With Fluorescence Or Luminescence Patents (Class 436/172)
  • Patent number: 8815527
    Abstract: The invention provides methods and compositions for simultaneously detecting the activation state of a plurality of proteins in single cells using flow cytometry. The invention further provides methods and compositions of screening for bioactive agents capable of coordinately modulating the activity of a plurality of proteins in single cells. The methods and compositions can be used to determine the protein activation profile of a cell for predicting or diagnosing a disease state, and for monitoring treatment of a disease state.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: August 26, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Omar D. Perez, Garry P. Nolan
  • Publication number: 20140234984
    Abstract: An optical apparatus comprises an ultraviolet light source (100) configured to transmit the ultraviolet light to a sample (102), one or more wavelength dependent beam splitters (104) and at least two separate detectors (106, 108). Each beam splitter (104) receives, from the sample (102), a band of excitating ultraviolet light and at least one band of fluorescence associated with an interaction between the excitating ultraviolet light and the sample (102) in the optical path through the sample (102), directs the band of excitating ultraviolet light passed through the sample (102) towards a first detector (106), and directs the at least one band of the fluorescence towards at least one separate detector (108). The first detector (106) and the at least one separate detector (108) are simultaneously configured to form electrical signals carrying information on powers of the bands of the ultraviolet light and the fluorescence, respectively.
    Type: Application
    Filed: October 10, 2012
    Publication date: August 21, 2014
    Applicant: Teknologian Tutkimuskeskus VTT
    Inventors: Mikko Juuti, Pekka Teppola
  • Patent number: 8809061
    Abstract: A living body phantom according to the present invention, which is used as a testing sample in a prepared slide in estimating the performance of a microscope objective lens with the image of the testing sample in the prepared slide acquired by an imaging means via the microscope objective lens and with optical characteristics obtained from the image of the testing sample, includes a non-gel-like solution at least including: a solvent which at least includes water, a refractive index adjustment agent, and a scattering body or which at least includes a refractive index adjustment agent and a scattering body; and a thickener.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 19, 2014
    Assignee: Olympus Corporation
    Inventors: Asuka Mukai, Koji Yoshida
  • Patent number: 8809063
    Abstract: A fluorescence based sensor (10) is disclosed and described. The sensor (10) can include nanofibril materials (12) fabricated from a linear carbazole oligomer and a fluorescence detector (14). The linear carbazole oligomer can have the formula (I) wherein n is 3 to 9, R are independently selected amine sidegroups, and at least one, but not all, R is a C1 to C14 alkyl. The carbazole-based fluorescence based sensors (10) can be particularly suitable for detection of explosives and volatile nitro compounds.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: August 19, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Ling Zang, Yanke Che
  • Patent number: 8808624
    Abstract: This blood analyzer includes a sample preparation portion preparing a measurement sample free from a labeling substance from a blood sample and a hemolytic agent free from a labeling substance, a light information generation portion generating fluorescent information and at least two types of scattered light information from the measurement sample and a control portion performing a first classification of white blood cells in the measurement sample into at least four groups of monocytes, neutrophils, eosinophils and others on the basis of the fluorescent information and the two types of scattered light information.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Sysmex Corporation
    Inventors: Hideaki Matsumoto, Kinya Uchihashi, Yuji Itose, Aya Konishi
  • Patent number: 8809067
    Abstract: The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 19, 2014
    Assignee: Bayer MaterialScience LLC
    Inventor: George G. Combs
  • Patent number: 8802444
    Abstract: A “real time” method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 12, 2014
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 8802450
    Abstract: Methods and compositions are provided that include a multichromophore and/or multichromophore complex for identifying a target biomolecule. A sensor biomolecule, for example, an antibody can be covalently linked to the multichromophore. Additionally, a signaling chromophore can be covalently linked to the multichromophore. The arrangement is such that the signaling chromophore is capable of receiving energy from the multichromophore upon excitation of the multichromophore. Since the sensor biomolecule is capable of interacting with the target biomolecule, the multichromophore and/or multichromophore complex can provide enhanced detection signals for a target biomolecule.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 12, 2014
    Assignee: Sirigen, Inc.
    Inventors: Brent S. Gaylord, Janice W. Hong, Tsu-Ju Fu, Cheng-Jun Sun, Russell Baldocchi
  • Patent number: 8802852
    Abstract: Novel mono-azide substituted rylene-imide derivatives, their use in methods for the detection of analytes and reagents kits for the detection of analytes comprising said novel mono-azide substituted rylene-imide derivatives.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: August 12, 2014
    Assignee: BASF SE
    Inventors: Thomas Gessner, Helmut Reichelt, Ingo Münster, Martin Könemann, Neil Gregory Pschirer, Jianqiang Qu, Rüdiger Sens, Anja Schwögler, Antonio Manetto
  • Patent number: 8802447
    Abstract: The present invention provides materials, devices, and methods related to determination of an analyte. In some embodiments, an analyte may be determined by monitoring, for example, a change in an optical signal of a luminescent material (e.g., particle) upon exposure to an analyte. The present invention may be particularly advantageous in that some embodiments may comprise an emissive species useful as an internal reference standard. Methods of the invention may also be useful in the quantitative determination of an analyte. In some cases, the present invention may allow for selective determination of an analyte.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: August 12, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jessica H. Liao
  • Patent number: 8802442
    Abstract: The apparatus and method for detecting blood in urine or feces includes a photodetector configured to detect a transient light emitted in a toilet bowl by luminol and an oxidizer catalyzed by iron in the blood. The apparatus may include dispensers for the luminol, the oxidizer and a base. The apparatus may include a microprocessor and a network connection and may perform statistical analyzes, store data and alert the patient or a healthcare provider if blood is detected. The photodetector may be configured to detect light emitted in the toilet bowl by a fluorophore present in the water and excited by the transient light from the luminol and oxidizer.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 12, 2014
    Inventors: Eric B. Wheeldon, Robert J. Barsotti
  • Patent number: 8796040
    Abstract: A system of quantitatively determining a biomolecule, which has: allowing fluorescent silica particles capable of emitting fluorescence detectable by a flow cytometer to capture a target biomolecule fluorescent-labelled for quantitative determination; detecting the fluorescence emitted from the fluorescent silica particles themselves by using the flow cytometer; and measuring the intensity of the fluorescence of the labelled target biomolecule, thereby quantitatively determining the target biomolecule.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 5, 2014
    Assignees: The Furukawa Electric Co., Ltd., The University of Tokushima
    Inventors: Hideki Aizawa, Michio Ohkubo, Michihiro Nakamura, Hirokazu Miyoshi
  • Patent number: 8796038
    Abstract: Tissue orientation devices include a perforated tissue support with at least one perforated channel for receiving a tissue sample, and a plurality of tabs configured to extend along and into the channel to retain the tissue sample during processing and embedding. Tissue orientation devices include elongated legs coupled together for holding one or more biopsy tissue samples therebetween. Associated methods include using the cassettes and orientation devices to hold and orient tissue samples for processing, embedding and microtome sectioning.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 5, 2014
    Assignees: Biopath Automation, L.L.C., Sakura Finetek U.S.A., Inc.
    Inventors: Warren P. Williamson, IV, Stephen P. Whitlatch, Carlos A. Saez
  • Patent number: 8795595
    Abstract: A sensing apparatus may include a substrate having a first side for a sensing element and a second side for electronics, the substrate may have a at least one via from the first side of the substrate to the second side of the substrate, the at least one via may be hermetically sealed with an optically transmissive material.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: August 5, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventor: Rajiv Shah
  • Patent number: 8796037
    Abstract: A method of detection separation and identification for expressed trace protein/peptide; and a system therefor. There is provided a method of detecting, separating and identifying a minute amount of expressed protein and/or peptide, characterized in that a fluorescent derivative of protein and/or peptide contained in a test subject sample having been labeled with a fluorescence reagent is applied to HPLC; a fluorescent fraction is collected and subjected to enzymatic hydrolysis; mass-spectrometry of the resultant fluorescence-labeled fragments and non-fluorescence-labeled fragments is carried out; and the thus obtained ion molecular weight information on each of the fragments is collated with an available protein and/or peptide fragment database to thereby accomplish a structural analysis. Further, there is provided an identification system therefor.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 5, 2014
    Inventor: Kazuhiro Imai
  • Publication number: 20140212984
    Abstract: A fluorescence reader for an optical assay arrangement that includes a polymeric sample substrate having a reaction site-surface and a substrate surface. The fluorescence reader includes a light source arranged to illuminate the reaction site-surface through the substrate surface, and a detector device arranged to detect fluorescent light emitted from the reaction site-surface and transmitted through the substrate surface, the substrate surface being configured to increase transmission of emitted fluorescent light by suppression of total internal reflection.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: Johnson & Johnson AB
    Inventors: Tomas Lindstrom, Ib Mendel-Hartvig, Ove Öhman, Johan Backlund, Kennet Vilhelmsson
  • Patent number: 8791258
    Abstract: The present invention provides a novel class of pro-fluorescent probes for reactive oxygen species (ROS). One exemplary probe is mitochondria peroxy yellow 1 (MitoPY1), a new type of flurophore for imaging mitochondrial H2O2 in living cells with ROS and spatial specificity. The invention also provides methods of using pro-fluorescent probes to detect analytes. One exemplary method comprises using a pro-fluorescent probe of the invention to detect an explosive.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 29, 2014
    Assignee: The Regents of the University of California
    Inventor: Christopher J. Chang
  • Patent number: 8790930
    Abstract: A chemical indicator having a particulate inorganic substrate, and at least one reactive dye or ink coated on and/or impregnated within the particulate inorganic substrate. Coating and/or impregnating at least one reactive dye or ink on or within a particulate inorganic substrate improves the storage stability and/or thermal stability of the at least one reactive dye or ink, which typically includes relatively unstable compounds. This allows the present indicators to be incorporated into thermoplastic polymer materials and processed conventionally while maintaining the efficacy and stability of the new indicators. The indicators provide simple, reliable, and cost effective detection means for detecting analytes such as ammonia, carbon dioxide, and oxygen, and may find use in applications such as food packaging and medical applications.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 29, 2014
    Assignee: University of Strathclyde
    Inventors: Andrew Mills, Pauline Grosshans, Graham Skinner
  • Publication number: 20140206096
    Abstract: Nanocrystals having an indium-based core and methods for making them and using them to construct core-shell nanocrystals are described. These core-shell nanocrystals are highly stable and provide higher quantum yields than known nanocrystals of similar composition, and they provide special advantages for certain applications because of their small size.
    Type: Application
    Filed: January 31, 2014
    Publication date: July 24, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Joseph BARTEL, Yongfen Chen, Eric Tulsky, Joseph Treadway
  • Publication number: 20140206568
    Abstract: Systems, devices, and methods for accurately imaging chemiluminescence and other luminescence are disclosed. A compact, flat-bed scanner having a light-tight enclosure, one or more detector bars of linear charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) imaging chips, and high working numerical aperture (NA) optics scans closely over a sample in one direction and then the opposite direction. Averages or other combinations of intensity readings for each pixel location (x, y) between the two or more passes are averaged together in order to compensate for luminescence that varies over time. On-chip pixel binning and multiple clock frequencies can be used to maximize the signal to noise ratio in a CCD-based scanner.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: LI-COR, Inc.
    Inventors: Ahmed Bouzid, Chris Lesiak, Daniel W. Konz, David L. Franzen, William Biggs, Jon P. Anderson
  • Patent number: 8785208
    Abstract: The present invention provides fluorogenic compounds for the detection of target metal ions wherein the compounds exhibit a Stokes shift greater than 50 nm and the detectable signal is modulated by photoinduced electron transfer (PET). The present compounds consist of three functional elements, the ion sensing moiety (chelating moiety), the reporter moiety (fluorophore or fluorescent protein) and spacer or linker between the sensing and reporter moieties of the present compound that allows for PET upon binding of a metal ion and excitation by an appropriate wavelength.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 22, 2014
    Assignee: Life Technologies Corporation
    Inventors: Kyle Gee, Vladimir Martin
  • Patent number: 8784736
    Abstract: An isothermal reaction and analysis system may include a receiver to receive sample holders, a thermal control subsystem to control a temperature of the receiver, an excitation subsystem, a detection subsystem and an analysis subsystem. Excitation sources and/or detectors are positioned to enhance data collection. Sample holders may include filters, selectively blocking and passing wavelengths or bands of electromagnetic radiation.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Keck Graduate Institute
    Inventors: Robert W. Doebler, II, Christopher Cooney, Anna Hickerson, James D. Sterling, Ali Nadim
  • Patent number: 8784749
    Abstract: This invention provides a digital microfluidic manipulation device and a manipulation method thereof. This device comprises a PDMS membrane having a surface comprising a plurality of hydrophobic microstructures; a plurality of air chambers arranged in an array and placed under the PDMS membrane; and a plurality of air channels, each of which connects to a corresponding one of the plurality of air chambers. When a suction force is transmitted via one of the plurality of air channels to the corresponding air chamber, a portion of the PDMS membrane above the air chamber deforms toward the air chamber, so that the surface morphology and the contact angle of the liquid/solid interface of the surface comprising the plurality of hydrophobic microstructures are altered and thereby to drive droplets.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: National Taiwan University
    Inventors: Jing-Tang Yang, Chao-Jyun Huang, Chih-Yu Hwang
  • Patent number: 8778688
    Abstract: Described herein are high-throughput methods of monitoring D-serine levels in plasma. The assay involves the use of strong cation solid phase extraction (SPE) to isolate D-serine from plasma, followed by quantitation of D-serine using the D-amino acid oxidase- (DAAO-) catalyzed reaction. Also described are methods of screening for compounds that act as DAAO inhibitors.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: July 15, 2014
    Assignee: The Johns Hopkins University
    Inventors: Barbara S. Slusher, Jesse Alt, Camilo Rojas, Takashi Tsukamoto
  • Patent number: 8778279
    Abstract: The present disclosure relates to microfluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough. In certain embodiments, the microfluidic devices have onboard sterilization capabilities. In other embodiments, microfluidic devices have integral collection bags and methods for keeping the microfluidic channels clean.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 15, 2014
    Assignees: Sony Corporation, Sony Corporation of America
    Inventor: Gary P. Durack
  • Patent number: 8778691
    Abstract: A method for measuring bromate ion is provided that provides high-sensitivity measurement results more simply and more quickly than conventional bromate ion measurement methods. A fluorescent substance that is quenched by coexistence with bromate ions is added to a sample 130 and the fluorescence intensity of the fluorescent substance after quenching is measured, the measured fluorescence intensity being subtracted from the fluorescence intensity of a standard sample containing no bromate ions to calculated the fluorescence intensity difference. The bromate ion concentration is calculated from the calculated fluorescence intensity difference, using a pre-determined calibration line between the fluorescence intensity difference and the bromate ion concentration.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 15, 2014
    Assignees: Meta Water Co., Ltd., Ibaraki University
    Inventors: Shukuro Igarashi, Jun Kato, Yoshiharu Tanaka
  • Patent number: 8778265
    Abstract: An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member, and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 15, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Noda, Satoshi Ozawa, Masahiro Okanojo, Kenko Uchida
  • Patent number: 8778689
    Abstract: We disclose the synthesis and use of chiral ionic liquids based on a substituted pentose, furanose, hexose, or pyranose sugar. The compounds and processes to make or use them are provided.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 15, 2014
    Assignee: The University of the West Indies
    Inventors: Gurdial Singh, Patrice G. J. Plaza, Bhoomendra A. Bhongade
  • Patent number: 8778624
    Abstract: Hydrophilic, chemiluminescent acridinium compounds containing zwitterions are disclosed. These acridinium compounds, when used as chemiluminescent labels in immunochemistry assays and the like, exhibit decreased non-specific binding to solid phases and provide increased assay sensitivity.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 15, 2014
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Anand Natrajan, David Sharpe, Qingping Jiang
  • Patent number: 8778347
    Abstract: The present invention comprises rugged, inexpensive, reliable, and sensitive laboratory assays of antibody-based viral neutralization activity and antibody-based viral adherence inhibition activity. The assays use inactivated, fluorescently-labeled virus, allowing the tests to be performed without extensive safety precautions. The interaction of the labeled virus with target cells is monitored using flow cytometric methods. A preferred embodiment uses simple and inexpensive flow cytometry methodologies and equipment, such as bead array readers used as simplified flow cytometers. The assays are rapid, taking no longer than a few hours and are readily conducted by a trained technician. The assays are sensitive because they use labeled viruses at low concentrations and determine neutralizing and blocking capacity of sera and antibody at low concentrations. The methods are appropriate for high-throughput screening of large panels of samples.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 15, 2014
    Assignee: Sanofi Pasteur Vaxdesign Corp.
    Inventors: Anatoly Kachurin, Olga Kachurina, Vaughan Wittman, Tenekua Tapia
  • Patent number: 8778685
    Abstract: The present invention provides dual labeled protein standards useful for the simultaneous determination of the molecular weight of a subject protein as well as the relative mass (i.e., amount) of the subject protein present in an electrophoresis lane. The invention is also directed to methods suitable for the preparation of such dual labeled protein standards and to methods of using such dual labeled proteins to simultaneously determine the molecular weight and the relative amount of a subject protein. Further embodiments are directed to the use dual labeled protein standards to make a more accurate determination of the amount of a protein present in an electrophoresis lane. Yet further embodiments are directed to kits containing the presently described dual protein standards. Dual labeled protein standards made and used in accordance with the embodiments set forth herein may be used to simultaneously determine the molecular weight and the relative amount of a subject protein in real time.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: July 15, 2014
    Assignee: Life Technologies Corporation
    Inventors: Thomas Diller, Timothy Updyke
  • Patent number: 8765484
    Abstract: The invention concerns a particle having a code embedded in its physical structure by refractive index changes between different regions of the particle. In preferred embodiments, a thin film possesses porosity that varies in a manner to produce a code detectable in the reflectivity spectrum.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Thomas Schmedake, Frederique Cunin, Jamie Link
  • Patent number: 8765392
    Abstract: The present invention relates to methods and kits for diagnosing, ascertaining the clinical course of myelodysplastic syndrome (MDS) and ascertaining response to a therapy regimen of myelodysplastic syndrome. Specifically the invention provides methods and kits useful in the diagnosis and determination of clinical parameters associated with MDS based on surface markers unique to MDS.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 1, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Jonni Moore, Sundhu Cherian, Adam Bagg
  • Patent number: 8765921
    Abstract: There has been a need for coelenterazine analogs that exhibit luminescence properties different from those of known coelenterazine analogs. The present invention provides the compound represented by general formula (1).
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: July 1, 2014
    Assignees: JNC Corporation, Tokyo Institute of Technology
    Inventors: Satoshi Inouye, Yuiko Sahara, Rie Iimori, Takamitsu Hosoya
  • Patent number: 8765056
    Abstract: A method for detecting optical signals, a microfluidic mixing chip having light emitting compound and a system thereof are provided. The microfluidic mixing system comprises the microfluidic mixing chip, an electrode pairs and a power supplier. The microfluidic mixing chip comprises a first side cavity, a second side cavity and a mixing cavity. The mixing cavity is disposed between the first side cavity and the second side cavity. The mixing cavity further contains the light emitting compound, a catalyst and a redox reagent. The electrode pair is respectively disposed to the first side cavity and the second cavity. The power supplier supplies a power source with high frequency alternating current electric field. By utilizing the power source with alternating current electric field, the light emitting compound, the redox reagent and the catalyst are mixed in the mixing cavity to generate a chemiluminescence or bioluminescence optical signal to detect.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 1, 2014
    Assignee: National Chung Cheng University
    Inventors: Shau-Chun Wang, Pei-Ching Hung, Chun-Yi Yeh
  • Patent number: 8765483
    Abstract: Provided herein are explosives detection substrates which include an electrospun (electro)sprayed and/or dry spun aromatic polymer, such as polystyrene, and a small molecule fluorophore. Methods for detecting an explosive material using such substrates are also provided.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 1, 2014
    Assignee: University of Connecticut
    Inventors: Yu Lei, Ying Wang
  • Publication number: 20140179019
    Abstract: Microbeads include small preformed microbead substrates, which may comprise, for example, silica particles having a characteristic dimension less than 2 millimeters. A plurality of luminophores are applied to an exposed surface of the microbead substrates, wherein the luminophores are selected for detecting pressure and/or temperature. A plurality of luminophores absorb light at a predetermined wavelength to transition to an excited state, and they luminesce at different wavelengths when returning to the ground state. The luminescence may be phosphorescence or fluorescence. In some embodiments the microbeads include at least one pressure-sensitive luminophore, at least one temperature-sensitive luminophore, and at least one reference luminophore that is neither pressure-sensitive nor temperature-sensitive. In some embodiments the microbeads are configured for use in digital particle image velocimetry.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 26, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Dana Dabiri, Gamal-Eddin Khalil
  • Patent number: 8759111
    Abstract: Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyl trimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 24, 2014
    Assignees: CEA—Commisariat a l'Energie Atomique et aux Energies Alternatives, CNRS—Centre National de la Recherche Scientifique
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Patent number: 8759112
    Abstract: The present invention concerns a system and method for the luminescence detection of an analyte in a liquid sample. The system comprises a support on which an analyte-specific substance and a reference substance are located. The analyte-specific substance is able to emit a first luminescence signal on contact with the analyte and the reference substance is able to emit a second luminescence signal which is substantially quenched by contact with the liquid sample.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: June 24, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Carina Horn
  • Publication number: 20140170760
    Abstract: There is provided an optical analysis technique of detecting light of a light-emitting particle in a sample solution in the scanning molecule counting method using the light measurement with a confocal or multiphoton microscope, for suppressing the scattering in detected results of signals of light of light-emitting particles smaller and achieving the improvement of accuracy. The inventive technique comprises moving the position of a light detection region along a predetermined route for multiple circulation times by changing the optical path of the optical system; detecting light from the light detection region and generating time series light intensity data during the moving of the light detection region and detecting individually a signal indicating light from each light-emitting particle existing in the predetermined route using the time series light intensity data obtained in the circulating movements of the light detection region of multiple times.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: OLYMPUS CORPORATION
    Inventors: Tetsuya Tanabe, Mitsushiro Yamaguchi
  • Patent number: 8753896
    Abstract: A method of monitoring a surfactant in a microelectronic process is disclosed. Specifically, the monitoring of a surfactant occurs by studying the fluorescence or electromagnetic emission of a sample collected from a microelectronic process.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 17, 2014
    Assignee: Nalco Company
    Inventors: Brian V. Jenkins, John E. Hoots, Amy M. Tseng
  • Patent number: 8747750
    Abstract: A fluorescence quenching based oxygen sensor can be prepared comprising a polystyrene polymer linked to pyrene. The fluorescence based sensor has the formula (I), Polystyrene-Y—R-Pyrene??(I); wherein Y is fluorescence quenching and R is an aliphatic linking group having 1 to 11 carbon atoms. The sensor can be coated onto a support and integrated with an LED excitation source and fluorescence detector.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: June 10, 2014
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Catalin Serban, Mihai N. Mihaila, Octavian Buiu
  • Patent number: 8748159
    Abstract: A rapid method for the quantitation of various live cell types is described. This new cell fluorescence method correlates with other methods of enumerating cells such as the standard plate count, the methylene blue method and the slide viability technique. The method is particularly useful in several applications such as: a) quantitating bacteria in milk, yogurt, cheese, meat and other foods, b) quantitating yeast cells in brewing, fermentation and bread making, c) quantitating mammalian cells in research, food and clinical settings. The method is especially useful when both total and viable cell counts are required such as in the brewing industry. The method can also be employed to determine the metabolic activity of cells in a sample. The apparatus, device, and/or system used for cell quantitation is also disclosed.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: June 10, 2014
    Assignee: GenPrime, Inc.
    Inventors: James E. Fleming, Jason Buck Somes, Darby McLean, Jerad R. Holcomb
  • Patent number: 8747779
    Abstract: A microfluidic cartridge including on-board dry reagents and microfluidic circuitry for determining a clinical analyte or analytes from a few microliters of liquid sample; with docking interface for use in a host workstation, the workstation including a pneumatic fluid controller and spectrophotometer for monitoring analytical reactions in the cartridge.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Micronics, Inc.
    Inventors: Isaac Sprague, John E. Emswiler, C. Frederick Battrell, Joan Haab, Sean M. Pennell, Justin L. Kay, Zane B. Miller, Troy D. Daiber
  • Patent number: 8748183
    Abstract: A method of continuously verifying proper sort calibration in a droplet sorting flow cytometer by selecting a fraction of droplets estimated to have substantially zero probability of containing a particle; applying one charge of a set of charges to the selected droplets in order to form a test stream out of the selected droplets; illuminating the droplets in the test stream; and detecting any light emitted or scattered by any particles in the selected droplets.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 10, 2014
    Assignee: Inguran, LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Publication number: 20140154813
    Abstract: Method for marking a material, comprising including at least two components having different fluorescent characteristics as a blend of components in the material, the at least two components not being already associated with the material and at least one of the at least two different components having a fluorescence that varies in spectral position and/or intensity according to variation of pH, the at least two components being included in the material in an amount effective to be qualitatively and/or quantitatively determined. Also, provided are marked materials and methods of authenticating and preventing counterfeiting and dilution.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 5, 2014
    Applicant: SICPA HOLDING SA
    Inventors: Eric DECOUX, Lorenzo SIRIGU, Cécile PASQUIER, Patrick WYSS, Joëlle SEPPEY
  • Patent number: 8742340
    Abstract: Disclosed herein are methods for determining and replicate unknown ratios of original target liquid blends, such as hydrocarbon fuel blends or contaminants, by using an in-process fluorescence-monitored procedure. The methods rely on trial-and-error mixing of the fuel ingredients into a single container. At the end of the trial-and-error procedure, the formed blend becomes an exact replica of the target fuel blend. The methods can also be used to build calibration curves without employing sets of previously prepared standard solutions.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ezzat Mahmoud Hegazi, Abdullah H. Al-Grainees
  • Patent number: 8741659
    Abstract: In one embodiment of the present invention, a composition is disclosed for measuring a binding affinity between a nucleic acid and a test substance, which contains an organic fluorescent substance capable of binding to an RNA and which emits fluorescence having an intensity greater while the organic fluorescent substance is liberated from an RNA than while the organic fluorescent substance is bound to an RNA. This enables a highly accurate and easy measurement of a binding affinity between a test substance and a nucleic acid, and allows various substances to be examined as a test substance.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 3, 2014
    Assignee: Osaka University
    Inventors: Kazuhiko Nakatani, Jinhua Zhang, Shiori Umemoto, Shinichi Sasaoka, Takahiro Wazaki
  • Publication number: 20140147929
    Abstract: A nanothermometer is disclosed. In various embodiments, a nanothermometer comprises a nanoparticle such as a gold nanoparticle, a fluorophore, and a linker, such as a peptide linker, extending between the nanoparticle and the fluorophore, whereby the fluorophore is self-quenched. The linker can comprise one or more cysteines. An unheated thermometer shows little or no fluorescence. Upon heating, fluorophore-linker conjugates are released from the nanoparticle, thereby unquenching the fluorescence. An increase in fluorescence results. In some embodiments, the increase in fluorescence can be irreversible. Methods of measuring temperature of a sample such as a biological sample, and methods of synthesizing a nanothermometer, are also disclosed. A molecular thermometer is also disclosed.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Applicant: Washington University
    Inventors: Mikhail Y. Berezin, Tiffany P. Gustafson
  • Patent number: 8735167
    Abstract: Provided is a photoamplified fluorescence turn-off assay where a masked photosensitizer is mixed with a fluorescent molecule. This mixture is brightly fluorescent because the masked photosensitizer is not capable of quenching the fluorophore. When the photosensitizer is released and amplified, the photosensitizer quenches the emission of fluorophores very efficiently.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: May 27, 2014
    Assignee: Colorado Seminary, which owns and operates The University of Denver
    Inventors: Andrei G. Kutateladze, Alexei Kurchan, Rudresha Kottani, Janaki Majjigapu