 2012
    Assignee: Reinz-Dichtungs GmbH
    Inventors: Stefan Sommer, Christian Schleier
  • Patent number: 8206865
    Abstract: A separator includes a separator body 11 and a collector 12. The separator body 11 prevents a mixed flow of fuel gas and oxidizer gas. The collector 12 is formed from a metal lath RM in which through holes each having an opening shape assuming the form of a hexagon are formed in a meshy, step-like arrangement. This establishes a substantially linear contact mode between the collector 12 and each of the separator body 11 and a carbon cloth CC superposed on an MEA 30. This contact mode increases a contact area between the carbon cloth CC and gas and allows a necessary and sufficient contact area between the carbon cloth CC and the separator body 11. Thus, gas can be supplied efficiently, and generated electricity can be collected efficiently to thereby improve electricity generation efficiency of a fuel cell.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 26, 2012
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventor: Keiji Hashimoto
  • Patent number: 8182956
    Abstract: A fuel cell stack includes a plurality of fuel cells, and a plurality of fuel delivery ports. Each of the plurality of fuel delivery ports is positioned on or in the fuel cell stack to provide fuel to a portion of the plurality fuel cells in each stack.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 22, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Darren Hickey, Matthias Gottmann
  • Patent number: 8168339
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 1, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Publication number: 20120100453
    Abstract: A solid oxide fuel cell (“SOFC”) stack device is disclosed. The SOFC stack includes SOFC units that can easily be stacked and electrically connected to one another. Furthermore, each of the SOFC units can easily be removed from the others and replaced with a new one. The fuel cell stack includes a supporting mechanism and two conducting and pressing units. The supporting mechanism includes three parts. Each part of the supporting mechanism includes slots defined therein for receiving the SOFC units. Each of the conducting and pressing units is located between two adjacent ones of the parts of the supporting mechanism.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 26, 2012
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Hung-Hsiang Lin, Ruey-Yi Lee, Yung-Neng Cheng