With Sealing, Spacing, Or Supporting Feature Patents (Class 429/508)
  • Patent number: 11817609
    Abstract: Systems and methods are provided for assembling and operating an electrode assembly for a redox flow battery system. In one example, the electrode assembly may include an inflatable housing in which a negative electrode spacer and a positive electrode may be positioned, wherein the inflatable housing may inflate responsive to applied internal pressure during operation of the redox flow battery system. In some examples, the electrode assembly may be assembled via roll-to-roll processing and may be mechanically and fluidically coupled to electrode assemblies of like configuration. In this way, tolerance stacking may be decreased, processing may be simplified, and costs may be reduced relative to molding-based processes for electrode assembly manufacturing.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: November 14, 2023
    Assignee: ESS TECH, INC.
    Inventor: Thiago Groberg
  • Patent number: 11695128
    Abstract: A conductor assembly including an electrically conductive material defining a longitudinal axis, a microporous membrane surrounding the electrically conductive material defining a series of pores, and a ceramic material within at least a first portion of the series of pores.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: July 4, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Haralambos Cordatos, Peter J. Walsh, Theresa A. Hugener
  • Patent number: 11618967
    Abstract: A production method for a stainless steel sheet for fuel cell separators comprises: preparing a stainless steel sheet as a material; thereafter removing an oxide layer at a surface of the stainless steel sheet; and thereafter subjecting the stainless steel sheet to electrolytic etching treatment in an active region of the stainless steel sheet.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 4, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Takayoshi Yano, Shin Ishikawa
  • Patent number: 11258078
    Abstract: A conductor assembly including an electrically conductive material defining a longitudinal axis, a microporous membrane surrounding the electrically conductive material defining a series of pores, and a ceramic material within at least a first portion of the series of pores.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: February 22, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Haralambos Cordatos, Peter J. Walsh, Theresa A. Hugener
  • Patent number: 11114678
    Abstract: A bipolar plate seal assembly for a fuel cell is provided. The bipolar plate seal assembly includes: a bipolar plate having a flow field for a reactant medium on at least one of its main sides, and a supply area arranged adjacent to the flow field, in which supply ports for feeding and discharging the reactant medium and optionally for feeding and discharging a coolant are arranged; and at least one seal assembly having an electrically insulating layer covering at least one or more sections of the supply area of the bipolar plate and having recesses that correspond to the supply ports of the bipolar plate, and for each recess, a seal circumferential thereto.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: September 7, 2021
    Assignees: VOLKSWAGEN AG, AUDI AG
    Inventors: Peter Bach, Andrew Desouza, Ian Stewart
  • Patent number: 11085120
    Abstract: A stainless steel sheet for fuel cell separators comprises a predetermined chemical composition, wherein the stainless steel sheet has a textured structure at a surface thereof, an average interval between projected parts of the textured structure being 20 nm or more and 200 nm or less, and a ratio [Cr]/[Fe] of an atomic concentration of Cr existing in chemical form other than metal to an atomic concentration of Fe existing in chemical form other than metal at the surface of the stainless steel sheet is 2.0 or more.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: August 10, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Takayoshi Yano, Shin Ishikawa
  • Patent number: 11011782
    Abstract: A method of prolonging service life of an energy storage device such as a lithium-ion battery includes temporarily operating the battery at an elevated current density. Cycling of lithium-ion batteries at regular current densities results in the generation of lithium-metal dendrites at the surface of the anode, particularly in batteries where the anode is lithium metal. The lithium metal dendrites pose a threat to damage other components of the battery, such as separators, as well as causing an electrical short. Operating the battery in bursts at the elevated current density results in self-heating at the anode surface that merges adjacent lithium-metal dendrites and an overall smoothing of the anode surface. This method is also applicable to other alkali-metal-based batteries and chemistries.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 18, 2021
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Lu Li, Nikhil Koratkar, Swastik Basu, Prateek Hundekar
  • Patent number: 10985395
    Abstract: The invention relates to a cell (2) of a redox flow battery, having at least two cell frame elements (7, 8, 9, 10), having a membrane (12) and having two electrodes (11), wherein the at least two cell frame elements, the membrane and the two electrodes close off two mutually separate cell interior spaces (4), wherein, in the at least two cell frame elements, at least four separate ducts (13, 14, 15, 16) are provided in such a way that the two cell interior spaces can be flowed through by different electrolyte solutions, and wherein the cell is, aside from the at least four separate ducts, of liquid-tight form. The invention also relates to a cell stack (1) of a redox flow battery having at least one such cell. Here, the invention proposes a particular form of the cell frame of the cell stack, and an inexpensive and simple method for manufacturing the cell stack.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: April 20, 2021
    Assignee: VoltStorage GmbH
    Inventors: Jakob Bitner, Felix Kiefl, Michael Peither
  • Patent number: 10756378
    Abstract: A cell of the present disclosure may include a support body having a pillar shape, a first electrode layer located on the support body, a solid electrolyte layer located on the first electrode layer, and a second electrode layer located on the solid electrolyte layer. A gas-flow passage passing through the support body in a longitudinal direction thereof is provided in an interior of the support body. A diameter of the gas-flow passage at least at a first end portion of both end portions of the gas-flow passage in the longitudinal direction is greater than a diameter of the gas-flow passage at a central portion, and thus the cell can provide improved power generation efficiency.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: August 25, 2020
    Assignee: KYOCERA Corporation
    Inventor: Masashi Kawakami
  • Patent number: 10553879
    Abstract: A method of making an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect and providing a nickel mesh in contact with a fuel side of the interconnect. Formation of a chromium oxide layer is reduced or avoided in locations between the nickel mesh and the fuel side of the interconnect. A Cr—Ni alloy or a Cr—Fe—Ni alloy is located at least in the fuel side of the interconnect under the nickel mesh.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 4, 2020
    Assignee: Bloom Energy Corporation
    Inventors: Emad El Batawi, Andres Leming, Shailendra Parihar, Michael Gasda
  • Patent number: 10522840
    Abstract: An anode component for a lithium-ion cell is formed using an atmospheric plasma deposition. The anode component has an anode material layer comprising high lithium-intercalating capacity silicon particles as active anode material in pores of a bonded layer of metal particles. The atmospheric plasma deposition process deposits metal particles and smaller silicon-containing particles concurrently or sequentially on an anode current collector substrate or polymeric separator substrate for the lithium-ion cell. The anode material layer may optionally be lithiated in the atmospheric plasma deposition process. The plasma deposition process is used to form a porous electrode layer on the substrate consisting essentially of a porous metal matrix containing smaller particles of the electrode material particles supported and carried in the pores of the matrix. When the anode component is assembled into a cell, remaining pore capacity is filled with a lithium-ion containing liquid electrolyte solution.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 31, 2019
    Assignee: Intecells, Inc.
    Inventor: Xiaohong Gayden
  • Patent number: 10497946
    Abstract: A first sealing member includes a first flat sealing portion facing a first electrode, a second flat sealing portion, and a first protruding sealing portion. The second flat sealing portion is opposite to the first electrode in the stacking direction. The first protruding sealing portion protrudes from the second flat sealing portion in the stacking direction and includes a crossing portion at which the first protruding sealing portion diverges. A second sealing member includes a third flat sealing portion facing a second electrode, a second protruding sealing portion, and a block-shaped seal. The second protruding sealing portion protrudes from the third flat sealing portion in the stacking direction. The block-shaped seal is disposed in a region corresponding to the crossing portion viewed in a stacking direction and protruding from the third flat sealing portion apart from the second protruding sealing portion.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: December 3, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Shuhei Goto, Seiji Sugiura, Kentaro Ishida
  • Patent number: 10454125
    Abstract: A vehicle fuel cell stack includes a stacked body, a stack case, and a cover member. The stack case accommodating the stacked body therein. The stack case includes an upper wall, a lower wall, and a vent opening. The lower wall is opposite to and below the upper wall in a height direction of a vehicle. The lower wall includes an upper surface and a lower surface opposite to and below the upper surface in the height direction. The vent opening passes through the bottom wall in the height direction. The cover member is disposed on the lower surface of the bottom wall to cover the vent opening when viewed in the height direction and to have an opening between the cover member and the lower surface of the bottom wall when viewed along the lower surface.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 22, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Hideharu Naito
  • Patent number: 10340542
    Abstract: An object is to readily provide an output limit of a fuel cell by using temperature of a cooling medium, while improving the startability of a fuel cell. When a cell voltage obtained from an end-portion cell of a fuel cell is equal to or lower than a first threshold value, a controller of a fuel cell system sets an output limit amount used for output limit of the fuel cell to be smaller than an output limit amount according to temperature of a cooling medium measured by a temperature measurement unit.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 2, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiaki Naganuma, Tomohiro Ogawa
  • Patent number: 10297811
    Abstract: The present disclosure provides a fuel cell stack having a plurality of bipolar plates aligned in a stack between a pair of bipolar plates wherein each of the bipolar plates includes an outer bead having an interior cavity; and an inner bead having a trough wherein the inner bead extends into the interior cavity of the outer bead. The trough of the inner bead may be at least about 50% filled with an elastomeric seal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 21, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Liang Xi, Xi Yang, Siguang Xu, Glenn W Skala, Richard Blakeley, Ronald R Stevens
  • Patent number: 10183428
    Abstract: A unit cell injection mold for fabricating a unit cell of a fuel cell, in which an integrated frame of the unit cell formed by injecting a polymer resin onto an insert, in which a membrane electrode assembly and a gas diffusion layer are integrated, is formed, the unit cell injection mold includes an upper mold, a lower mold engaged with the upper mold to define an inner space between the lower mold and the upper mold, the inner space including an injection area into which the insert is accommodated and an insert area into which the polymer resin is injected to form the frame, and elastic protrusions formed from an elastic material, the elastic protrusions being disposed on the upper mold and the lower mold to face each other, wherein the elastic protrusions clamp the insert to divide the inner space into the insert area and the injection area to prevent the polymer resin from entering the insert area.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 22, 2019
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Byeong-Heon Jeong, Han Ki Sung, Jong Kil Oh
  • Patent number: 10170783
    Abstract: A stack (10) of fuel cells (11) is manufactured with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) formed within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and about 2.0 millimeters (about 2 and about 80 mils. The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38) as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 1, 2019
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore Kumar Tenneti, Ned E. Cipollini, Frank E. Kenney, III
  • Patent number: 10141585
    Abstract: A bipolar plate assembly is provided. The bipolar plate assembly may have a first seal assembly including a first high pressure seal, a second high pressure seal, and an insert plate disposed between the first high pressure seal and the second high pressure seal. The insert plate may have a plurality of ridges formed on an upper surface and a lower surface of the insert plate configured to penetrate into the first high pressure seal and the second high pressure seal when the first high pressure seal and the second high pressure seal are pressed onto the insert plate, thereby forming the seal assembly. The bipolar plate assembly may also have a frame and a base configured to be joined to form a bipolar plate and define a high pressure zone. The seal assembly when installed in the bipolar plate may be configured to seal the high pressure zone.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 27, 2018
    Assignee: Nuvera Fuels Cells, LLC
    Inventors: Kevin Beverage, Ed Domit, Roger Van Boeyen
  • Patent number: 10056613
    Abstract: Provided are a negative electrode active material including spherical artificial graphite and natural flake graphite, wherein the spherical artificial graphite and the natural flake graphite are included in a weight ratio of 80:20 to 95:5, and a negative electrode for a lithium secondary battery including the same.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: August 21, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Yoon Ah Kang, Eun Kyung Kim, Sun Young Shin
  • Patent number: 9912000
    Abstract: In the case in which a fuel cell has a structure in which a cathode (2) and an anode (1) are opposed with the intermediary of an electrolyte layer (3) and the cathode (2) is formed of an electrode to which an oxygen reductase and so on is immobilized and this electrode has pores inside, at least part of the surface of this electrode is rendered water repellent. For example, the surface of the electrode is rendered water repellent by forming a water-repellent agent on the surface of this electrode. Thereby, in the case in which the cathode is formed of an electrode to which an enzyme is immobilized and this electrode has pores inside, a fuel cell that can stably achieve a high current value by optimization of the amount of water contained in the cathode and a manufacturing method thereof are provided.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: March 6, 2018
    Assignee: Sony Corporation
    Inventors: Takaaki Nakagawa, Hideyuki Kumita, Masaya Kakuta, Hideki Sakai, Hiroki Mita, Yoshio Goto
  • Patent number: 9896555
    Abstract: Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the melting point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 20, 2018
    Assignee: Amtek Research International LLC
    Inventors: Richard W. Pekala, Srinivas Cherukupalli, Robert R. Waterhouse
  • Patent number: 9847543
    Abstract: A desulfurizer material for desulfurizing fuel supplied to a fuel cell system, the desulfurizer material comprising one or more manganese oxide materials having an octahedral molecular sieve (OMS) structure, and the desulfurizer material being resistant to moisture and being capable of removing organic sulfur containing compounds and H2S. The desulfurizer material is used in a desulfurizer assembly which is used as part of a fuel cell system.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 19, 2017
    Assignee: FUELCELL ENERGY, INC.
    Inventors: Jin-Yun Wang, Mohammad Farooque, David Xu, Zachary Sanders
  • Patent number: 9812724
    Abstract: A stack (10) of fuel cells (11) is provided with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) defined within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and 2.0 millimeters (2 and 80 mils). The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38), as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: November 7, 2017
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sridhar V. Kanuri, Richard D Breault, Kishore Kumar Tenneti, Ned E. Cipollini
  • Patent number: 9725566
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 8, 2017
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
  • Patent number: 9620804
    Abstract: A fuel cell is provided having a structure in which a cathode and an anode face each other with an electrolyte layer therebetween. The cathode includes an electrode on which an oxygen reductase and the like are immobilized, and the electrode has pores therein, water repellency is imparted to at least part of the surface of the electrode. Water repellency is imparted by forming a water-repellent agent on the surface of the electrode. The water-repellent agent includes a water-repellent material such as carbon powder and an organic solvent such as methyl isobutyl ketone that causes phase separation with water. When the electrode has pores therein, there are provided a fuel cell that stably provides a high current value and a method for manufacturing the fuel cell.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: April 11, 2017
    Assignee: Sony Corporation
    Inventors: Takaaki Nakagawa, Hideyuki Kumita, Masaya Kakuta, Hideki Sakai, Hiroki Mita, Yoshio Goto
  • Patent number: 9376516
    Abstract: A porous polymer structure may be formed by cooling a substrate to a temperature at or below a freezing point of a monomer, wherein the monomer is capable of free-radical polymerization; exposing the substrate to an initiator and the monomer, each in a vapor phase, wherein a concentration of the monomer in the vapor phase is above a saturation pressure of the monomer; converting the initiator to a free radical; crystalizing and depositing the monomer on the substrate; and polymerizing at least some of the monomer on the substrate, thereby forming a porous polymer structure on the substrate.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: June 28, 2016
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Malancha Gupta, Scott J. Seidel, Philip J. Kwong
  • Patent number: 9252404
    Abstract: A rechargeable battery pack includes a rechargeable battery cell, and a pair of cell holders receiving respective sides of the rechargeable battery cell in a length direction, the pair of cell holders being combinable with each other. Each of the cell holders includes a base that supports the rechargeable battery cell, a combination protrusion and a combination groove symmetrically disposed on an outer side of the base, a protrusion protruding from the base in the length direction so as to be combinable in the length direction, and a recess portion being concave in the base in the length direction such that the recess portion of one of the pair of cell holders is combinable with the protrusion of the other of the pair of cell holders.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 2, 2016
    Assignee: SAMSUNG SDI CO., LTD.
    Inventor: No-Hyun Kwag
  • Patent number: 9062175
    Abstract: A semiconducting shield composition comprising a polyolefin and acetylene black having at least one of the following properties: (a) a DBP oil adsorption of 150 ml/100 g to 200 ml/100 g; (b) an iodine absorption of 85 mg/g to 105 mg/g; (c) an apparent density of 0.2 g/ml to 0.4 g/ml; (d) a crystallite size along (002) less than 30 ?; and (e) a carbon-carbon bond length along (100) less than 2.42 ?. The semiconducting shield may be incorporated into a semiconducting layer and/or a semiconductor apparatus.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 23, 2015
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Paul J. Brigandi
  • Publication number: 20150125782
    Abstract: A fuel cell plate assembly (400) comprising: a bipolar plate (102) having a port (104) for receiving a fluid; a fluid diffusion layer (210); and an electrode defining an active area (105). The fluid diffusion layer is configured to communicate a fluid received at the port (104) to the active area (105).
    Type: Application
    Filed: May 20, 2013
    Publication date: May 7, 2015
    Inventor: Peter David Hood
  • Publication number: 20150111131
    Abstract: A water vapor transfer unit assembly is disclosed, the water vapor transfer unit assembly including a plurality of water vapor transfer units having a fluid permeable membrane and a plurality of supports disposed within a sealing frame adjacent an end plate of a fuel cell stack, wherein the sealing frame is adapted to provide support to the end plate and a fuel cell stack of the fuel cell stack system.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 23, 2015
    Inventors: Benno Andreas-Schott, Glenn W. Skala, Thomas P. Migliore, Ian R. Jermy
  • Publication number: 20150104730
    Abstract: The invention relates to a filter with a gasket applied in line shape at an edge of the filter. The invention suggests to apply the gasket with a nozzle which facilitates a gasket that is thinner and/or whose protrusion beyond the filter is lower than this would be feasible for example through injection molding.
    Type: Application
    Filed: May 2, 2014
    Publication date: April 16, 2015
    Inventors: Andreas Massold, Frank Sommer
  • Patent number: 9005846
    Abstract: A partly oxidized substrate is disclosed. According to one aspect, the substrate is formed by subjecting a substrate made of a porous metal or metal alloy including particles of at least one metal or metal alloy bound by sintering. The substrate includes a first main surface and a second main surface. The porosity of the substrate gradually changes from the first main surface to the second main surface. The substrate is partially oxidized by an oxidizing gas such as oxygen and/or air. A method for preparing the substrate and high temperature electrolyzer (THE) cell including the substrate are also disclosed.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 14, 2015
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Julie Mougin, Thomas Pietri
  • Patent number: 9005838
    Abstract: A fuel cell stack is provided in which a plurality of single cells each including a membrane electrode assembly are stacked in a stacking direction. The fuel cell stack includes a plurality of electrical insulation members each connected to an outer peripheral portion of a corresponding one of the membrane electrode assemblies. The fuel cell stack further includes a first displacement absorbing member disposed between each insulation member and an adjacent insulation member.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 14, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigetaka Uehara, Yasuhiro Numao
  • Patent number: 9005837
    Abstract: A gasket for a manifold seal for a fuel cell system includes a first layer of fibrous ceramic material having a first compressibility, a second layer of fibrous ceramic material having a second compressibility and a third layer of fibrous ceramic material having third compressibility. The third layer of fibrous ceramic material is positioned between and engaged with the first layer of fibrous ceramic material and the second layer of fibrous ceramic material. The third compressibility is less than the first compressibility and less than the second compressibility.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 14, 2015
    Assignee: Fuelcell Energy, Inc.
    Inventors: Tom X. Jian, Chao-Yi Yuh, Ling Chen, Daniela Nedu
  • Patent number: 8999596
    Abstract: A fuel cell stack comprising a second metal separator set to have an external dimension larger than a first metal separator, wherein the second metal separator comprises, formed integrally, a first seal member in contact with the peripheral edge of a first electrolyte membrane/electrode structure, a second seal member in contact with the peripheral edge of the first metal separator, and a third seal member in contact with the peripheral edge of an adjoining fourth metal separator. Since the first seal member, the second seal member and the third seal member are integrally formed on one surface of the second separator or one surface of the first separator, a seal-forming step can be carried out at one effort, simply and economically. In addition, use of a triple seal structure containing the first through the third seal members can favorably improve the sealing feature of reaction gas and minimize reaction gas leakage.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 7, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Tanaka, Seiji Sugiura
  • Patent number: 8999601
    Abstract: A solid oxide fuel cell (SOFC) includes a cathode electrode, an anode electrode, and a solid oxide electrolyte located between the anode electrode and the cathode electrode. The cathode electrode is a porous ceramic layer infiltrated with a cathode catalyst material, and the anode electrode is a porous ceramic layer infiltrated with an anode catalyst material, and the electrolyte is a ceramic layer having a lower porosity than the anode and the cathode electrodes. A ceramic reinforcing region may be located adjacent to the riser opening in the electrolyte.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 7, 2015
    Assignee: Bloom Energy Corporation
    Inventors: Matthias Gottmann, Dien Nguyen, Emad El Batawi, Tad Armstrong, Gonghou Wang, Darren Hickey
  • Patent number: 8993195
    Abstract: A fuel cell includes a unit cell, a cell fixing member and a welding portion. The unit cell includes a first electrode layer, an electrolyte layer surrounding the first electrode layer, a second electrode layer surrounding the electrolyte layer while exposing an end portion of the electrolyte layer, and a coating layer formed by coating a mixture of ceramic and metal on the exposed end portion of the electrolyte layer. The cell fixing member includes a flow tube inserted into the unit cell, a fixing tube provided to an outside of the flow tube, and a connecting portion connecting the fixing tube and the flow tube to each other and to restrict an insertion depth of the electrolyte layer and the first electrode layer. The welding portion fixes and seals the coating layer and the inner circumferential surface of the fixing tube to each other.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Won Suh, Ho-Jin Kweon
  • Patent number: 8986904
    Abstract: A solid oxide fuel cell and a manufacturing method thereof includes a unit cell and a cell coupling member. The unit cell includes a first electrode layer, an electrolyte layer surrounding an outer peripheral surface of the first electrode layer, and a second electrode layer surrounding the electrolyte layer so that one end portion of the electrolyte layer is exposed. The cell coupling member is coupled to the unit cell and includes a coupling member. A sealing member including at least two layers having different porosities is coated on at least one portion of the coupling member to seal the unit cell and the cell coupling member.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-Sun Kwon, Sang-Jun Kong, Hyun Soh, Kwang-Jin Park, Gyu-Jong Bae, Duk-Hyoung Yoon, Tae-Ho Kwon
  • Patent number: 8986860
    Abstract: A subgasket for a fuel cell is provided. The subgasket includes a barrier layer having an elongate primary seal formed thereon. The seal has at least one inwardly extending baffle adapted to militate against a reactant bypass flow in the fuel cell. A fuel cell and fuel cell stack having the subgasket are also provided.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Saurabh Vyas, Jeffrey A. Rock, Eric J. Connor, Daniel P. Miller
  • Publication number: 20150072268
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventor: Mark W. Keyser
  • Patent number: 8974982
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) having an electrolyte membrane and a pair of electrodes arranged on both sides of the electrolyte membrane in the thickness direction, a pair of frames having a frame shape and holding an outer periphery portion of the electrolyte membrane, a pair of gas diffusion layers arranged inside the pair of frames and on both sides of the MEA in the thickness direction, and a gasket covering at least a part of the pair of frames. The fuel cell further includes a first cross-linking adhesive member formed of rubber which includes a membrane accommodating portion having an indented shape for accommodating the outer periphery portion of the electrolyte membrane and a first intermediate portion interposed between the pair of frames and which is subjected to cross-linking adhesion with the outer periphery portion of the electrolyte membrane and the pair of frames.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: March 10, 2015
    Assignee: Tokai Rubber Industries, Ltd.
    Inventors: Hideaki Tanahashi, Yutaka Ishioka, Kazutaka Iizuka, Chisato Kato
  • Publication number: 20150061600
    Abstract: A hydrogen fuel cell system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The fuel cell system includes a fuel cell, a fuel cartridge, and a supply of pressurized aqueous solution to generate power for portable power electronics. The fuel cartridge includes a top cap with an overmolded face seal gasket that provides an offset injection point on the fuel cartridge. The aqueous solution is delivered into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user of the electronics.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 5, 2015
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 8968962
    Abstract: A reduction process is performed to each fuel electrode layer by supplying a reduction gas into each fuel channel 22 in the state in which a perimetric portion of a sheet body 11 is held to be sealed by perimetric portions of an upper support member 122 and a lower support member 121. In the case of a small-sized fuel cell in which the thickness of the sheet body 11 is 20˜500 ?m, the fuel electrode layer is greater in thickness than the solid electrolyte layer and the air electrode layer, and the area of the orthogonal projection of the plane portion 12a of each support member 12 is 1˜100 cm2, a ratio of a warpage of not more than 0.05 cm?1 on the sheet body with respect to the area of the orthogonal projection can be achieved at room temperature after the reduction process.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Natsumi Shimogawa, Masayuki Shinkai, Toshiyuki Nakamura
  • Publication number: 20150050582
    Abstract: Fluid coupling assemblies and methods are discussed. The fluid coupling assemblies include a first coupling member, a second coupling member magnetically engageable with the first coupling member, and a seal member disposed between a portion of the first coupling member and a portion of the second coupling member. A magnetic engagement of the first coupling member and the second coupling member unseals a fluid flow path therebetween. In certain examples, the first coupling member is sealed by a valve member and the second coupling member includes an activation member. When engaged, the valve member is moved from a closed position to an open position by the activation member, thereby unsealing the fluid flow path. A magnetic force between the first coupling member and the second coupling member can be chosen such that the members disengage when a predetermined fluid flow path pressure is reached.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 19, 2015
    Inventors: Joerg Zimmermann, Jeremy Schrooten
  • Patent number: 8951691
    Abstract: A solid oxide fuel cell stack is disclosed. In one aspect, the solid oxide fuel cell stack includes unit cells, an external collector, a first stack collecting member, a cap, and a suspension member. The external collector contacts an outer periphery of each of the unit cells and electrically connects the unit cells to each other. The first stack collecting member is positioned to collect current from a distal unit cell. A cap is provided in one end of the distal unit cell. The suspension member has one side thereof suspended from the cap and the other side fixed to the first stack collecting member to distribute weight of the first stack collecting member. Structural stability of a stack collector may be maintained even at oxidizing atmosphere of high temperature when driving the fuel cell stack.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 10, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gyu-Jong Bae, Sang-Jun Kong, Hyun Soh, Tae-Ho Kwon, Kwang-Jin Park, Duk-Hyoung Yoon, Young-Sun Kwon
  • Patent number: 8945792
    Abstract: A separator for a fuel cell includes a metal plate which defines a passage and a manifold, frames having gaskets which are integrated therewith using injection, and a bonding unit for bonding the frames to the metal plate. The gaskets may be differently formed. This resolves process interference problems between conductive surface treatment and gasket cross-linking, obviates deburring of the gasket, and preventes poor injection of the gaskets, which ensures stable quality of the separator, increases productivity and decreases the manufacturing cost.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Hyundai Motor Company
    Inventors: Suk Min Baeck, Sang Mun Jin
  • Patent number: 8940450
    Abstract: A membrane electrode assembly for a fuel cell that secures a flow path of a separator while preventing generation of a pin-hole. The membrane electrode assembly includes an electrolyte membrane for a fuel cell, a microporous layer that is disposed at both surfaces of the electrolyte membrane, a backing layer that is disposed on the microporous layer, and a circumferential edge protective layer that is disposed at an circumferential edge of the electrolyte membrane. An end portion of the microporous layer is positioned further inside of the membrane electrode assembly than an end portion of the backing layer. The circumferential edge protective layer is inserted between the backing layer and the electrolyte membrane.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Myoung-Ki Min, Geun-Seok Chai, Soon-Cheol Shin
  • Patent number: 8940456
    Abstract: A manufactured fuel cell includes: a unit cell including a first electrode layer, an electrolyte layer surrounding an outer circumference of the first electrode layer, and a second electrode layer surrounding the electrolyte layer while exposing an end of the electrolyte layer; a plating layer around an outer circumference of the exposed electrolyte layer; a cell coupling member including a passage pipe inserted into the unit cell and forming a continuous passage from the inside of the unit cell, a coupling pipe provided outside of the passage pipe to form a space accommodating an end of the unit cell from the passage pipe, and a connecting unit connecting the coupling pipe with the passage pipe and restricting an insertion depth of the electrolyte layer and the first electrode layer; and a welding portion fixing and sealing the plating layer and an inner circumference of the coupling pipe with each other.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jan-Dee Kim, Jun-Won Suh, Young-Sun Kwon, Ho-Jin Kweon
  • Patent number: 8932738
    Abstract: A fuel cell assembly structure mainly comprises a housing in which there is an accommodating space; a plurality of unit cell stacks that are stacked in the same direction in the accommodating space of the housing and made by stacking in sequence a cathode layer, a power generation electrode, an anode layer and a connection disk; a connection disk connecting is series each unit cell stack, a sealing disk and a cover in sequence to cover the opening of the accommodating space of the housing. On the outer side of the cover there is a connection base, at least one surface of which has a plurality of conduits and the other end connects to a plurality of cell stack bypass manifolds that further connect to a plurality of side bypass manifolds.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: January 13, 2015
    Assignee: Institute of Nuclear Energy Research
    Inventors: Dung-Di Yu, Yung-Neng Cheng, Ruey-Yi Lee, Chien-Hsiung Lee
  • Patent number: 8927174
    Abstract: A sealing structure of a fuel cell has a first gasket made of an elastomer and provided integrally on a separator, and a second gasket made of an elastomer and provided integrally on other separator. A membrane-electrode assembly is sandwiched or pinched by the first and second gaskets. The first gasket has a main lip in which a top portion brought into close contact with the membrane-electrode assembly is formed flat. The second gasket has a flat seal portion and a sub lip protruding from this flat seal portion at a position opposing the main lip. The flat seal portion and the sub lip are brought into close contact with the membrane-electrode assembly. The width of the top portion of the main lip is narrower than the width of the flat seal portion, and larger than the width of the sub lip.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 6, 2015
    Assignee: NOK Corporation
    Inventors: Shinichiro Taguchi, Shigeru Watanabe