Optical Result Patents (Class 436/164)
  • Patent number: 8685662
    Abstract: The present invention pertains to a method for in vitro prognosticating and/or diagnosing cerebral cerebral malaria, wherein said method comprises a step of detecting non-erythroid spectrin or fragments thereof, and/or antibodies directed against non-erythroid spectrin, in a biological sample. Reagents and kits for performing this method are also disclosed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 1, 2014
    Assignees: Institut Pasteur, Universite Pierre et Marie Curie (Paris 6)
    Inventors: Sylviane Pied, Vincent Guiyedi, Pierre-André Cazenave, Maryvonne Kombila, Youri Chanseaud
  • Patent number: 8685929
    Abstract: This invention pertains to the discovery that an amplification of the CYP24 gene or an increase in CYP24 activity is a marker for the presence of, progression of, or predisposition to, a cancer (e.g., breast cancer). Using this information, this invention provides methods of detecting a predisposition to cancer in an animal. The methods involve (i) providing a biological sample from an animal (e.g. a human patient); (ii) detecting the level of CYP24 within the biological sample; and (iii) comparing the level of CYP24 with a level of CYP24 in a control sample taken from a normal, cancer-free tissue where an increased level of CYP24 in the biological sample compared to the level of CYP24 in the control sample indicates the presence of said cancer in said animal.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: April 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Donna G. Albertson, Daniel Pinkel, Colin Collins, Joe W. Gray, Bauke Ylstra
  • Patent number: 8685743
    Abstract: A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Xiang Zhang, Jonathan A. Ellman, Fanqing Frank Chen, Kai-Hang Su, Qi-Huo Wei, Cheng Sun
  • Patent number: 8685746
    Abstract: A system and method for preparing and analyzing samples. The system can include a sample preparation system and a sample detection system coupled to the sample preparation system. The sample preparation system can include a deformable self-supporting receptacle comprising a reservoir adapted to contain a liquid composition comprising a source and a diluent. The sample detection system can be positioned in fluid communication with the reservoir, and can be adapted to analyze a sample of the liquid composition for an analyte of interest. The system can further include a fluid path defined at least partially by the reservoir and the sample detection system. The method can include applying pressure to the deformable self-supporting receptacle to move a sample of the liquid composition in the fluid path to the sample detection system, and analyzing the sample for the analyte of interest with the sample detection system.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: April 1, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Kurt J. Halverson, Stephen C. P. Joseph, Raj Rajagopal, Matthew D. Reier, David J. Velasquez, Cynthia D. Zook, Sailaja Chandrapati
  • Patent number: 8685754
    Abstract: Droplet actuator devices and methods for immunoassays and washing are provided. According to one embodiment, a method of providing a droplet in contact with a surface of a super paramagnetic bead with a reduced concentration of a substance is provided and includes: (a) providing a super paramagnetic bead in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets. The set of droplets includes: (i) a droplet in contact with the super paramagnetic bead having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the super paramagnetic bead.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 1, 2014
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Richard B. Fair
  • Patent number: 8681338
    Abstract: In order to improve the detection accuracy of a reflection spectrum, a detection device for intermolecular interaction is provided with a detector (10) which has a ligand (16), a white light source (20) which emits white light, a spectroscope (30) which detects the spectral intensity of received light, a light transmission unit (40) which has a first light transmission path (41) for transmitting the white light from the white light source to the detector, a second light transmission path (42) for transmitting reflected light of the white light from the detector to the spectroscope, and a third light transmission path (43) for transmitting the white light from the white light source to the spectroscope, a switching unit (80) which performs switching between a reflected light receiving state in which the transmission of the reflected light of the white light in the detector to the spectroscope via the first and second light transmission paths is enabled and a white light receiving state in which the transmissio
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: March 25, 2014
    Assignee: Konica Minolta Advanced Layers, Inc.
    Inventor: Osamu Kashiwazaki
  • Patent number: 8679846
    Abstract: The invention provides a sterilization indicator (17), characterized in that it comprises: a compound (21) that is of the heating type when put into contact with atoms of oxygen O and/or nitrogen N; and a thermochromic dye (19), in thermal contact with the compound (21).
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 25, 2014
    Assignee: Societe pour la Conception des Applications des Techniques Electroniques
    Inventors: André Ricard, Francis Dieras, Michel Sixou, Sandrine Villeger, Cristina Canal, Pilar Erra
  • Patent number: 8679855
    Abstract: In the present invention, it is demonstrated for the first time, the influence of electrical current on the ability of surface plasmons to amplify fluorescence signatures. An applied direct current across silver island films (SiFs) of low electrical resistance perturbs the fluorescence enhancement of close-proximity fluorophores. For a given applied current, surface plasmons in “just-continuous” low resistance films are sparsely available for fluorophore dipole coupling and hence the enhanced fluorescence is gated as a function of the applied current.
    Type: Grant
    Filed: March 1, 2009
    Date of Patent: March 25, 2014
    Assignee: University of Maryland, Baltimore County
    Inventor: Chris D. Geddes
  • Patent number: 8679850
    Abstract: The present invention concerns a method of detecting cationic polymers comprising: obtaining a target water sample containing a cationic polymer; adding a polymer dispersant solution and a phosphate solution to the target water sample, the polymer dispersant solution is comprised of a polymer dispersant with calcium and magnesium hardness and the phosphate solution is comprised of a phosphate; standing the target water sample; and measuring the turbidity of the target water sample; comparing the turbidity of said target water sample with a calibration curve of the turbidity of samples containing known concentrations of cationic polymers to determine the concentration of cationic polymers in said target water sample.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 25, 2014
    Assignee: General Electric Company
    Inventors: Guixi Zhang, Sijing Wang, Hong Xu, Xiaofeng Tang
  • Publication number: 20140080224
    Abstract: Disclosed are systems and methods for inspecting and monitoring an inner surface of a pipeline. One system includes a pig arranged within the pipeline and having a housing that defines a conduit therein for providing fluid communication through the pig, one or more optical computing devices arranged on the conduit for monitoring a bypass fluid flowing through the conduit. The one or more optical computing devices including at least one integrated computational element configured to optically interact with the bypass fluid and generate optically interacted light, and at least one detector arranged to receive the optically interacted light and generate an output signal corresponding to a characteristic of the bypass fluid. A signal processor is communicably coupled to the at least one detector of each optical computing device for receiving the corresponding output signals and determining the characteristic of the fluid.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ola Tunheim, Robert P. Freese, Laurence J. Abney, Christopher M. Jones, James R. MacLennan
  • Publication number: 20140080223
    Abstract: Disclosed are systems and methods for inspecting and monitoring an inner surface of a pipeline. One system includes a pig arranged within the pipeline and having first and second ends, one or more optical computing devices arranged on at least one of the first and second ends for monitoring a fluid within the pipeline. The optical computing devices including at least one integrated computational element configured to optically interact with the fluid and thereby generate optically interacted light, and at least one detector arranged to receive the optically interacted light and generate an output signal corresponding to a characteristic of the fluid. The system also includes a signal processor communicably coupled to the at least one detector of each optical computing device for receiving the output signal of each optical computing device and determining the characteristic of the fluid as detected by each optical computing device.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ola Tunheim, Robert P. Freese, Laurence J. Abney, Christopher M. Jones, James R. MacLennan
  • Publication number: 20140080129
    Abstract: The present invention incorporates the camera from a mobile device (phone, iPad, etc.) to capture an image from a chemical test kit and process the image to provide chemical information. A simple user interface enables the automatic evaluation of the image, data entry, gps info, and maintain records from previous analyses.
    Type: Application
    Filed: January 16, 2013
    Publication date: March 20, 2014
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Lawrence Livermore National Security, LLC
  • Publication number: 20140080172
    Abstract: Disclosed are systems and methods for monitoring chemical reaction processes in or near real-time. One method may include containing a fluid within a flow path, the fluid having a chemical reaction occurring therein, optically interacting at least one integrated computational element with the fluid, thereby generating optically interacted light, and producing an output signal based on the optically interacted light that corresponds to a characteristic of the chemical reaction.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ola Tunheim, Robert P. Freese, Alexis Wachtel, II, James R. MacLennan
  • Patent number: 8673645
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: March 18, 2014
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
  • Patent number: 8673215
    Abstract: The invention relates to the test device for platelet aggregation detection comprising: —an element (1) for receiving a blood sample—a capillary tube (3) connected at a first end (31) to said element (1) and at a second end (32) to a pressure lowering device (5) to pump said blood sample through said capillary tube (3)—at least a pair of facing electrodes (8) on the capillary tube—a device for measuring an impedance between said pair of facing electrodes. The invention also relates to a process for using this device, comprising: a) receiving a blood sample and pumping it through the capillar tube (3) b) determining a dynamic change of the value of the impedance between at least one pair of electrodes (8).
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: March 18, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Francine Rendu, Daniel Fruman, Jaime Levenson
  • Patent number: 8673237
    Abstract: The invention relates to a sensor having a color-changeable sensory surface, characterized in that at least one molecular layer of a positively charged polymer (4) is bonded to a further molecular layer of a negatively charged polymer (5) in alternation by means of ionic forces, wherein a solvent is stored in the charged polymer layers (4, 5), whereby the polymer layers swell at least 10%, and colored, preferably metal or semiconducting nanoparticles (6) are bonded to the last charged polymer molecular layer, and the total layer thickness of the inert intermediate layer (3) and all polymer layers (4, 5) is at least 40 nm but less than 500 nm so that the layer setup has an interference color that is visible to the human eye or measurable in the infrared and that can be changed by means of interaction with an analyte, the interference color being caused by optical interference between the material surface (2) and the layer of the nanoparticles (6).
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: March 18, 2014
    Inventor: Thomas Schalkhammer
  • Patent number: 8673650
    Abstract: Optical detection of molecules using a biochip having at least one reagent immobilizing area designed to receive one or more reagents and at least one calibration structure with a predetermined height to provide a height reference for optical measurement is disclosed. When the calibration structure is illuminated by a probe beam of light, a first reflected beam of light is reflected off the calibration structure, and a second reflected beam of light is reflected off the reagent immobilizing area. The first reflected beam and the second reflected beam are compared to determine a height at the reagent immobilizing area.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: March 18, 2014
    Assignee: Ridge Diagnostics, Inc.
    Inventor: Bo Pi
  • Publication number: 20140073061
    Abstract: A kit and methods for determining the gender of an unborn fetus. The kit comprises a container holding a solid composition therein, the solid composition including a basic salt and a transition metal separated by a filler and in which an atmosphere in the container is substantially free of water.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 13, 2014
    Applicant: HELLO BABY F.S.T., LLC
    Inventors: Constance M. Hendrickson, John Spurgeon
  • Patent number: 8669052
    Abstract: Point-of-care binding assays include at least one target nucleic acid binding in a multiplex structure with at least one sequence in a partner nucleic acid associated with a label, due to complementary base pairings between at least one sequence in the target nucleic acid and at least one sequence in the partner nucleic acid. The assays overcome the inherent deficiencies of antibody-protein antigen assays. In a preferred embodiment, color tagged nucleic acid sequences are used to bind a complementary target nucleic acid. The tagged nucleic acid sequences are preferably made from deoxyribonucleotides, ribonucleotides, or peptide nucleotides.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Robert P. Sambursky, Uma Mahesh Babu, Robert W. VanDine
  • Patent number: 8668874
    Abstract: A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: March 11, 2014
    Assignee: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Nongjian Tao, Erica Forzani, Rodrigo A Iglesias
  • Patent number: 8668872
    Abstract: A method for analysis of an object dyed with fluorescent coloring agents. Separately fluorescing visible molecules or nanoparticles are periodically formed in different object parts, the laser produces the oscillation thereof which is sufficient for recording the non-overlapping images of the molecules or nanoparticles and for decoloring already recorded fluorescent molecules, wherein tens of thousands of pictures of recorded individual molecule or nanoparticle images, in the form of stains having a diameter on the order of a fluorescent light wavelength multiplied by a microscope amplification, are processed by a computer for searching the coordinates of the stain centers and building the object image according to millions of calculated stain center co-ordinates corresponding to the co-ordinates of the individual fluorescent molecules or nanoparticles. Two-dimensional and three-dimensional images are provided for proteins, nucleic acids and lipids with different coloring agents.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 11, 2014
    Assignee: Super Resolution Technologies LLC
    Inventors: Andrey Alexeevich Klimov, Dmitry Andreevich Klimov, Evgeniy Andreevich Klimov, Tatiana Vitalyevna Klimova
  • Patent number: 8669115
    Abstract: An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 11, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Philip F. Pagoria, Richard E. Whipple, Peter J. Nunes, Joel Del Eckels, John G. Reynolds, Robin R. Miles, Marina L. Chiarappa-Zucca
  • Publication number: 20140065719
    Abstract: A detection method for a substance and a system thereof are provided. The detection method for a substance contained in a sample includes providing a reagent in reaction with the substance to form a chelate; and pressurizing the substance to accumulate the chelate.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Kuo, Yu-Kun Hung, Tzu-Sou Chuang
  • Patent number: 8663563
    Abstract: A reflective diffractometric hydrogel sensor includes an upper layer, including a microfluidic chamber formed from a substantially transparent material and configured to contain a solution, a reflective diffraction grating positioned within the microfluidic chamber, the diffraction grating including a plurality of hydrogel strips configured to change in dimension in response to a stimulus, each hydrogel strip having a top surface coated with a reflective material and a bottom surface in contact with the upper layer substrate, and a reflective surface below the reflective diffraction grating wherein when a coherent light is incident upon and reflected from the upper layer at an angle substantially normal to the upper layer an interference diffraction pattern results, including a first diffraction mode, a light intensity of which indicates the relative distance between the top surfaces of the plurality of hydrogel strips and the reflective surface.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 4, 2014
    Assignees: Purdue Research Foundation, Board of Regents, The University of Texas System
    Inventors: Cagri Savran, Chun-Li Chang, Zhenwen Ding, Babak Ziaie, Andrew Ellington, Venkata Naga Lakshmi Rekha Patchigolla
  • Patent number: 8663993
    Abstract: A dye binding method for protein analysis is disclosed. The method includes the steps of preparing an initial reference dye solution of unknown concentration from an initial reference dye concentrate and creating an electronic signal based upon the absorbance of the initial reference dye solution. Thereafter, an electronic signal is created based upon the absorbance of a dye filtrate solution prepared from the initial reference dye solution and an initial protein sample. The absorbance signals from the reference dye solution and the dye filtrate solution are sent to a processor that compares the respective absorbances and calculates the protein content of the protein sample based upon the difference between the absorbances.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: March 4, 2014
    Assignee: CEM Corporation
    Inventors: Michael J Collins, Sr., Joseph J Lambert, Timothy A Zawatsky, David L Herman
  • Patent number: 8658429
    Abstract: A photoluminescent oxygen probe including a tack with a layer of a pressure-sensitive adhesive and an oxygen-sensitive photoluminescent element on the underside of the head. The probe is effective for sensing oxygen concentration within an enclosed space by puncturing the container defining the enclosed space the with the probe's shank and adhering the underside of the probe's head to the container so as to sealingly surround the puncture, thereby placing the oxygen-sensitive photoluminescent dye on the underside of the probe's head into sensible communication with the enclosed space through the puncture hole.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 25, 2014
    Assignee: Mocon, Inc.
    Inventors: Daniel W. Mayer, John Eastman
  • Publication number: 20140051179
    Abstract: Gas detector tubes may be used to determine a concentration of target gases in air. The gas detector tubes described may be read either by and optical reader or visually by the user. A gas detector tube reader having an optical reader capable of reading a length of stain, a color change and color density of a reagent in a gas detector tube. The gas detector tube may further comprise sensors for measuring the environmental conditions during sampling.
    Type: Application
    Filed: May 29, 2013
    Publication date: February 20, 2014
    Inventors: Bryan I. Truex, Gueorgui M. Mihaylov
  • Publication number: 20140051173
    Abstract: A multilayer Paper Analytical Device (PAD) is provided for detection of at least two chemical components indicative of a low quality pharmaceutical or dietary supplement product. A method for detection of at least two chemical components indicative of a low quality pharmaceutical or dietary supplement product is also provided that employs a multilayer PAD. A kit is provided for detection of at least two chemical components indicative of a low quality pharmaceutical or dietary supplement product that includes a multilayer PAD and instructions for using the kit.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 20, 2014
    Applicant: ST. MARY'S COLLEGE
    Inventors: Toni L. O. Barstis, Mary M. Bevilacqua
  • Publication number: 20140051178
    Abstract: A self-contained specimen testing unit consisting of a swab-tip with attached, hollow swab-stick, an outer, elongated, removable tube housing cover that surrounds and protects the swab-tip and swab-stick, a dropper removably secured to the end of the tube cover, a dropper cap, a piercing closure member, a rotatable base closure member coupled to the piercing closure element, a membrane member mounted in the base closure member, and reagent-solution storage container screwed onto the end of the rotatable base closure member and sealed by the membrane member thereof. A method of using the unit is also disclosed whereby the piercing unit pierces the membrane when reagent solution is to be delivered to the swab-tip.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: BERLIN PACKAGING, LLC
    Inventors: Brett Niggel, Scott Jost
  • Patent number: 8652850
    Abstract: A method of quantitatively determining 8-isoprostane is provided that includes fluorescently labeling 8-isoprostane with a quinoxalinone derivative in an excess amount relative to 8-isoprostane, separating a fluorescently labeled 8-isoprostane from a unreacted quinoxalinone derivative by contacting a reaction mixture containing the fluorescently labeled 8-isoprostane and the unreacted quinoxalinone derivative with a cation exchange support having a sulfonic acid or a sulfonate immobilized thereon, and quantitatively determining the fluorescently labeled 8-isoprostane that has been separated from the unreacted quinoxalinone derivative.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 18, 2014
    Assignees: Tanita Corporation, National Institute of Advanced Industrial Science and Technology
    Inventors: Satoshi Koide, Kenji Yokoyama, Yoshio Suzuki
  • Patent number: 8652409
    Abstract: Fluid analyte sensors include a photoelectrocatalytic element that is configured to be exposed to the fluid, if present, and to respond to photoelectrocatalysis of at least one analyte in the fluid that occurs in response to impingement of optical radiation upon the photoelectrocatalytic element. A semiconductor light emitting source is also provided that is configured to impinge the optical radiation upon the photoelectrocatalytic element. Related solid state devices and sensing methods are also described.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Valencell, Inc.
    Inventors: Steven Francis LeBoeuf, Jesse Berkley Tucker, Michael Edward Aumer
  • Publication number: 20140045171
    Abstract: Disclosed are benzoxazole-based compounds, kits, and methods of producing and using the described compounds in fluorescence-based detection of analytes (e.g., metal ions). Also disclosed are uses of benzoxazole-based compounds as ratiometric metal ion indicators.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 13, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kyle GEE, Vladimir MARTIN
  • Publication number: 20140045209
    Abstract: Microstructures and nanostructures (100) consisting of a substrate (110), an array of pillars (120) capped by metallic disc (130), metallic dots (clusters or granules) (140) disposed on the sidewalls of the pillars, and a metallic backplane (150) that can interact to enhance a local electric field, the absorption of the light, and the radiation of the light are disclosed. Methods to fabricate the structures (100) are also disclosed. Applications of the structures to enhance the optical signals in the detection of molecules and other materials on a structure surface, such as fluorescence, photoluminescence and surface enhanced Raman Scattering (SERS) are also disclosed.
    Type: Application
    Filed: May 20, 2011
    Publication date: February 13, 2014
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Stephen Y. Chou, Wendi Li
  • Patent number: 8647884
    Abstract: Multi-layered optical sensor films are disclosed. The sensor films include a first reflective layer, a detection layer over the reflective layer, and optionally a second reflective layer over the detection layer. The detection layer contains a hydrophobic, amorphous, substantially microporous, analyte-sensitive organosilicate composition. The analyte-sensitive organosilicate composition provides an optical change in the film upon analyte exposure.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: February 11, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: J. Christopher Thomas, Neal A. Rakow, John E. Trend
  • Patent number: 8647575
    Abstract: A blood glucose meter includes a front attachment part to which a test piece is attached, a measurement part for measuring a component of blood collected via a blood guide passage in the test piece, and a monitor for displaying the measurement results obtained by the measurement part. When the device is placed on a horizontal plane by referring to the display face of the monitor as the upper side and the opposite side as the lower side and placing the display face of the monitor upward, the central axis of the test piece extends obliquely downward toward the front side. The blood glucose meter comprises a main part provided with the monitor and a linking part between the main part and the front attachment part. The top face of the linking part is placed roughly parallel to the central axis line and is provided with an ejector lever.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: February 11, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Hirotaka Ohashi
  • Patent number: 8647885
    Abstract: Process for detecting a gaseous compound of BX3, HX or X2 type within a gas using a composition containing a probe molecule, characterized in that the probe molecule is a molecule for which the reaction with one or more compounds of BX3, HX or X2 type leads to a variation of at least one of its physicochemical properties, this variation being measurable via a suitable analysis technique, and in that the following steps are carried out in this order: (a) measurement of said physicochemical property of the probe molecule, such as a spectral property, (b) bringing the gas into contact with the composition containing the probe molecule from step (a), (c) repeat measurement of said physicochemical property, (d) correlation of the variation of said spectral property between steps (a) and (c) in the presence of said gaseous compound of BX3, HX or X2 type, the measurement of the physicochemical property from step (a) possibly being a prior step, process for trapping gaseous compounds of BX3, HX or X2 type contained i
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: February 11, 2014
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Thu-Hoa Tran-Thi, Philippe Banet, Loic Legagneux
  • Patent number: 8647883
    Abstract: A method of quantitatively measuring the concentration of a chemical species in a sample solution with a sensor film. A hydrogel sensor film is prepared having a chemical composition comprising an indicator that changes its optical property in the ultra-violet, visible or near-infrared spectral range upon being exposed to the chemical species in the sample solution. The film is exposed to a fixed amount of the sample solution. The concentration of the chemical species in the sample solution is quantified using the average absorbance measured from the sensor film.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Radislav A. Potyrailo, Timothy M. Sivavec, Caibin Xiao, Theodore J. Cecconie, Lamyaa Hassib, Andrew M. Leach, David B. Engel
  • Publication number: 20140038306
    Abstract: The various embodiments described herein relate to fabricating and using open microfluidic networks according to methods, systems, and devices that can be used in applications ranging from home-testing, diagnosis, and research laboratories. Open microfluidic networks allow the input, handling, and extraction of fluids or components of the fluid into or out of the open microfluidic network. Fluids can be inserted into an open microfluidic channel by using open sections of the open microfluidic network. Passive valves can be created in the microfluidic network, allowing the creation of logic circuits and conditional flow and volume valves. The fluid can be presented via the microfluidic network to diagnostic and analysis components. Fluids and components of the fluid can be extracted from the open microfluidic network via functional open sections that are easily interfaced with other microfluidic networks or common laboratory tools.
    Type: Application
    Filed: July 23, 2013
    Publication date: February 6, 2014
    Applicant: Tasso, Inc.
    Inventors: Erwin Berthier, Ben Casavant, Ben Moga
  • Publication number: 20140038305
    Abstract: Formulations, articles and methods for the detection and/or qualification of ultraviolet light. A chemical formulation containing a tetrazolium or formazan complex is used to make a UV sensitive compound. The formulation is used to form a chemical indicator comprising a substrate with the formulation impregnated on or in the substrate. The substrate may be any suitable material and may be coated, uncoated, or laminated. The formulation may be coated on or inserted into a substrate and will form a UV detecting indicator when applied thereto. Depending upon its composition, the formulation will undergo a color change on exposure to different types of ultraviolet radiation, such as UVA, UVB or UVC, and the color change can be correlated to the length of exposure. The indicator can be used to detect and evaluate exposure to ultraviolet light in a variety of settings depending on the specifics of the formulation.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: PROPPER MANUFACTURING COMPANY, INC.
    Inventors: Andrey Sharavara, Michael Tambasco
  • Publication number: 20140038222
    Abstract: A structure is configured to retain optical diagnostic assay components in a manner that enables them to be synergistically combined or coupled both mechanically and electrically with a conventional mobile electronic device (such as a smartphone), such that the pairing maintains a mutually advantageous relationship to provide a compact portable optical assay apparatus in which the optical assay portion has access to the image sensor, battery power, microprocessor, and data capture, analysis, storage, display and transmission capabilities of the smartphone, and the smartphone portion provides the overall apparatus with features of transportability, user interface, and information storage, analysis and retrieval, and transmission of assay results to a separate site, such as a site of records related to the provider of the sample being assayed. Methods of providing such structure and of performing an optical assay of sample material utilizing such structure are described.
    Type: Application
    Filed: April 3, 2013
    Publication date: February 6, 2014
    Inventors: Eckhard Alt, Jody Vykoukal, Michael Coleman
  • Patent number: 8641968
    Abstract: A chemical analyzer, a method for sample-based analysis, a device for handling cuvette assemblies including a rotatable incubator with at least one curved opening for receiving a new cuvette assembly, an analyzer arranged around the incubator for analyzing contents of the new cuvette assembly, and a loading device adapted to carry the new cuvette assembly while initially being aligned in a straight manner before being loaded. The loading device includes a feed funnel having a first end for receiving the new cuvette assembly initially aligned in the straight manner into the feed funnel, and a second end for feeding the new cuvette assembly into the at least one curved opening, the second end having a curvature which corresponds to the curvature of the curved opening, the second end for bending the initially straight new cuvette assembly and fitting the new cuvette assembly into the at least one curved opening.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 4, 2014
    Assignee: Thermo Fisher Scientific Oy
    Inventors: Vesa Nuotio, Ville Saarainen, Juha Savonsalmi
  • Patent number: 8642350
    Abstract: A sensor material of the type comprising a long-decay photoluminescent, protonable dye embedded in a suitable polymeric matrix, is used for generating a specific optical response to two different analytes present in a sample, thus allowing selective determination of the two analytes in the sample. Also described is a method for the simultaneous sensing of a first and second analyte in a sample. The method comprises the steps of irradiating a sensor material of the type comprising a long-decay photoluminescent protonable dye embedded in a suitable polymeric matrix with light of one or two wavelengths, determining photoluminescence intensity and lifetime signals originating from the sensor, and correlating the photoluminescence intensity signal with a concentration of the first analyte and the photoluminescence lifetime signal(s) with the concentration of the second analyte.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 4, 2014
    Assignee: University College Cork, National University of Ireland, Cork
    Inventor: Dmitri Papkovsky
  • Patent number: 8642319
    Abstract: An optical-waveguide sensor chip includes an optical waveguide having a first substance immobilized on the surface thereof, the first substance being specifically reactive with an analyte substance, and fine particles dispersed on the optical waveguide and having a second substance immobilized on the surface thereof, the second substance being specifically reactive with the analyte substance.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shingo Kasai, Ikuo Uematsu, Ichiro Tono, Tomohiro Takase, Isao Nawata, Kayoko Oomiya, Yuriko Oyama, Tsutomu Honjoh
  • Patent number: 8637327
    Abstract: The invention relates to a method for optimizing the automatic fluorescence pattern recognition in immunodiagnosis. In this method, in addition to or together with the fluorescence dye, one or more other indicator dyes for the identification of relevant structures are incubated before an image is taken with a camera.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: January 28, 2014
    Assignee: Euroimmun Medizinische Labordiagnostika AG
    Inventors: Stöcker Winfried, Hendrik Fauer, Christopher Krause, Erhardt Barth, Thomas Martinetz
  • Patent number: 8637319
    Abstract: A method for detecting human or animal blood traces on a surface is described. The method is fundamentally based on the reaction of luminol and includes the preliminary operation of atomizing an inorganic powder suspension, such as titania, silica, alumina, hydroxyapatite, or the like, onto the surface to be investigated, after which a composition of luminol, a peroxidic oxidizing agent and an alkaline agent in an amount providing a pH within the range of 10 to 14, is atomized on the surface. A kit for carrying out the detection method of the invention is also described.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: January 28, 2014
    Assignee: Universita' Degli Studi di Torino
    Inventors: Gianmario Martra, Simone Priante, Marco Vincenti
  • Patent number: 8637325
    Abstract: A method and apparatus for conducting the rapid pyrolysis of peptides, proteins, polymers, and biological materials. The method can be carried out at atmospheric pressures and takes only about 5 to 30 seconds. The samples are cleaved at the C-terminus of aspartic acid. The apparatus employs a probe on which the sample is heated and digested components analyzed.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: January 28, 2014
    Assignee: University of Wyoming
    Inventors: Franco Basile, Shaofeng Zhang
  • Patent number: 8637318
    Abstract: A method for classifying particles according to one or more particle characteristics. The method includes operating multiple flow cytometer units to form separate fluid streams that each contain a mixture of particles and to classify particles in the mixtures by interrogating the streams with beams of electromagnetic radiation. A common processor receives and processes information from the units and sends a control signal in real time to adjust the unit's operation as a function of the information received by the common processor.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 28, 2014
    Assignee: Inguran, LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Publication number: 20140024131
    Abstract: A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
    Type: Application
    Filed: March 23, 2011
    Publication date: January 23, 2014
    Inventors: Ansoon Kim, Zhiyong Li, Stanley R. Williams
  • Publication number: 20140024072
    Abstract: A sample analyzer includes: a first measurement part which performs measurement on a sample for a first measurement item; a second measurement part which performs a measurement on the sample for a second measurement item; an output section; and a controller configured to control the output section to output, when a time difference between a measurement on a sample performed by the first measurement part and a measurement on the sample performed by the second measurement part exceeds a predetermined time period, information based on an excess of the time difference.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: SYSMEX CORPORATION
    Inventors: Toru MIZUMOTO, Fumio INOUE
  • Patent number: 8632730
    Abstract: In one aspect, a diagnostic test system includes a receptacle, optical detectors, and a logic circuit. Each of the optical detectors has a corresponding view in the receptacle and produces an electrical signal at a respective detector output in response to light from the corresponding view. The logic circuit includes logic inputs that are respectively coupled to the detector outputs and that produce an output logic signal corresponding to a logical combination of signals received at the logic inputs. In another aspect, respective detection signals are produced in response to light received from respective ones of multiple views of the test strip, and at least one output logic signal corresponding to a respective logical combination of the detection signals is generated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 21, 2014
    Assignee: Alverix, Inc.
    Inventors: John F. Petrilla, Daniel B. Roitman