Reactant Is An Alcohol Patents (Class 429/506)
  • Patent number: 11920248
    Abstract: The present disclosure provides systems and methods for producing carbon products via electrochemical reduction from fluid streams containing a carbon-containing material, such as, for example, carbon dioxide. Electrochemical reduction systems and methods of the present disclosure may comprise micro- or nanostructured membranes for separation and catalytic processes. The electrochemical reduction systems and methods may utilize renewable energy sources to generate a carbon product comprising one or more carbon atoms (C1+ product), such as, for example, fuel. This may be performed at substantially low (or nearly zero) net or negative carbon emissions.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: March 5, 2024
    Assignee: PROMETHEUS FUELS, INC
    Inventor: Robert McGinnis
  • Patent number: 11479871
    Abstract: A method for depositing a catalyst layer onto a porous conductive substrate is provided. A catalyst ink is provided comprising catalyst particles suspended in a solvent. The catalyst ink is deposited onto a porous conductive substrate, wherein the solvent of the deposited catalyst ink is frozen. The frozen solvent is sublimated, leaving the catalyst layer.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: October 25, 2022
    Assignee: The Board of Trastees of the Leland Stanford Junior University
    Inventors: Matthew W. Kanan, Donald Stephen Ripatti, Thomas R. Veltman
  • Patent number: 11351521
    Abstract: A supported core-shell bimetallic catalyst with high selectivity, and preparation method and an application thereof are provided. SBA-15 is used as support, platinum (Pt) is used as active component, 3d transition metal is used as cocatalysts. In the core-shell bimetallic catalyst formed by the 3d transition metal and Pt, in one aspect, by the addition of the 3d metal in the core, the d-band center of surface Pt atoms is down shifted, and the absorption of propylene is weakened, thereby improving the selectivity for propylene. In another aspect, the use of Pt is reduced by the addition of the 3d transition metal, improving the utilization of Pt. The catalyst is applicable in a hydrogen atmosphere, has a good effect on the preparation of propylene by propane dehydrogenation and causes high dehydrogenation activity under high temperature conditions. The total selectivity for propylene may reach 85%, which achieves high propylene selectivity.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: June 7, 2022
    Assignee: TIANJIN UNIVERSITY
    Inventors: Jinlong Gong, Weiting Cai, Rentao Mu, Liang Zeng
  • Patent number: 10847801
    Abstract: Provided is conductive carbon which gives an electric storage device having a high energy density. This conductive carbon is characterized in having a hydrophilic solid phase component, where the ratio of the peak area of an amorphous component band in the vicinity of 1510 cm?1 against the peak area in a range from 980 to 1780 cm?1 in a Raman spectrum of the hydrophilic solid phase component is within a range of 13 to 19%. When performing a rolling treatment on an active layer including an active particle and this conductive carbon formed on a current collector during manufacture of an electrode of an electric storage device, the pressure resulting from the rolling treatment causes this conductive carbon to spread in a paste-like form and increase in density while covering the surface of the active particles, the conductive carbon being pressed into gaps formed between adjacent active particles and filling the gaps.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: November 24, 2020
    Assignee: NIPPON CHEMI-CON CORPORATION
    Inventors: Satoshi Kubota, Yoshihiro Minato, Shuichi Ishimoto, Kenji Tamamitsu, Katsuhiko Naoi, Wako Naoi
  • Patent number: 10637082
    Abstract: A flow battery includes a liquid electrolyte having an electrochemically active specie. A flow field plate includes a first flow field channel and a second flow field channel that is separated from the first flow field channel by a rib. There is a flow path for the liquid electrolyte to flow over the rib between the channels. An electrode is arranged adjacent the flow field plate such that the liquid electrolyte that flows over the rib must flow through the electrode. The electrode includes a carbon paper that is catalytically active with regard to liquid electrolyte. The carbon paper defines a compressive strain of less than 20% at a compressive stress of 0.8 MPa and an uncompressed porosity in the range 60-85%.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 28, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Robert Mason Darling, Laura Roen Stolar
  • Patent number: 10483578
    Abstract: The present application relates to a method of manufacturing an anode support of a solid oxide fuel cell and an anode support of a solid oxide fuel cell, and may improve performance and durability of the fuel cell by improving an interfacial property between the anode support and an electrolyte.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 19, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Yeonhyuk Heo, Kwangwook Choi, Jongjin Lee, Takkeun Oh, Bu Won Son
  • Patent number: 10232351
    Abstract: To produce a core-shell catalyst with high catalytic activity for a short period of time. Disclosed is a method for producing a core-shell catalyst comprising a core containing palladium and a shell containing platinum and coating the core, the method comprising: supplying palladium-containing particles and a copper-containing material to an acid solution; stirring the acid solution with introducing an oxygen-containing gas into the acid solution; coating at least a part of a surface of the palladium-containing particles with copper by applying a potential that is nobler than the oxidation reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte after the stirring; and then forming the shell by substituting the copper coating at least a part of the surface of the palladium-containing particles with platinum by bringing the palladium-containing particles into contact with a platinum ion-containing solution.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: March 19, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyuki Kitao, Nobuo Honma
  • Patent number: 9385377
    Abstract: An object of the present invention is to provide a production method which can increase the activity of a catalyst particle comprising a core particle and an outermost layer, the core particle comprising at least one of palladium and a palladium alloy, and the outermost layer comprising at least one of platinum and a platinum alloy and covering the core particle.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 5, 2016
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AUDI AG
    Inventors: Keiichi Kaneko, Naoki Takehiro, Takumi Taniguchi, Tatsuya Arai, Noriyuki Kitao, Makoto Adachi, Hiroko Kimura
  • Patent number: 9174843
    Abstract: A valve assembly is provided with concentric fluid paths and may be used on a hydrogen generator to transport liquid reactant to the hydrogen generator and hydrogen gas. The valve assembly includes a housing defining first and second fluid paths, a first valve member disposed in the first fluid path, and a second valve member disposed in the second fluid path. The assembly includes a connector including a first elongated member configured to engage the first valve member to open the first valve member to allow a first fluid to flow through the first fluid path, and a second fluid port including a second elongated member configured to allow fluid to flow through the second fluid path. The valve assembly is concentric in that the second fluid path surrounds at least a portion of the first fluid path.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 3, 2015
    Assignee: Intelligent Energy Inc.
    Inventor: Russell H. Barton
  • Patent number: 8993196
    Abstract: In a fuel cell system including a fuel cartridge and a fuel supply module, the fuel cartridge includes at least two ports, wherein a first port from among the at least two ports is a fuel inlet port and a second port from among the at least two ports is a fuel outlet port. The fuel cartridge may also include a fuel pouch or the fuel cartridge itself may be the fuel pouch. The fuel supply module may include a fuel circulation structure that circulates the fuel before the fuel is supplied to the stack. The fuel cell system may be equipped with an electronic apparatus and serve as a source of power.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: March 31, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-soo Joung, Hye-jung Cho, Sang-ho Yoon
  • Publication number: 20150064604
    Abstract: Atomic mixed metal electrodes, including electrodes containing a conductive polymer-mixed metal complex, as well as methods of making and using the same, are disclosed. In some embodiments, the atomic mixed metal electrode can be described as a conductive polymer-coated electrode having mixed metal clusters complexed to the conductive polymer at levels of between 2 and 10 metal atoms. A method for preparing the conductive polymer-mixed metal complexes is disclosed that can deposit metal atoms one at a time into a complex with the conductive polymer, allowing for highly tailored atomic clusters. A method of oxidizing alcohols, and the application to devices such as fuel cells are also disclosed.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 5, 2015
    Inventors: Alex P. Jonke, Miroslawa A. Josowicz, Jiri Janata
  • Patent number: 8968966
    Abstract: Provided is a fuel battery including: a fuel battery cell assembly having at least two fuel battery cells coplanarly disposed, the fuel battery cell including a membrane electrode assembly having an anode, an electrolytic membrane, and a cathode stacked on one another in this order, and a flow channel plate provided on an anode side and having on an anode-side surface thereof an in-cell fuel flow channel through which liquid fuel flows; and a fuel distributor having an out-cell fuel flow channel connected to each of the in-cell fuel flow channels to distribute the liquid fuel to the fuel battery cells.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takenori Onishi, Tomohisa Yoshie, Hirotaka Mizuhata, Mutsuko Komoda, Shinobu Takenaka, Masashi Muraoka
  • Publication number: 20140370419
    Abstract: A fuel reservoir for dispensing liquid fuel with a dispensing appliance includes a container having an opening, a liquid fuel in the container, a needle-pierceable septum disposed across the opening of the container, and a locking surface disposed on an exterior surface of the container and configured to engage a locking mechanism of a dispensing appliance.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 18, 2014
    Inventors: Larry J. Markoski, Timothy C. Simmons
  • Patent number: 8906577
    Abstract: The present invention relates to an anode supported solid-oxide fuel cell based flame fuel cell that enable the generation of both electricity and heat from a flame (i.e. flame is used as a heat source and a fuel source for the fuel cell's operation, while supplying a useful heat for other thermochemical systems) and, more particularly, to an anode supported solid-oxide fuel cell based flame fuel cell that uses hydrocarbon/air mixture as a fuel source and includes a catalyst layer that can act as a protective layer for the anode layer, an anode layer, a cathode layer, an electrolyte layer, and an interlayer between the cathode layer and the electrolyte layer.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 9, 2014
    Assignee: Syracuse University
    Inventor: Jeongmin Ahn
  • Publication number: 20140349203
    Abstract: The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Inventors: Barbara Klose-Schubert, Daniel Herein, Marco Lopez, Carsten Becker
  • Publication number: 20140295320
    Abstract: A platinum-rhodium nano-dendritic alloy includes a plurality of first structure having a round shape and a second structure connecting the plurality of first structures and having a thin bridge shape, wherein the first and second structures containing platinum and rhodium homogeneously distributed therein.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: INTELLECTUAL DISCOVERY CO., LTD.
    Inventors: Kyung-Won PARK, Young-Woo LEE, Si-Jin KIM, Da-Hee KWAK
  • Patent number: 8679692
    Abstract: A fuel cell is provided that prevents destabilization of power generation due to heat generated in an electrochemical device portion. In a fuel cell having a membrane-electrode assembly which performs power generation by chemical reaction, a membrane-electrode assembly is disposed with a space from another membrane-electrode assembly or two membrane-electrode assemblies are provided adjacent to each other so that the pair is disposed with a space from another membrane-electrode assembly or another pair, and one of the main surfaces of a membrane-electrode assembly is in contact with outside air. Conductive plates are disposed in contact with the membrane-electrode assembly in order to exchange a current generated in the membrane-electrode assembly with the outside, and radiation fins are provided on the conductive plate on the main surface side in contact with outside air so that the conductive plate serves as a radiation member.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: March 25, 2014
    Assignee: Sony Corporation
    Inventors: Shuji Goto, Kazuaki Fukushima, Sayaka Nanjo, Tetsuro Kusamoto
  • Patent number: 8637207
    Abstract: A fuel cartridge includes a container having an outlet port section, and a liquid fuel provided in the container. The liquid fuel contains a cationic impurity excluding H+. The concentration of the cationic impurity falls within a range of 1Ă—10?7 to 6Ă—10?6 equivalent/L at the outlet port section.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Nakano, Kazuhiro Yasuda, Hideyuki Oozu
  • Patent number: 8632925
    Abstract: An electrolyte-free, oxygen-free, high power, and energy dense single fuel cell device is provided, along with methods for making and use. The fuel cell device is based on an electron-relay function using a nanostructured membrane prepared by cross-linking polymers, and having embedded within the membrane, a reactant. Use of the fuel cell device does not produce water, or CO2, and no oxygen is needed. The rechargeability of the fuel cell device revealed it can function as a portable battery.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 21, 2014
    Inventor: Ellen Tuanying Chen
  • Patent number: 8617768
    Abstract: Provided is a carbon catalyst for a cathode of a direct fuel cell, which selectively promotes an oxygen reduction reaction even when crossover of a fuel compound occurs. The carbon catalyst for a cathode of a direct fuel cell exhibits an oxygen-reducing catalytic activity in an electrolytic solution containing a fuel compound for the direct fuel cell, and exhibits substantially no catalytic activity to oxidize the fuel compound in the electrolytic solution.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: December 31, 2013
    Assignees: Nisshinbo Holdings Inc., National University Corporation Gunma University
    Inventors: Takeaki Kishimoto, Rieko Kobayashi, Jun-ichi Ozaki
  • Patent number: 8557483
    Abstract: Fuel cell fuel supplies having single and multiple compartments for storing and containing fuel cell fuel precursor reagents. These fuel supplies allow storage and packaging of precursors for in situ production and use of fuel cell fuel. A method for making fuel cell fuel and a fuel cell system is also disclosed.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Societe BIC
    Inventors: Paul Adams, Andrew J Curello, Floyd Fairbanks
  • Patent number: 8557469
    Abstract: A direct oxidation fuel cell including at least one cell, the cell being a stacked body including: a membrane electrode assembly including an anode, a cathode, and an electrolyte membrane disposed between the anode and the cathode; an anode-side separator having a fuel flow channel for supplying a liquid fuel to the anode; and a cathode-side separator having an oxidant flow channel for supplying an oxidant to the cathode, in which the anode-side separator includes a first region including an upstream half of the fuel flow channel and a second region including a downstream half of the fuel flow channel, the anode includes an anode catalyst layer in contact with the electrolyte membrane and an anode diffusion layer in contact with the anode-side separator, the anode catalyst layer includes an anode catalyst and a polymer electrolyte, the anode catalyst layer includes an upstream-side region facing the first region and a downstream-side region facing the second region, and the content of the polymer electrolyte
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 15, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Matsuda, Takashi Akiyama
  • Patent number: 8546039
    Abstract: A solid polymer fuel cell that utilizes liquid fuel such as methanol should prevent generated water from residing in a ventilation port close to an anode, to thereby suppress degradation of a MEA. The fuel cell includes an anode, an anode-side collecting electrode, a sealing material located along a perimeter of a solid polymer electrolytic membrane and interleaved between the electrolytic membrane and the anode-side collecting electrode, and a discharging device that discharges a product generated through electric reaction on the anode. The sealing material is provided in a frame-shape around the anode. The discharging device is a ventilation port formed on the sealing material, and a water repellent material is provided at least one of inside the ventilation port and between the ventilation port and the anode.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 1, 2013
    Assignee: NEC Corporation
    Inventors: Kenji Kobayashi, Shoji Sekino
  • Publication number: 20130177836
    Abstract: Atomic gold electrodes, including electrodes containing a polyaniline gold complex are disclosed, including methods of making and using the same. In some embodiments, the atomic gold electrode can be described as a polyaniline coated electrode having atomic gold clusters complexed to the polyaniline at levels of between 1-20 gold atoms. A method for preparing the polyaniline gold complexes is disclosed that can deposit gold atoms one at a time into a complex with the polyaniline, allowing for highly tailored atomic clusters. A method of oxidizing alcohols, and the application to devices such as fuel cells are also disclosed.
    Type: Application
    Filed: December 13, 2012
    Publication date: July 11, 2013
    Applicant: Georgia Tech Research Corporation
    Inventor: Georgia Tech Research Corporation
  • Publication number: 20130122401
    Abstract: An article having a titanium, titanium carbide, titanium nitride, tantalum, aluminum, silicon, or stainless steel substrate, a RuO2 coating on a portion of the substrate; and a plurality of platinum nanoparticles on the RuO2 coating. The RuO2 coating contains nanoparticles of RuO2. A method of: immersing the substrate in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article; and electrodepositing platinum nanoparticles on the RuO2 coating.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Inventors: Jeremy J. Pietron, Michael B. Pomfret, Christopher N. Chervin, Debra R. Rolison, Jeffrey W. Long
  • Patent number: 8435699
    Abstract: A fuel cartridge capable of supplying two fuels to an anode of a fuel cell body without using a pump, a direct methanol fuel cell having the same, and a method of purging a direct methanol fuel cell using the fuel cartridge, fuel cartridge according to one exemplary embodiment comprising a first storage unit having a first port for entrance and exit of a fluid and storing a liquid first fuel; and a second storage unit having a second port for entrance and exit of a fluid and filling a second fuel at a constant pressure, wherein the first fuel is discharged into the first port by the pressure of the second fuel.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Chan-Gyun Shin
  • Patent number: 8404396
    Abstract: A non-microbial fuel cell utilizing an organic fuel containing a hydroxyl group and a non-metallic catalyst is disclosed. Compositions for use in and methods for generating electric energy from chemical energy using fuel cells are also disclosed. Compositions for use in and methods of storing energy using fuel cells are also disclosed.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: March 26, 2013
    Assignee: Brigham Young University
    Inventors: Gerald Watt, Dean R. Wheeler
  • Publication number: 20130040224
    Abstract: Provided is a carbon catalyst for a cathode of a direct fuel cell, which selectively promotes an oxygen reduction reaction even when crossover of a fuel compound occurs. The carbon catalyst for a cathode of a direct fuel cell exhibits an oxygen-reducing catalytic activity in an electrolytic solution containing a fuel compound for the direct fuel cell, and exhibits substantially no catalytic activity to oxidize the fuel compound in the electrolytic solution.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 14, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY, NISSHINBO HOLDINGS INC.
    Inventors: Takeaki Kishimoto, Rieko Kobayashi, Jun-ichi Ozaki
  • Publication number: 20130017467
    Abstract: A fuel reservoir for dispensing liquid fuel with a dispensing appliance includes a container having an opening, a liquid fuel in the container, a needle-pierceable septum disposed across the opening of the container, and a locking surface disposed on an exterior surface of the container and configured to engage a locking mechanism of a dispensing appliance.
    Type: Application
    Filed: November 16, 2011
    Publication date: January 17, 2013
    Inventors: Larry J. Markoski, Timothy C. Simmons
  • Publication number: 20130011768
    Abstract: The present invention relates to an anode supported solid-oxide fuel cell based flame fuel cell that enable the generation of both electricity and heat from a flame (i.e. flame is used as a heat source and a fuel source for the fuel cell's operation, while supplying a useful heat for other thermochemical systems) and, more particularly, to an anode supported solid-oxide fuel cell based flame fuel cell that uses hydrocarbon/air mixture as a fuel source and includes a catalyst layer that can act as a protective layer for the anode layer, an anode layer, a cathode layer, an electrolyte layer, and an interlayer between the cathode layer and the electrolyte layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Applicant: SYRACUSE UNIVERSITY
    Inventor: Jeongmin Ahn
  • Patent number: 8338049
    Abstract: A microfluidic system through which a solution of at least an oxidable compound is fed to a feed manifold of an energy converting electrochemical device includes a flow connector. The flow connector includes a silicon platform having a bottom side and an opposing top side, and through holes extending therethough. The silicon platform includes first and second channels defined on the bottom side for communicating with the through holes. The second channel forms an inlet for the feed manifold of the energy converting electrochemical device when the bottom side of the silicon platform is coupled to a flat coupling area of the device. A micropump module is coupled to the top side of the silicon platform for communicating with the through holes in the first and second channels. First and second supply cartridges are coupled to the top side of the silicon platform for communicating with the through holes in the first channel.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: December 25, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Giuseppe Emanuele Spoto, Roberta Giuffrida, Salvatore Leonardi, Salvatore Abbisso
  • Patent number: 8338055
    Abstract: An electrochemical energy conversion and storage system comprises an electrochemical energy conversion device, in fluid communication with a source of an organic liquid carrier of hydrogen and an oxidant, for receiving, catalyzing and electrochemically oxidizing at least a portion of the hydrogen to generate electricity, a hydrogen depleted liquid, and water; and a vessel for receiving the hydrogen depleted liquid; wherein the organic liquid carrier of hydrogen comprises at least two secondary hydroxy groups is provided.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 25, 2012
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Patent number: 8323850
    Abstract: A direct methanol fuel cell liquid fuel including methanol and water to be supplied to an anode of a direct methanol fuel cell, in which an electrical resistance of the liquid fuel is 5×105 ?·cm or more and 1×107 ?·m or less at 25° C. A direct methanol fuel cell cartridge storing the direct methanol fuel cell liquid fuel, and a direct methanol fuel cell system. Such structures can provide a direct methanol fuel cell liquid fuel, a direct methanol fuel cell cartridge, and a direct methanol fuel cell system all appropriately used for stable electricity generation over a long period of time.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: December 4, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Makoto Kubota, Motokazu Kobayashi, Shinji Eritate
  • Publication number: 20120301799
    Abstract: A fuel cell includes a direct liquid fuel cell and a humidifier. The direct liquid fuel cell includes an air intake channel for providing oxidant to the fuel cell and an exhaust channel for exhausting depleted oxidant. The humidifier forms a fluid connection between the air intake channel and the exhaust channel.
    Type: Application
    Filed: December 22, 2011
    Publication date: November 29, 2012
    Inventors: Larry J. Markoski, Dilip Natarajan
  • Patent number: 8304131
    Abstract: The invention provides a direct methanol fuel cell. The direct methanol fuel cell includes a membrane having a first surface and an opposite second surface. The membrane is sandwiched between a pair of electrodes. Two terminals of the membrane and a portion of the first and second surfaces adjacent to the two terminals are exposed from a pair of the electrodes. A pair of gas diffusion layers is respectively disposed on the pair of electrodes. A plurality of first border material layers having a plurality of holes is respectively physically embedded on the exposed first and second surfaces. A plurality of adhesion materials is respectively mounted on the border material layers, passing through the holes to contact the first and second surfaces of the membrane.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 6, 2012
    Assignee: Nan Ya PCB Corp.
    Inventors: Jiun-Ming Chen, Jyun-Yi Lai, Yu-Chih Lin
  • Patent number: 8283089
    Abstract: A direct oxidation fuel cell of the invention includes at least one unit cell, the unit cell including a membrane-electrode assembly including an electrolyte membrane and an anode and a cathode sandwiching the electrolyte membrane, an anode-side separator being in contact with the anode, and a cathode-side separator being in contact with the cathode. The anode includes an anode catalyst layer and an anode diffusion layer, the anode catalyst layer containing an anode catalyst. The cathode includes a cathode catalyst layer and a cathode diffusion layer, the cathode catalyst layer containing a cathode catalyst. The anode-side separator has a fuel flow channel for supplying fuel to the anode. A portion of the cathode catalyst layer facing the upstream of the fuel flow channel has an effective reaction area per unit area larger than that of a portion of the cathode catalyst layer facing the downstream of the fuel flow channel.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 9, 2012
    Assignee: Panasonic Corporation
    Inventors: Hideyuki Ueda, Hiroaki Matsuda
  • Patent number: 8283090
    Abstract: An electrochemical cell is described that includes (a) a first electrode; (b) a second electrode; and (c) a channel contiguous with at least a portion of the first and the second electrodes. When a first liquid is contacted with the first electrode, a second liquid is contacted with the second electrode, and the first and the second liquids flow through the channel, a parallel laminar flow is established between the first and the second liquids. Electronic devices containing such electrochemical cells and methods for their use are also described.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 9, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Larry J. Markoski, Jeffrey S. Moore, Joseph W. Lyding
  • Patent number: 8278003
    Abstract: According to one embodiment, a direct methanol fuel cell includes an anode to which an aqueous methanol solution is supplied as the fuel, a cathode to which oxidizing gas is supplied, an electrolyte membrane interposed between the anode and the cathode, a first separator disposed on the surface of the anode on the side opposite to the electrolyte membrane side and a second separator disposed on the surface of the cathode on the side opposite to the electrolyte membrane side, wherein the first and second separators are respectively made of a membrane containing a copolymer of a first vinyl monomer having a cyclic functional group bonded with a carbonyl group, a second vinyl monomer having a carboxyl group and a third vinyl monomer having an aromatic group, and a carbon powder dispersed in the copolymer.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoaki Arimura
  • Patent number: 8273502
    Abstract: A fuel cartridge has a pair of flat faces in which holes are formed. A net is stretched within the holes, and solid methanol is packed inside the fuel cartridge. A fuel cell unit, shaped as a flat box, comprises a pair of flat wall portions, a pair of long-side wall portions, and a pair of short-side wall portions. Each flat wall portion is provided with two MEAs-4, as fuel cells that are arranged so that the fuel electrodes (not shown) face inward. One of the long-side wall portions has an opening provided with, on the edge thereof, an elastic packing serving as a sealing member. An opening and closing lid is pivotably provided to the opening by a pivot as a pivot member. The resulting reduced size methanol fuel cell system has sufficient air-tightness and good power generation efficiency, and is simple in structure.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: September 25, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventor: Mitsuru Nozue
  • Patent number: 8247132
    Abstract: Provided are a heat recovery apparatus recovering heat generated from a membrane electrode assembly (MEA) and transmitting the heat to a fuel spreader so that a temperature difference between the MEA and the fuel spreader inside a fuel cell is reduced, and a fuel cell having the heat recovery apparatus. The fuel spreader supplies fuel having a uniform concentration to the MEA through the heat recovery apparatus, so that a fuel cell having a reduced total volume, a stable performance, and increased energy efficiency can be provided.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: August 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinho Kim, Jae-yong Lee, Kyung-hwan Choi, Lei Hu
  • Patent number: 8182955
    Abstract: A method for operating a direct methanol fuel cell is provided. The fuel cell includes a fuel cell main body having a fuel electrode and an air electrode disposed in opposing positions on either side of an electrolyte film. In this method, an aqueous methanol solution is supplied directly to the fuel electrode. A quantity of the aqueous methanol solution supplied is controlled in accordance with an electric current value drawn from the fuel cell main body so as to minimize a quantity of unused methanol within a discharge fluid discharged from the fuel electrode.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Panasonic Corporation
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani
  • Patent number: 8142954
    Abstract: A fuel composition for a fuel cell includes at least one primary fuel that produces protons and electrons, and at least one peroxide. As an example, the primary fuel may be at least one aqueous solution containing methanol, ethanol, or formic acid. When the fuel composition is used, the catalytic activity can increase, and thus a fuel cell having improved performance can be manufactured.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: March 27, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seol-ah Lee, Hyuk Chang, Chan-ho Pak, Dae-jong Yoo
  • Patent number: 8119833
    Abstract: Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-sup Jung, Jin-gyu Lee, Sang-kook Mah, Jae-jun Lee
  • Patent number: 8114554
    Abstract: An arrangement for a direct methanol fuel cell includes a fuel cartridge that supplies a source of fuel to the direct methanol fuel cell. The fuel cartridge has a surface area enhanced planar vaporization membrane residing in the fuel cartridge. The arrangement also includes a fuel reservoir that receives fuel from the fuel cartridge, the fuel reservoir arranged to deliver fuel to the fuel cell. The fuel reservoir also including a surface area enhanced planar vaporization membrane residing in the fuel reservoir. The combination of the surface area enhanced planar vaporization membranes residing in the fuel cartridge and reservoir provides a dual stage vaporization of fuel to the fuel cell. Other features included are passive or active arrangements to increase the temperature of the fuel or reduce pressure in the fuel container to enhance rate of vaporization.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: February 14, 2012
    Assignee: The Gillette Company—South Boston
    Inventors: Javit A. Drake, Andrew G. Gilicinski, Gordon G. Guay, Leslie Pinnell
  • Patent number: 8092955
    Abstract: The present invention provides improved, low-cost fuel cells having reduced fuel crossover, reduced sensitivity to metal ion impurities and ability to operate under a broad range of temperatures. The invention further provides improved methods for catalyst preparation and a new integrated flow field system for use in H2/O2 fuel cells.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 10, 2012
    Assignee: Tel-Aviv Univrsity Future Technology Development L.P.
    Inventors: Emanuel Peled, Tair Duvdevani, Avi Melman, Adi Aharon
  • Patent number: 8084166
    Abstract: An arrangement for a direct methanol fuel cell includes a fuel cartridge that supplies a source of fuel to the direct methanol fuel cell. The fuel cartridge has a surface area enhanced planar vaporization membrane residing in the fuel cartridge. The arrangement also includes a fuel reservoir that receives fuel from the fuel cartridge, the fuel reservoir arranged to deliver fuel to the fuel cell. The fuel reservoir also including a surface area enhanced planar vaporization membrane residing in the fuel reservoir. The combination of the surface area enhanced planar vaporization membranes residing in the fuel cartridge and reservoir provides a dual stage vaporization of fuel to the fuel cell. Other features included are passive or active arrangements to increase the temperature of the fuel or reduce pressure in the fuel container to enhance rate of vaporization.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: December 27, 2011
    Assignee: The Gillette Company
    Inventors: Javit A. Drake, Andrew G. Gilicinski, Gordon G. Guay, Leslie J. Pinnell
  • Patent number: 8076035
    Abstract: A fuel cell which utilizes the biogenic metabolism to produce a high current density is provided. The fuel cell generates electric power in such a way that the fuel is decomposed stepwise by a plurality of enzymes and those electrons formed by oxidation are transferred to the electrode. The enzymes work such that the enzyme activity of the enzyme involved in decomposition in the early stage is smaller than the sum of the enzyme activities of the enzymes involved in decomposition in the later stage. In the case where a coenzyme is involved, the enzyme activity of the oxidase that oxidizes the coenzyme is greater than the sum of the enzyme activities of the enzymes involved in the formation of the reduced form of the coenzyme, out of the enzymes involved in the stepwise decomposition of the fuel.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: December 13, 2011
    Assignee: Sony Corporation
    Inventors: Hideki Sakai, Takashi Tomita, Ryosuke Takagi, Yusuke Suzuki, Tsuyonobu Hatazawa
  • Patent number: 8062808
    Abstract: Disclosed is a fuel cell device comprising: a fuel cartridge to accumulate a fuel therein; and a fuel cell device main body to generate electric power by using the fuel accumulated in the fuel cartridge, wherein the fuel cell device main body is provided with a cartridge conveying body, the fuel cartridge being attached to and detached from the cartridge conveying body, and the cartridge conveying body is provided so as to be rotatable with respect to the fuel cell device main body.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 22, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Yasunari Kabasawa
  • Patent number: 8057957
    Abstract: Fuel cells and methods of operating fuel cells are disclosed. In one aspect, the invention features a fuel source for a fuel cell including a housing having an outlet, a structure having a portion in the housing, the structure defining a cavity and having a surface defining an opening in fluid communication with the cavity, and a fuel in the housing. The fuel is in fluid communication with the outlet through the opening and the cavity of the structure.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 15, 2011
    Assignee: The Gillette Company
    Inventors: Andrew G. Gilicinski, Bryan L. Hesse
  • Publication number: 20110275009
    Abstract: A core-shell type platinum-containing catalyst being allowed to reduce the amount of used platinum and having high catalytic activity and stability and a method of producing the same, an electrode and an electrochemical device are provided. The platinum-containing catalyst includes: metal particles each including a core particle including a metal atom except for platinum or an alloy of a metal atom except for platinum and a shell layer, including platinum on a surface of the core particle, the metal particles being supported by a conductive carrier and satisfying 0.25 nm?ts?0.9 nm and 1.4 nm?R1?3.5 nm, where an average thickness of the shell layer is ts and an average particle diameter of the core particle is R1.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: SONY CORPORATION
    Inventors: Shuji Goto, Shizuka Hosoi, Yuli Li, Yoshihiro Kudo, Akihiro Maesaka